Skip to main content

Oxidative stress responses in yeast

  • Chapter
  • First Online:
Yeast Stress Responses

Part of the book series: Topics in Current Genetics ((TCG,volume 1))

Abstract

Yeast, and especially S. cerevisiae, is a unique eukaryotic model organism for studying oxidative stress and its cellular responses. S. cerevisiae has become a very powerful tool to decipher the complexity of these biologically important responses, because it offers the relative simplicity of a single celled eukaryotic organism that enables the combination and integration of genetic, biochemical, physico-chemical, cell biological, and genome-wide experimental approaches. We introduce the subject with basic concepts about reactive oxygen species (ROS) and explain their cellular toxicity and the experimental approaches that have been adapted to their analysis. Subsequently, we summarize some of the knowledge obtained in the yeast model of the cellular effects of ROS, the antioxidant and thiol redox control systems, and the cellular responses to elevated ROS concentrations. Cellular responses to ROS concentrations are often referred to as adaptive oxidative stress responses. Special attention is given to the signal transduction pathways that regulate these responses in S. cerevisiae, S. pombe, and other fungi. Emphasis is given to the systems that sense elevated ROS concentrations. Important links between oxidative stress responses, carbohydrate metabolism, respiration and the mitochondria, iron and copper metabolism, cell cycle control and yeast apoptotic-like responses are also dealt with here. The data reviewed in this article illustrates how much our understanding of the biology of oxidants has advanced, and how much research is still needed to unravel its complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi Y, Yanagida M (1989) Higher order chromosome structure is affected by cold-sensitive mutations is a Schizosaccharomyces pombe gene, crm1+, which encodes a 115-kDa protein preferentially localized to the nucleus and its periphery. J Cell Biol 108:1195

    Article  PubMed  CAS  Google Scholar 

  • Alarco AM, Balan I, Talibi D, Mainville N, Raymond M (1997) AP1-mediated multidrug resistance in Saccharomyces cerevisiae requires FLR1 encoding a transporter of the major facilitator superfamily. J Biol Chem 272:19304

    Article  PubMed  CAS  Google Scholar 

  • Alarco AM, Raymond M (1999) The bZip transcription factor Cap1p is involved in multidrug resistance and oxidative stress response in Candida albicans. J Bacteriol 181:700

    PubMed  CAS  Google Scholar 

  • Alberts AS, Bouquin N, Johnston LH, Treisman R (1998) Analysis of RhoA-binding proteins reveals an interaction domain conserved in heterotrimeric G protein beta subunits and the yeast response regulator protein Skn7. J Biol Chem 273:8616

    Article  PubMed  CAS  Google Scholar 

  • Alic N, Higgins VJ, Dawes IW (2001) Identification of a Saccharomyces cerevisiae gene that is required for G1 arrest in response to the lipid oxidation product linoleic acid hydroperoxide. Mol Biol Cell 12:1801

    PubMed  CAS  Google Scholar 

  • Ames B, Shigenaga M, Hagen T (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 90:7915

    Article  PubMed  CAS  Google Scholar 

  • Amoros M, Estruch F (2001) Hsf1p and Msn2/4p cooperate in the expression of Saccharomyces cerevisiae genes HSP26 and HSP104 in a gene-and stress type-dependent manner. Mol Microbiol 39:1523

    Article  PubMed  CAS  Google Scholar 

  • Anantharaman V, Koonin EV, Aravind L (2001) Regulatory potential, phyletic distribution and evolution of ancient, intracellular small-molecule-binding domains. J Mol Biol 307:1271

    Article  PubMed  CAS  Google Scholar 

  • Aoyama K, Mitsubayashi Y, Aiba H, Mizuno T (2000) Spy1, a histidine-containing phosphotransfer signaling protein, regulates the fission yeast cell cycle through the Mcs4 response regulator. J Bacteriol 182:4868

    Article  PubMed  CAS  Google Scholar 

  • Aravind L, Ponting CP (1997) The GAF domain: an evolutionarily link between diverse phototransducing proteins. Trends Biochem Sci 22:458

    Article  PubMed  CAS  Google Scholar 

  • Åslund F, Zheng M, Beckwith J, Storz G (1999) Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol-disulfide status. Proc Natl Acad Sci U S A 96:6161

    Article  PubMed  Google Scholar 

  • Autor AP (1982) Biosynthesis of mitochondrial manganese superoxide dismutase in saccharomyces cerevisiae Precursor form of mitochondrial superoxide dismutase made in the cytoplasm. J Biol Chem 257:2713

    PubMed  CAS  Google Scholar 

  • Av-Gay Y, Everett M (2000) The eukaryotic-like Ser/Thr protein kinases of Mycobacterium tuberculosis. Trends Microbiol 8:238

    Article  PubMed  CAS  Google Scholar 

  • Avery AM, Avery SV (2001) Saccharomyces cerevisiae expresses three phospholipid hydroperoxide glutathione peroxidases. J Biol Chem 276:33730

    Article  PubMed  CAS  Google Scholar 

  • Baliga NS, Kennedy SP, Ng WV, Hood L, DasSarma S (2001) Genomic and genetic dissection of an archaeal regulon. Proc Natl Acad Sci U S A 98:2521

    Article  PubMed  CAS  Google Scholar 

  • Benov L, Fridovich I (1998) Growth in iron-enriched medium partially compensates Escherichia coli for the lack of manganese and iron superoxide dismutase. J Biol Chem 273:10313

    Article  PubMed  CAS  Google Scholar 

  • Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313

    Article  PubMed  CAS  Google Scholar 

  • Bilinski T, Krawiec Z, Liczmanski A, Litwinska J (1985) Is hydroxyl radical generated by the Fenton reaction in vivo? Biochem Biophys Res Commun 130:533

    Article  PubMed  CAS  Google Scholar 

  • Billard P, Dumond H, Bolotin-Fukuhara M (1997) Characterization of an AP-1-like transcription factor that mediates an oxidative stress response in Kluyveromyces lactis. Mol Gen Genet 257:62

    Article  PubMed  CAS  Google Scholar 

  • Blaiseau PL, Lesuisse E, Camadro JM (2001) Aft2p, a novel iron-regulated transcription activator that modulates, with Aft1p, intracellular iron use and resistance to oxidative stress in yeast. J Biol Chem 276:34221

    Article  PubMed  CAS  Google Scholar 

  • Bossier P, Fernandes L, Rocha D, Rodrigues-Pousada C (1993) Overexpression of YAP2, coding for a new yAP protein, and YAP1 in Saccharomyces cerevisiae alleviates growth inhibition caused by 1,10-phenanthroline. J Biol Chem 268:23640

    PubMed  CAS  Google Scholar 

  • Bouquin N, Johnson AL, Morgan BA, Johnston LH (1999) Association of the cell cycle transcription factor Mbp1 with the Skn7 response regulator in budding yeast. Mol Biol Cell 10:3389

    PubMed  CAS  Google Scholar 

  • Boy-Marcotte E, Perrot M, Bussereau F, Boucherie H, Jacquet M (1998) Msn2p and Msn4p control a large number of genes induced at the diauxic transition which are repressed by cyclic AMP in Saccharomyces cerevisiae. J Bacteriol 180:1044

    PubMed  CAS  Google Scholar 

  • Broach J, Deschenes R (1990) The function of RAS genes in Saccharomyces cerevisiae. Adv Canc Res 54:79

    Article  CAS  Google Scholar 

  • Broco N, Tenreiro S, Viegas CA, Sa-Correia I (1999) FLR1 gene (ORF YBR008c) is required for benomyl and methotrexate resistance in Saccharomyces cerevisiae and its benomyl-induced expression is dependent on pdr3 transcriptional regulator. Yeast 15:1595

    Article  PubMed  CAS  Google Scholar 

  • Brown JL, Bussey H, Stewart RC (1994) Yeast Skn7p functions in a eukaryotic two-component regulatory pathway. EMBO J 13:5186

    PubMed  CAS  Google Scholar 

  • Brown LL, Bussey H (1993) SKN7, a yeast multicopy suppressor of a mutation affecting cell wall b-glucan assembly, encodes a product with domains homologous to prokaryotic two-component regulators and to heat shock transcription factors. J Bacteriol 175:6908

    PubMed  CAS  Google Scholar 

  • Buchman C, Skroch P, Welch J, Fogel S, Karin M (1989) The CUP2 gene product, regulator of yeast metallothionein expression, is a copper-activated DNA-binding protein. Mol Cell Biol 9:4091

    PubMed  CAS  Google Scholar 

  • Buck V et al. (2001) Peroxide sensors for the fission yeast stress-activated mitogen-activated protein kinase pathway. Mol Biol Cell 12:407

    PubMed  CAS  Google Scholar 

  • Cabiscol E, Piulats E, Echave P, Herrero E, Ros J (2000) Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. J Biol Chem 275:27393

    PubMed  CAS  Google Scholar 

  • Cadet J, Berger M, Douki T, Ravanat JL (1997) Oxidative damage to DNA: formation, measurement, and biological significance. Rev Physiol Biochem Pharmacol 131:1

    PubMed  CAS  Google Scholar 

  • Carmel-Harel O, Stearman R, Gasch AP, Botstein D, Brown PO, Storz G (2001) Role of thioredoxin reductase in the Yap1p-dependent response to oxidative stress in Saccharomyces cerevisiae. Mol Microbiol 39:595

    Article  PubMed  CAS  Google Scholar 

  • Carratore RD, Della Croce C, Simili M, Taccini E, Scavuzzo M, Sbrana S (2002) Cell cycle and morphological alterations as indicative of apoptosis promoted by UV irradiation in S cerevisiae. Mutat Res 513:183

    PubMed  Google Scholar 

  • Causton HC et al. (2001) Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell 12:323

    PubMed  CAS  Google Scholar 

  • Cavigelli M, Li WW, Lin A, Su B, Yoshioka K, Karin M (1996) The tumor promoter arsenate stimulates AP-1 activity by inhibiting a JNK phosphatase. EMBO J 15:6269

    PubMed  CAS  Google Scholar 

  • Chae H, Kim I-H, Kim K, Rhee S (1993) Cloning, sequencing, and mutation of thiolspecific antioxidant gene of Saccharomyces cerevisiae. J Biol Chem 268:16815

    PubMed  CAS  Google Scholar 

  • Chae HZ, Chung SJ, Rhee SG (1994a) Thioredoxin-dependent peroxyde reductase from yeast. J Biol Chem 269:27670

    PubMed  CAS  Google Scholar 

  • Chae HZ, Rhee SG (1994) A thiol-specific antioxidant and sequence homology to various proteins of unknown function. Biofactors 4:177

    PubMed  CAS  Google Scholar 

  • Chae HZ, Uhm TB, Rhee SG (1994b) Dimerization of thiol-specific antioxidant and the essential role of cysteine 47. Proc Natl Acad Sci USA 91:7022

    Article  PubMed  CAS  Google Scholar 

  • Chang EC, Kosman DJ (1990) O2-dependent methionine auxotrophy in Cu,Zn superoxide dismutase-deficient mutants of Saccharomyces cerevisiae. JBacteriol 172:1840

    CAS  Google Scholar 

  • Charizanis C, Juhnke H, Krems B, Entian KD (1999a) The mitochondrial cytochrome c peroxidase Ccp1 of Saccharomyces cerevisiae is involved in conveying an oxidative stress signal to the transcription factor Pos9 (Skn7). Mol Gen Genet 262:437

    Article  PubMed  CAS  Google Scholar 

  • Charizanis C, Juhnke H, Krems B, Entian KD (1999b) The oxidative stress response mediated via Pos9/Skn7 is negatively regulated by the Ras/PKA pathway in Saccharomyces cerevisiae. Mol Gen Genet 261:740

    Article  PubMed  CAS  Google Scholar 

  • Chaudhuri B, Ingavale S, Bachhawat AK (1997) apd1+, a gene required for red pigment formation in ade6 mutants of Schizosaccharomyces pombe, encodes an enzyme required for glutathione biosynthesis: a role for glutathione and a glutathione-conjugate pump. Genetics 145:75

    PubMed  CAS  Google Scholar 

  • Choi HJ, Kang SW, Yang CH, Rhee SG, Ryu SE (1998) Crystal structure of a novel human peroxidase enzyme at 20 A resolution. Nat Struct Biol 5:400

    Article  PubMed  CAS  Google Scholar 

  • Coblenz A, Wolf K (1994) The role of glutathione biosynthesis in heavy metal resistance in the fission yeast Schizosaccharomyces pombe. FEMS Microbiol Rev 14:303

    Article  PubMed  CAS  Google Scholar 

  • Coleman ST, Epping EA, Steggerda SM, Moye-Rowley WS (1999) Yap1p activates gene transcription in an oxidant-specific fashion. Mol Cell Biol 19:8302

    PubMed  CAS  Google Scholar 

  • Coleman ST, Tseng E, Moye-Rowley WS (1997) Saccharomyces cerevisiae basic region-leucine zipper protein regulatory networks converge at the ATR1 structural gene. J Biol Chem 272:23224

    Article  PubMed  CAS  Google Scholar 

  • Collinson L, Dawes I (1992) Inducibility of the response of yeast cells to peroxide stress. J Gen Microbiol 138:329

    PubMed  CAS  Google Scholar 

  • Collinson LP, Dawes IW (1995) Isolation, characterization and overexpression of the yeast gene, GLR1, encoding glutathione reductase. gene 156:123

    Article  PubMed  CAS  Google Scholar 

  • Corson LB, Folmer J, Strain JJ, Culotta VC, Cleveland DW (1999) Oxidative stress and iron are implicated in fragmenting vacuoles of Saccharomyces cerevisiae lacking Cu,Zn-superoxide dismutase. J Biol Chem 274:27590

    Article  PubMed  CAS  Google Scholar 

  • Cottarel G (1997) Mcs4, a two-component system response regulator homologue, regulates the Schizosaccharomyces pombe cell cycle control. Genetics 147:1043

    PubMed  CAS  Google Scholar 

  • Crawford DR, Davis KJA (1994) Adaptative response and oxidative stress. Environ Heath Perspect 102:25

    Article  Google Scholar 

  • Crews ST, Fan CM (1999) Remembrance of things PAS: regulation of development by HLH-PAS proteins. Curr Opin Genet 9:580

    Article  CAS  Google Scholar 

  • Culotta VC (2000) Superoxide dismutase, oxidative stress, and cell metabolism. Curr Top Cell Regul 36:117

    Article  PubMed  CAS  Google Scholar 

  • Culotta VC, Howard WR, Liu XF (1994) CRS5 encodes a metallothionein-like protein in Saccharomyces cerevisiae. JBiol Chem 269:25295

    CAS  Google Scholar 

  • Culotta VC, Joh HD, Lin SJ, Slekar KH, Strain J (1995) A physiological role for Saccharomyces cerevisiae copper/zinc superoxide dismutase in copper buffering. J Biol Chem 270:29991

    Article  PubMed  CAS  Google Scholar 

  • Dancis A (1998) Genetic analysis of iron uptake in the yeast Saccharomyces cerevisiae. J Pediatr 132:S24

    Article  Google Scholar 

  • Davies KJ (1987) Protein damage and degradation by oxygen radicals I general aspects. J Biol Chem 262:9895

    PubMed  CAS  Google Scholar 

  • Davies KJ (1999) The broad spectrum of responses to oxidants in proliferating cells: a new paradigm for oxidative stress. IUBMB Life 48:41

    PubMed  CAS  Google Scholar 

  • Davies KJ, Delsignore ME (1987) Protein damage and degradation by oxygen radicals III Modification of secondary and tertiary structure. J Biol Chem 262:9908

    PubMed  CAS  Google Scholar 

  • Davies KJ, Delsignore ME, Lin SW (1987) Protein damage and degradation by oxygen radicals II Modification of amino acids. J Biol Chem 262:9902

    PubMed  CAS  Google Scholar 

  • De Freitas JM, Liba A, Meneghini R, Valentine JS, Gralla EB (2000) Yeast lacking Cu-Zn superoxide dismutase show altered iron homeostasis Role of oxidative stress in iron metabolism. J Biol Chem 275:11645

    Article  Google Scholar 

  • Dean RT, Fu S, Stocker R, Davies MJ (1997) Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 324:1

    PubMed  CAS  Google Scholar 

  • Deere D, Shen J, Vesey G, Bell P, Bissinger P, Veal D (1998) Flow cytometry and cell sorting for yeast viability assessment and cell selection. Yeast 14:147

    Article  PubMed  CAS  Google Scholar 

  • Degols G, Russell P (1997) Discrete roles of the Spc1 kinase and the Atf1 transcription factor in the UV response of Schizosaccharomyces pombe. Mol Cel Biol 17:3356

    CAS  Google Scholar 

  • Degols G, Shiozaki K, Russell P (1996) Activation and regulation of the Spc1 stress-activated protein kinase in Schizosaccharomyces pombe. Mol Cel Biol 16:2870

    CAS  Google Scholar 

  • Delaunay A, Isnard AD, Toledano MB (2000) H2O2 sensing through oxidation of the Yap1 transcription factor. EMBO J 19:5157

    Article  PubMed  CAS  Google Scholar 

  • Demple B (1991) Regulation of bacterial oxidative stress genes. Annu Rev Genet 25:315

    Article  PubMed  CAS  Google Scholar 

  • Demple B, Halbrook J (1983) Inducible repair of oxidative DNA damage in Escherichia coli. Nature 304:466

    Article  PubMed  CAS  Google Scholar 

  • Draculic T, Dawes IW, Grant CM (2000) A single glutaredoxin or thioredoxin gene is essential for viability in the yeast Saccharomyces cerevisiae. Mol Microbiol 36:1167

    Article  PubMed  CAS  Google Scholar 

  • Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11:81

    Article  PubMed  CAS  Google Scholar 

  • Estruch F (2000) Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol Rev 24:469

    Article  PubMed  CAS  Google Scholar 

  • Evans MV, Turton HE, Grant CM, Dawes IW (1998) Toxicity of linoleic acid hydroperoxide to Saccharomyces cerevisiae: involvement of a respiration-related process for maximal sensitivity and adaptive response. J Bacteriol 180:483

    PubMed  CAS  Google Scholar 

  • Fabrizio P, Pozza F, Pletcher SD, Gendron CM, Longo VD (2001) Regulation of longevity and stress resistance by Sch9 in yeast. Science 292:288

    Article  PubMed  CAS  Google Scholar 

  • Fernandes L, Rodrigues-Pousada C, Struhl K (1997) Yap, a novel family of eight bZIP proteins in Saccharomyces cerevisiae with distinct biological functions. Mol Cel Biol 17:6982

    CAS  Google Scholar 

  • Flattery-O’Brien J, Collinson L, Dawes I (1993) Saccharomyces cerevisiae has an inducible response to menadione Which differs from that to hydrogen peroxide. J Gen Microbiol 139:501

    PubMed  CAS  Google Scholar 

  • Flattery-O’Brien JA, Dawes IW (1998) Hydrogen peroxide causes RAD9-dependent cell cycle arrest in G2 in Saccharomyces cerevisiae whereas menadione causes G1 arrest independent of RAD9 function. J Biol Chem 273:8564

    Article  PubMed  CAS  Google Scholar 

  • Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97

    Article  PubMed  CAS  Google Scholar 

  • Fujii Y, Shimizu T, Toda T, Yanagida M, Hakoshima T (2000) Structural basis for the diversity of DNA recognition by bZIP transcription factors. Nat Struct Biol 7:889

    Article  PubMed  CAS  Google Scholar 

  • Furst P, Hamer D (1989) Cooperative activation of a eukaryotic transcription factor: interaction between Cu(I) and yeast ACE1 protein. Proc Natl Acad Sci U S A 86:5267

    Article  PubMed  CAS  Google Scholar 

  • Gaits F, Degols G, Shiozaki K, Russell P (1998) Phosphorylation and association with the transcription factor Atf1 regulate localization of Spc1/Sty1 stress-activated kinase in fission yeast. Genes Dev 12:1464

    Article  PubMed  CAS  Google Scholar 

  • Gaits F, Russell P (1999) Active nucleocytoplasmic shuttling required for function and regulation of stress-activated kinase Spc1/StyI in fission yeast. Mol Biol Cell 10:1395

    PubMed  CAS  Google Scholar 

  • Galperin MY, Nikolskaya AN, Koonin EV (2001) Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol Lett 203:11

    Article  PubMed  CAS  Google Scholar 

  • Gan Z-R (1992) Cloning and sequencing of a gene encoding yeast thioltransferase. Biochem Biophys Res Commun 187:949

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Gimeno MA, Struhl K (2000) Aca1 and Aca2, ATF/CREB activators in Saccharomyces cerevisiae, are important for carbon source utilization but not the response to stress. Mol Cell Biol 20:4340

    Article  PubMed  CAS  Google Scholar 

  • Gardner PR, Fridovich I (1991) Superoxide sensitivity of the Escherichia coli aconitase. J Biol Chem 266:19328

    PubMed  CAS  Google Scholar 

  • Gasch AP et al. (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241

    PubMed  CAS  Google Scholar 

  • Ghosh M, Shen J, Rosen BP (1999) Pathways of As(III) detoxification in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 96:5001

    Article  PubMed  CAS  Google Scholar 

  • Gilbert HF (1995) Thiol/disulfide exchange equilibria and disulfide bound stability. Methods Enzymol 251:8

    Article  PubMed  CAS  Google Scholar 

  • Girard PM, Boiteux S (1997) Repair of oxidized DNA bases in the yeast Saccharomyces cerevisiae. Biochimie 79:559

    Article  PubMed  CAS  Google Scholar 

  • Godon C et al. (1998) The H2O2 stimulon in Saccharomyces cerevisiae. J Biol Chem 273:22480

    Article  PubMed  CAS  Google Scholar 

  • Gong W, Hao B, Mansy SS, Gonzalez G, Gilles-Gonzalez MA, Chan MK (1998) Structure of a biological oxygen sensor: a new mechanism for heme-driven signal transduction. Proc Natl Acad Sci U S A 95:15177

    Article  PubMed  CAS  Google Scholar 

  • Gorner W et al. (1998) Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes Dev 12:586

    Article  PubMed  CAS  Google Scholar 

  • Gralla EB, Kosman DJ (1992) Molecular genetics of superoxide dismutases in yeasts and related fungi. Adv Genet 30:251

    Article  PubMed  CAS  Google Scholar 

  • Gralla EB, Thiele DJ, Silar P, Valentine JS (1991) ACE1, a copper-dependent transcription factor, activates expression of the yeast copper, zinc superoxide dismutase gene. Proc Natl Acad Sci U S A 88:8558

    Article  PubMed  CAS  Google Scholar 

  • Gralla EB, Valentine JS (1991) Null mutants of Saccharomyces cerevisiae Cu,Zn superoxide dismutase: characterization and spontaneous mutation rates. J Bacteriol 173:5918

    PubMed  CAS  Google Scholar 

  • Grant CM, Collinson LP, Roe JH, Dawes IW (1996a) Yeast glutathione reductase is required for protection against oxidative stress and is a target gene for yAP-1 transcriptional regulation. Mol Microbiol 21:171

    Article  PubMed  CAS  Google Scholar 

  • Grant CM, Dawes IW (1996) Synthesis and role of glutathione in protection against oxidative stress in yeast. Redox Rep 2:223

    CAS  Google Scholar 

  • Grant CM, MacIver FH, Dawes IW (1996b) Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. Curr Genet 29:511

    Article  PubMed  CAS  Google Scholar 

  • Grant CM, MacIver FH, Dawes IW (1996c) Stationary-phase induction of GLR1 expression is mediated by the yAP-1 transcriptional regulatory protein in the yeast Saccharomyces cerevisiae. Mol Micro 22:739

    Article  CAS  Google Scholar 

  • Grant CM, MacIver FH, Dawes IW (1997a) Glutathione synthetase is dispensable for growth under both normal and oxidative stress conditions in the yeast Saccharomyces cerevisiae due to an accumulation of the dipeptide gamma-glutamylcysteine. Mol Biol Cell 8:1699

    PubMed  CAS  Google Scholar 

  • Grant CM, MacIver FH, Dawes IW (1997b) Mitochondrial function is required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. FEBS Lett 410:219

    Article  PubMed  CAS  Google Scholar 

  • Grant CM, Perrone G, Dawes IW (1998) Glutathione and catalase provide overlapping defenses for protection against hydrogen peroxide in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 253:893

    Article  PubMed  CAS  Google Scholar 

  • Grant CM, Quinn KA, Dawes IW (1999) Differential protein S-thiolation of glyceraldehyde-3-phosphate dehydrogenase isoenzymes influences sensitivity to oxidative stress. Mol Cell Biol 19:2650

    PubMed  CAS  Google Scholar 

  • Gross A et al. (2000a) Biochemical and genetic analysis of the mitochondrial response of yeast to BAX and BCL-X(L). Mol Cell Biol 20:3125

    Article  PubMed  CAS  Google Scholar 

  • Gross C, Kelleher M, Iyer VR, Brown PO, Winge DR (2000b) Identification of the copper regulon in Saccharomyces cerevisiae by DNA microarrays. J Biol Chem 275:32310

    Article  PubMed  CAS  Google Scholar 

  • Guidot DM, McCord JM, Wright RM, Repine JE (1993) Absence of electron transport (Rho 0 state) restores growth of a manganese-superoxide dismutase-deficient Saccharomyces cerevisiae in hyperoxia Evidence for electron transport as a major source of superoxide generation in vivo. J Biol Chem 268:26699

    PubMed  CAS  Google Scholar 

  • Guptasarma P, Balasubramanian D (1992) Dityrosine formation in the proteins of the eye lens. Curr Eye Res 11:1121

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JM (1984) Free radicals, lipid peroxidation, and cell damage. Lancet 2:1095

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JM (1998) Free radicals in biology and medicine. Oxford University Press, Oxford

    Google Scholar 

  • Harshman KD, Moye-Rowley WS, Parker CS (1988) Transcriptional activation by the SV40 AP-1 recognition element in yeast is mediated by a factor similar to AP-1 that is distinct from GCN4. Cell 53:321

    Article  PubMed  CAS  Google Scholar 

  • Henzler T, Steudle E (2000) Transport and metabolic degradation of hydrogen peroxide in Chara corallina: model calculations and measurements with the pressure probe suggest transport of H(2)O(2) across water channels. J Exp Bot 51:2053

    Article  PubMed  CAS  Google Scholar 

  • Hertle K, Haase E, Brendel M (1991) The SNQ3 gene of Saccharomyces cerevisiae confers hyper-resistance to several functionally unrelated chemicals. Curr Genet 19:429

    Article  PubMed  CAS  Google Scholar 

  • Hillar A, Nicholls P, Switala J, Loewen PC (1994) NADPH binding and control of catalase compound II formation: comparison of bovine, yeast, and Escherichia coli enzymes. Biochem J 300:531

    PubMed  CAS  Google Scholar 

  • Hirata D, Yano K, Miyakawa T (1994) Stress-induced transcriptional activation mediated by YAP1 and YAP2 genes that encode the Jun family of transcriptional activators in Saccharomyces cerevisiae. Mol Gen Genet 242:250

    Article  PubMed  CAS  Google Scholar 

  • Holmgren A (1985) Thioredoxin. Ann Rev Biochem 54:237

    Article  PubMed  CAS  Google Scholar 

  • Holmgren A (1989) Thioredoxin and glutaredoxin systems. J Biol Chem 264:13963

    PubMed  CAS  Google Scholar 

  • Horiguchi H, Yurimoto H, Kato N, Sakai Y (2001) Antioxidant system within yeast peroxisome Biochemical and physiological characterization of CbPmp20 in the methylotrophic yeast Candida boidinii. J Biol Chem 276:14279

    PubMed  CAS  Google Scholar 

  • Hussain M, Lenard J (1991) Characterization of PDR4, a Saccharomyces cerevisiae gene that confers pleiotropic drug resistance in high-copy number: identity with YAP1, encoding a transcriptional activator [corrected]. Gene 101:149

    Article  PubMed  CAS  Google Scholar 

  • Imlay J, Linn S (1988) DNA damage and oxygen radical toxicity. Science 240:1302

    Article  PubMed  CAS  Google Scholar 

  • Inoue Y, Matsuda T, Sugiyama S, Izawa S, Kimura A (1999) Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae. J Biol Chem 274:27002

    Article  PubMed  CAS  Google Scholar 

  • Isoyama T, Murayama A, Nomoto A, Kuge S (2001) Nuclear import of the yeast AP-1-like transcription factor Yap1p is mediated by transport receptor Pse1p, and this import step is not affected by oxidative stress. J Biol Chem 276:21863

    Article  PubMed  CAS  Google Scholar 

  • Izawa S, Inoue Y, Kimura A (1995) Oxidative stress response in yeast: effect of glutathione on adaptation to hydrogen peroxide stress in Saccharomyces cerevisiae. FEBS Lett 368:73

    Article  PubMed  CAS  Google Scholar 

  • Izawa S, Inoue Y, Kimura A (1996) Importance of catalase in the adaptive response to hydrogen peroxide: analysis of acatalasaemic Saccharomyces cerevisiae. Biochem J 320:61

    PubMed  CAS  Google Scholar 

  • Izawa S, Maeda K, Miki T, Mano J, Inoue Y, Kimura A (1998) Importance of glucose-6-phosphate dehydrogenase in the adaptive response to hydrogen peroxide in Saccharomyces cerevisiae. Biochem J 330:811

    PubMed  CAS  Google Scholar 

  • Izawa S, Maeda K, Sugiyama K, Mano J, Inoue Y, Kimura A (1999) Thioredoxin deficiency causes the constitutive activation of Yap1, an AP-1-like transcription factor in Saccharomyces cerevisiae. J Biol Chem 274:28459

    Article  PubMed  CAS  Google Scholar 

  • Jacobson FS, Morgan RW, Christman MF, Ames BN (1989) An alkyl hydroperoxide reductase from Salmonella typhimurium involved in the defense of DNA against oxidative damage Purification and properties. J Biol Chem 264:1488

    PubMed  CAS  Google Scholar 

  • Jakubowski W, Bartosz G (1997) Estimation of oxidative stress in Saccharomyces cerevisae with fluorescent probes. Int J Biochem Cell Biol 129:1297

    Article  Google Scholar 

  • Jamieson DJ (1992) Saccharomyces cerevisiae has distinct adaptive responses to both hydrogen peroxide and menadione. J Bacteriol 174:6678

    PubMed  CAS  Google Scholar 

  • Jamieson DJ, Rivers SL, Stephen DW (1994) Analysis of Saccharomyces cerevisiae proteins induced by peroxide and superoxide stress. Microbiology 140:3277

    Article  PubMed  CAS  Google Scholar 

  • Jelinsky SA, Samson LD (1999) Global response of Saccharomyces cerevisiae to an alkylating agent. Proc Natl Acad Sci U S A 96:1486

    Article  PubMed  CAS  Google Scholar 

  • Jensen LT, Winge DR (1998) Identification of a copper-induced intramolecular interaction in the transcription factor Mac1 from Saccharomyces cerevisiae. EMBO J 17:5400

    Article  PubMed  CAS  Google Scholar 

  • Jeong JH, Kwon ES, Roe JH (2001) Characterrization of the manganese-containing super-oxide dismutase and its gene regulation in stress response of Schizosaccharomyces pombe. Biochem Biophys Res Commun 18:908

    Article  CAS  Google Scholar 

  • Jeong JS, Kwon SW, Kang SW, Rhee SG, Kim K (1999) Purification and Characterization of a Second Type Thioredoxin Peroxidase (Type II TPx) from Saccharomyces cerevisiae. Biochemistry 38:776

    Article  PubMed  CAS  Google Scholar 

  • Juhnke H, Charizanis C, Latifi F, Krems B, Entian KD (2000) The essential protein fap7 is involved in the oxidative stress response of Saccharomyces cerevisiae. Mol Microbiol 35:936

    Article  PubMed  CAS  Google Scholar 

  • Juhnke H, Krems B, Kotter P, Entian KD (1996) Mutants that show increased sensitivity to hydrogen peroxide reveal an important role for the pentose phosphate pathway in protection of yeast against oxidative stress. Mol Gen Genet 252:456

    Article  PubMed  CAS  Google Scholar 

  • Jungmann J et al. (1993) MAC1, a nuclear regulatory protein related to Cu-dependent transcription factors is involved in Cu/Fe utilization and stress resistance in yeast. EMBO J 12:5051

    PubMed  CAS  Google Scholar 

  • Jungwirth H, Wendler F, Platzer B, Bergler H, Hogenauer G (2000) Diazaborine resistance in yeast involves the efflux pumps Ycf1p and Flr1p and is enhanced by a gain-of-function allele of gene YAP1. Eur J Biochem 267:4809

    Article  PubMed  CAS  Google Scholar 

  • Kanoh J, Watanabe Y, Ohsugi M, Iino Y, Yamamoto M (1996) Schizosaccharomyces pombe gad7+ encodes a phosphoprotein with a bZIP domain, which is required for proper G1 arrest and gene expression under nitrogen starvation. Genes Cells 1:391

    Article  PubMed  CAS  Google Scholar 

  • Kato TJ, Okazaki K, Murakami H, Stettler S, Fantes PA, Okayama H (1996) Stress signal, mediated by a Hog1-like MAP kinase, controls sexual development in fission yeast. FEBS Lett 378:207

    Article  PubMed  CAS  Google Scholar 

  • Ketela T, Brown JL, Stewart RC, Bussey H (1998) Yeast Skn7p activity is modulated by the Sln1p-Ypd1p osmosensor and contributes to regulation of the HOG pathway. Mol Gen Genet 259:372

    Article  PubMed  CAS  Google Scholar 

  • Kim K, Kim IH, Lee KY, Rhee SG, Stadtman ER (1988) The isolation and purification of a specific “protector” protein which inhibits enzyme inactivation by a thiol/Fe(III)/O2 mixed-function oxidation system. J Biol Chem 263:4704

    PubMed  CAS  Google Scholar 

  • Kobayashi N, McEntee K (1990) Evidence for a heat shock transcription factor-independent mechanism for heat shock induction of transcription in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 87:6550

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi N, McEntee K (1993) Identification of cis and trans components of a novel heat shock stress regulatory pathway in Saccharomyces cerevisiae. Mol Cell Biol 13:248

    PubMed  CAS  Google Scholar 

  • Kosower NS, Kosower EM (1995) Diamide: an oxidant probe for thiols. Methods Enzymol 251:123

    Article  PubMed  CAS  Google Scholar 

  • Krems B, Charizanis C, Entian K-D (1995) Mutants of Saccharomyces cerevisiae sensitive to oxidative and osmotic stress. Curr Genet 27:427

    Article  PubMed  CAS  Google Scholar 

  • Krems B, Charizanis C, Entian K-D (1996) The response regulator-like protein Pos9/Skn7 of Saccharomyces cerevisiae is involved in oxidative stress resistance. Curr Genet 29:327

    Article  PubMed  CAS  Google Scholar 

  • Kudo N, Taoka H, Toda T, Yoshida M, Horinouchi S (1999) A novel export signal sensitive to oxidative stress in the fission yeast transcription factor Pap1. J Biol Chem 274:15151

    Article  PubMed  CAS  Google Scholar 

  • Kuge S et al. (2001) Regulation of the yeast Yap1p nuclear export signal is mediated by redox signal-induced reversible disulfide bond formation. Mol Cell Biol 21:6139

    Article  PubMed  CAS  Google Scholar 

  • Kuge S, Jones N (1994) YAP1 dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides. EMBO J 13:655

    PubMed  CAS  Google Scholar 

  • Kuge S, Jones N, Nomoto A (1997) Regulation of yAP-1 nuclear localization in response to oxidative stress. EMBO J 16:1710

    Article  PubMed  CAS  Google Scholar 

  • Kuge S, Toda T, Lizuka N, Nomoto A (1998) Crm1 (Xpo1) dependent nuclear export of the budding yeast transcription factor yAP-1 is sensitive to oxidative stress. Genes to Cells 3:521

    Article  PubMed  CAS  Google Scholar 

  • Lai CS, Piette LH (1978) Spin-trapping studies of hydroxyl radical production involved in lipid peroxidation. Arch Biochem Biophys 190:27

    Article  PubMed  CAS  Google Scholar 

  • Lapinskas PJ, Cunningham KW, Liu XF, Fink GR, Culotta VC (1995) Mutations in PMR1 suppress oxidative damage in yeast cells lacking superoxide dismutase. Mol Cell Biol 15:1382

    PubMed  CAS  Google Scholar 

  • Laun P et al. (2001) Aged mother cells of Saccharomyces cerevisiae show markers of oxidative stress and apoptosis. Mol Microbiol 39:1166

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Dawes IW, Roe JH (1997) Isolation, expression, and regulation of the pgr1(+) gene encoding glutathione reductase absolutely required for the growth of Schizosaccharo-myces pombe. J Biol Chem 272:23042

    Article  PubMed  CAS  Google Scholar 

  • Lee J et al. (1999a) Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast. J Biol Chem 274:16040

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Romeo A, Kosman DJ (1996) Transcriptional remodeling and G1 arrest in dioxygen stress in Saccharomyces cerevisiae. J Biol Chem 271:24885

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Spector D, Godon C, Labarre J, Toledano MB (1999b) A new antioxidant with alkyl hydroperoxide defense properties in yeast. J Biol Chem 274:4537

    Article  PubMed  CAS  Google Scholar 

  • Leppert G, McDevitt R, Falco SC, Van Dyk TK, Ficke MB, Golin J (1990) Cloning by gene amplification of two loci conferring multiple drug resistance in Saccharomyces. Genetics 125:13

    PubMed  CAS  Google Scholar 

  • Leroy C, Mann C, Marsolier MC (2001) Silent repair accounts for cell cycle specificity in the signaling of oxidative DNA lesions. EMBO J 20:2896

    Article  PubMed  CAS  Google Scholar 

  • Levine RL, Moskovitz J, Stadtman ER (2000) Oxidation of methionine in proteins: roles in antioxidant defense and cellular regulation. IUBMB Life 50:301

    Article  PubMed  CAS  Google Scholar 

  • Levine RL, Mosoni L, Berlett BS, Stadtman ER (1996) Methionine residues as endogenous antioxidants in proteins. Proc Natl Acad Sci U S A 93:15036

    Article  PubMed  CAS  Google Scholar 

  • Levine RL, Williams JA, Stadtman ER, Shacter E (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 233:346

    Article  PubMed  CAS  Google Scholar 

  • Li S et al. (1998) The yeast histidine protein kinase, Sln1p, mediates phosphotransfer to two response regulators, SSK1p and Skn7p. EMBO J 17:6952

    Article  PubMed  CAS  Google Scholar 

  • Li ZS, Lu YP, Zhen RG, Szczypka M, Thiele DJ, Rea PA (1997) A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis(glutathionato)cadmium. Proc Natl Acad Sci USA 94:42

    Article  PubMed  CAS  Google Scholar 

  • Ligr M, Madeo F, Frohlich E, Hilt W, Frohlich KU, Wolf DH (1998) Mammalian Bax triggers apoptotic changes in yeast. FEBS Lett 438:61

    Article  PubMed  CAS  Google Scholar 

  • Lin SJ, Culotta VC (1996) Suppression of oxidative damage by Saccharomyces cerevisiae ATX2, which encodes a manganese-trafficking protein that localizes to Golgi-like vesicles. Mol Cell Biol 16:6303

    PubMed  CAS  Google Scholar 

  • Lin SJ, Pufahl RA, Dancis A, O’Halloran TV, Culotta VC (1997) A role for the Saccharomyces cerevisiae ATX1 gene in copper trafficking and iron transport. J Biol Chem 272:9215

    Article  PubMed  CAS  Google Scholar 

  • Liochev SI, Fridovich I (1994) The role of O2-in the production of HO: in vitro and in vivo. Free Radic Biol Med 16:29

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Elashvili I, Gralla E, Valentine J, Lapinskas P, Culotta V (1992) Yeast lacking superoxide dismutase Isolation of genetic suppressors. J Biol Chem 267:18298

    PubMed  CAS  Google Scholar 

  • Liu X-D, Thiele DJ (1996) Oxidative stress induces heat shock factor phosphorylation and HSF-dependent activation of yeast metallothionein gene transcription. Genes Dev 10:592

    Article  PubMed  CAS  Google Scholar 

  • Liu X-D, Thiele DJ (1997) Yeast metallothionein gene expression in response to metals and oxidative stress. METHODS: A companion in methods in enzymology 11:289

    Article  CAS  Google Scholar 

  • Liu XF, Culotta VC (1994) The requirement for yeast superoxide dismutase is bypassed through mutations in BSD2, a novel metal homeostasis gene. Mol Cell Biol 14:7037

    PubMed  CAS  Google Scholar 

  • Longo VD, Ellerby LM, Bredesen DE, Valentine JS, Gralla EB (1997) Human Bcl-2 reverses survival defects in yeast lacking superoxide dismutase and delays death of wild-type yeast. J Cell Biol 137:1581

    Article  PubMed  CAS  Google Scholar 

  • Longo VD, Gralla EB, Valentine JS (1996) Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae Mitochondrial production of toxic oxygen species in vivo. J Biol Chem 271:12275

    Article  PubMed  CAS  Google Scholar 

  • Luikenhuis S, Perrone G, Dawes IW, Grant CM (1998) The yeast Saccharomyces cerevisiae contains two glutaredoxin genes that are required for protection against reactive oxygen species. Mol Biol Cell 9:1081

    PubMed  CAS  Google Scholar 

  • Machado AK, Morgan BA, Merrill GF (1997) Thioredoxin reductase-dependent inhibition of MCB cell cycle box activity in Saccharomyces cerevisiae. JBiol Chem 272:17045

    Article  CAS  Google Scholar 

  • Madeo F et al. (1999) Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol 145:757

    Article  PubMed  CAS  Google Scholar 

  • Marchler G, Schuller C, Adam G, Ruis H (1993) A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. EMBO J 12:1997

    PubMed  CAS  Google Scholar 

  • Maris AF, Assumpcao AL, Bonatto D, Brendel M, Henriques JA (2001) Diauxic shift-induced stress resistance against hydroperoxides in Saccharomyces cerevisiae is not an adaptive stress response and does not depend on functional mitochondria. Curr Genet 39:137

    Article  PubMed  CAS  Google Scholar 

  • Marquez JA, Pascual-Ahuir A, Proft M, Serrano R (1998) The Ssn6-Tup1 repressor complex of Saccharomyces cerevisiae is involved in the osmotic induction of HOG-dependent and-independent genes. EMBO J 17:2543

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Pastor MT, Marchler G, C S, Marchler-Bauer A, Ruis H, Estruch F (1996) The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress-response element (STRE). EMBO J 15:227

    Google Scholar 

  • Matsuyama S, Llopis J, Deveraux QL, Tsien RY, Reed JC (2000) Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nat Cell Biol 2:318

    Article  PubMed  CAS  Google Scholar 

  • Millar JB (1999) Stress-activated MAP kinase (mitogen-activated protein kinase) pathways of budding and fission yeasts. Biochem SocSymp 64:49

    CAS  Google Scholar 

  • Millar JBA, Buck V, Wilkinson MG (1995) Pyp1 and Pyp2 PTPases dephosphorylate an osmosensing Map kinase controlling cell size at division in fission yeast. Genes & Dev 9:2117

    Article  CAS  Google Scholar 

  • Molz L, Booher R, Young B, Beach D (1989) cdc2 and the regulation of mitosis: six interacting mcs genes. Genetics 122:773

    PubMed  CAS  Google Scholar 

  • Morgan BA, Banks GR, Toone WM, Raitt D, Kuge S, Johnston L (1997) The Skn7 response regulator controls gene expression in the oxidative stress response of the budding yeast Saccharomyces cerevisiae. EMBO J 16:1035

    Article  PubMed  CAS  Google Scholar 

  • Morgan BA, Bouquin N, Merril GF, Johnston LH (1995) A yeast transcription factor bypassing the requirement for SBF and DSC1/MBF in budding yeast has homology to bacterial signal transduction proteins. EMBO J 14:5679

    PubMed  CAS  Google Scholar 

  • Moskovitz J, Berlett BS, Poston JM, Stadtman ER (1997) The yeast peptide-methionine sulfoxide reductase functions as an antioxidant in vivo. Proc Natl Acad Sci USA 94:9585

    Article  PubMed  CAS  Google Scholar 

  • Moskovitz J, Flescher E, Berlett BS, Azare J, Poston JM, Stadtman ER (1998) Overexpression of peptide-methionine sulfoxide reductase in Saccharomyces cerevisiae and human T cells provides them with high resistance to oxidative stress. Proc Natl Acad Sci USA95:14071

    Article  PubMed  CAS  Google Scholar 

  • Mouaheb N, Thomas D, Verdoucq L, Monfort P, Meyer Y (1998) In vivo functional discrimination between plant thioredoxins by heterologous expression in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 95:3312

    Article  PubMed  CAS  Google Scholar 

  • Moye-Rowley WS, Harshman KD, Parker CS (1989) Yeast YAP1 encodes a novel form of the jun family of transcriptional activator proteins. Genes Dev 3:283

    Article  PubMed  CAS  Google Scholar 

  • Muller EG (1991) Thioredoxin deficiency in yeast prolongs S phase and shortens the G1 interval of the cell cycle. J Biol Chem 266:9194

    PubMed  CAS  Google Scholar 

  • Muller EG (1994) Deoxyribonucleotides are maintained at normal levels in a yeast thioredoxin mutant defective in DNA synthesis. J Biol Chem 269:24466

    PubMed  CAS  Google Scholar 

  • Muller EG (1995) A redox-dependent function of thioredoxin is necessary to sustain a rapid rate of DNA synthesis in yeast. Arch Biochem Biophys 318:356

    Article  PubMed  CAS  Google Scholar 

  • Muller EG (1996) A glutathione reductase mutant of yeast accumulates high levels of oxidized glutathione and requires thioredoxin for growth. Mol Biol Cell 7:1805

    PubMed  CAS  Google Scholar 

  • Nakagawa CW, Yamada K, Mutoh N (1998) Two distinct upstream regions are involved in expression of the catalase gene in Schizosaccharomyces pombe in response to oxidative stress. J Biochem (Tokyo) 123:1048

    CAS  Google Scholar 

  • Nakagawa CW, Yamada K, Mutoh N (1999) Identification of the catalase gene promoter region involved in superinduction in Schizosaccharomyces pombe caused by cycloheximide and hydrogen peroxide. FEMS Microbiol Lett 173:373

    Article  PubMed  CAS  Google Scholar 

  • Narasimhan ML et al. (2001) A plant defense response effector induces microbial apoptosis. Mol Cell 8:921

    Article  PubMed  CAS  Google Scholar 

  • Nehlin JO, Carlberg M, Ronne H (1992) Yeast SKO1 gene encodes a bZIP protein that binds to the CRE motif and acts as a repressor of transcription. Nucleic Acids Res 20:5271

    Article  PubMed  CAS  Google Scholar 

  • Nestelbacher R, Laun P, Vondrakova D, Pichova A, Schuller C, Breitenbach M (2000) The influence of oxygen toxicity on yeast mother cell-specific aging. Exp Gerontol 35:63

    Article  PubMed  CAS  Google Scholar 

  • Netto LES, Chae HZ, Kang S-W, Rhee SG, Stadtman ER (1996) Removal of hydrogen peroxide by thiol-specific antioxidant enzyme (TSA) is involved with its antioxidant properties. J biol Chem 271:15315

    Article  CAS  Google Scholar 

  • Nguyen AN, Lee A, Place W, Shiozaki K (2000) Multistep phosphorelay proteins transmit oxidative stress signals to the fission yeast stress-activated protein kinase. Mol Biol Cell 11:1169

    PubMed  CAS  Google Scholar 

  • Nguyen AN, Siozaki K (1999) Heat-shock-induced activation of stress MAP kinase is regulated by threonine and tyrosine-specific phosphatases. Genes Dev 13:1653

    Article  PubMed  CAS  Google Scholar 

  • Nguyen DT, Alarco AM, Raymond M (2001) Multiple Yap1p-binding sites mediate induction of the yeast major facilitator FLR1 gene in response to drugs, oxidants, and alkylating agents. J Biol Chem 276:1138

    Article  PubMed  CAS  Google Scholar 

  • Nogae I, Johnston M (1990) Isolation and characterization of the ZWF1 gene of Saccharomyces cerevisiae, encoding glucose-6-phosphate dehydrogenase. Gene 96:161

    Article  PubMed  CAS  Google Scholar 

  • Ohmiya R, Kato C, Yamada H, Aiba H, Mizuno T (1999) A fission yeast gene prr1 +) that encode a response regulator implicated in oxidative stress response. 1 125:1061

    CAS  Google Scholar 

  • Ohmiya R, Yamada H, Kato C, Aiba H, Mizuno T (2000) The Prr1 response regulator is essential for transcription of ste11+ and for sexual development in fission yeast. Mol Gen Genet 264:441

    Article  PubMed  CAS  Google Scholar 

  • Oskouian B, Saba JD (1999) YAP1 confers resistance to the fatty acid synthase inhibitor cerulenin through the transporter Flr1p in Saccharomyces cerevisiae. Mol Gen Genet 261:346

    Article  PubMed  CAS  Google Scholar 

  • Park SG, Cha MK, Jeong W, Kim IH (2000) Distinct physiological functions of thiol peroxidase isoenzymes in Saccharomyces cerevisiae. J Biol Chem 275:5723

    Article  PubMed  CAS  Google Scholar 

  • Pascual-Ahuir A, Posas F, Serrano R, Proft M (2001) Multiple levels of control regulate the yeast cAMP-response elementbinding protein repressor Sko1p in response to stress. J Biol Chem 276:37373

    Article  PubMed  CAS  Google Scholar 

  • Pedrajas JR, Kosmidou E, Miranda-Vizuete A, Gustafsson JA, Wright AP, Spyrou G (1999) Identification and functional characterization of a novel mitochondrial thioredoxin system in Saccharomyces cerevisiae. J Biol Chem 274:6366

    Article  PubMed  CAS  Google Scholar 

  • Pedrajas JR, Miranda-Vizuete A, Javanmardy N, Gustafsson JA, Spyrou G (2000) Mitochondria of Saccharomyces cerevisiae contain one-conserved cysteine type peroxiredoxin with thioredoxin peroxidase activity. J Biol Chem 275:16296

    Article  PubMed  CAS  Google Scholar 

  • Pellequer JL, Brudler R, Getzoff ED (1999) Biological sensors: More than one way to sense oxygen. Curr Biol 9:416

    Article  Google Scholar 

  • Pena MM, Koch KA, Thiele DJ (1998) Dynamic regulation of copper uptake and detoxification genes in Saccharomyces cerevisiae. Mol Cell Biol 18:2514

    PubMed  CAS  Google Scholar 

  • Penninckx M (2000) A short review on the role of glutathione in the response of yeasts to nutritional, environmental, and oxidative stresses. Enzyme Microb Technol 26:737

    Article  PubMed  CAS  Google Scholar 

  • Plummer JL, Smith BR, Sies H, Bend JR (1981) Chemical depletion of glutathione in vivo. Methods Enzymol 77:50

    Article  PubMed  CAS  Google Scholar 

  • Prinz WA, Aslund F, Holmgren A, Beckwith J (1997) The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. J Biol Chem 272:15661

    Article  PubMed  CAS  Google Scholar 

  • Proft M, Pascual-Ahuir A, de Nadal E, Arino J, Serrano R, Posas F (2001) Regulation of the Sko1 transcriptional repressor by the Hog1 MAP kinase in response to osmotic stress. EMBOJ20:1123

    Article  CAS  Google Scholar 

  • Proft M, Serrano R (1999) Repressors and upstream repressing sequences of the stress-regulated ENA1 gene in Saccharomyces cerevisiae: bZIP protein Sko1p confers HOG-dependent osmotic regulation. Mol Cell Biol 19:537

    PubMed  CAS  Google Scholar 

  • Prouzet-Mauleon V et al. (2001) Identification in S cerevisiae of a new stable variant of alkyl hydroperoxide reductase 1 (Ahp1) induced by oxidative stress. J Biol Chem 21:21

    Google Scholar 

  • Raitt DC et al. (2000) The Skn7 response regulator of Saccharomyces cerevisiae interacts with Hsf1 in vivo and is required for the induction of heat shock genes by oxidative stress. Mol Biol Cell 11:2335

    PubMed  CAS  Google Scholar 

  • Rep M et al. (2001) The Saccharomyces cerevisiae Sko1p transcription factor mediates HOG pathway-dependent osmotic regulation of a set of genes encoding enzymes implicated in protection from oxidative damage. Mol Microbiol 40:1067

    Article  PubMed  CAS  Google Scholar 

  • Rhee SG, Kang SW, Netto LE, Seo MS, Stadtman ER (1999) A family of novel peroxidases, peroxiredoxins. Biofactors 10:207

    PubMed  CAS  Google Scholar 

  • Rodriguez-Manzaneque MT, Ros J, Cabiscol E, Sorribas A, Herrero E (1999) Grx5 glutaredoxin plays a central role in protection against protein oxidative damage in Saccharomyces cerevisiae. Mol Cell Biol 19:8180

    PubMed  CAS  Google Scholar 

  • Ross SJ, Findlay VJ, Malakasi P, Morgan BA (2000) Thioredoxin peroxidase is required for the transcriptional response to oxidative stress in budding yeast. Mol Biol Cell 11:2631

    PubMed  CAS  Google Scholar 

  • Ruis H, Hamilton B (1992) Regulation of yeast catalase genes. Molecular Biology of Free Radical Scavenging System: 153

    Google Scholar 

  • Ruiz-Echevarria MJ, Peltz SW (2000) The RNA binding protein Pub1 modulates the stability of transcripts containing upstream open reading frames. Cell 101:741

    Article  PubMed  CAS  Google Scholar 

  • Russell P, Nurse P (1987) Negative regulation of mitosis by wee1+, a gene encoding a protein kinase homolog. Cell 49:559

    Article  PubMed  CAS  Google Scholar 

  • Rutherford JC, Jaron S, Ray E, Brown PO, Winge DR (2001) A second iron-regulatory system in yeast independent of Aft1p. Proc Natl Acad Sci U S A 98:14322

    Article  PubMed  CAS  Google Scholar 

  • Samejima I, Mackie S, Fantes PA (1997) Multiple modes of activation of the stress-responsive MAP kinase pathway in fission yeast. EMBO J 16:6162

    Article  PubMed  CAS  Google Scholar 

  • Samejima I, Mackie S, Warbrick E, Weisman R, Fantes PA (1998) The fission yeast mitotic regulator win1+ encodes a MAP kinase kinase kinase that phosphorylates and activates Wis1 MAP kinase kinase in response to high osmolarity. Mol Biol Cel 9:2325

    CAS  Google Scholar 

  • Schmitt AP, McEntee K (1996) Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proc Natl Acad SciUSA93:5777

    Article  CAS  Google Scholar 

  • Schnell N, Entian KD (1991) Identification and characterization of a Saccharomyces cerevisiae gene (PAR1) conferring resistance to iron chelators. Eur J Biochem 200:487

    Article  PubMed  CAS  Google Scholar 

  • Schuller C, Brewster JL, Alexander MR, Gustin MC, Ruis H (1994) The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the saccharomyces cerevisiae CTT1 gene. EMBO J 13:4382

    PubMed  CAS  Google Scholar 

  • Serpe M, Joshi A, Kosman DJ (1999) Structure-function analysis of the protein-binding domains of Mac1p, a copper-dependent transcriptional activator of copper uptake in Saccharomyces cerevisiae. J Biol Chem 274:29211

    Article  PubMed  CAS  Google Scholar 

  • Sharma KG, Sharma V, Bourbouloux A, Delrot S, Bachhawat AK (2000) Glutathione depletion leads to delayed growth stasis in Saccharomyces cerevisiae: evidence of a partially overlapping role for thioredoxin. Curr Genet 38:71

    Article  PubMed  CAS  Google Scholar 

  • Shieh J-C, Wilkinson MG, Buck V, Morgan BA, Makino K, Millar JBA (1997) The Mcs4 response regulator coordinately controls the stress-activated Wak1-Wis-1-Sty1 MAP kinase pathway and fission yeast cell cycle. Genes Dev 11:1008

    Article  PubMed  CAS  Google Scholar 

  • Shieh J-C, Wilkinson MG, Millar JBA (1998a) The Win1 mitotic regulator is a component of the stress-activated Sty1 MAP kinase pathway in fission yeast. Mol Biol Cel 9:311

    CAS  Google Scholar 

  • Shieh JC, Martin H, Millar JB (1998b) Evidence for a novel MAPKKK-independent pathway controlling the stress activated Sty1/Spc1 MAP kinase in fission yeast. J Cell Sci 111:2799

    PubMed  CAS  Google Scholar 

  • Shiozaki K, Russell P (1995) Cell cycle control linked to the extracellular environment by MAP kinase pathway in fission yeast. Nature 378:739

    Article  PubMed  CAS  Google Scholar 

  • Shiozaki K, Russell P (1996) Conjugation, meiosis, and the osmotic stress response are regulated by Spc1 kinase through Atf1 transcription factor in fission yeast. Genes Dev 10:2276

    Article  PubMed  CAS  Google Scholar 

  • Shiozaki K, Shiozaki M, Russell P (1997) Mcs4 mitotic catastrophe suppressor regulates the fission yeast cell cycle through the Wik1-Wis1-Spc1 kinase cascade. Mol Biol Cel 8:409

    CAS  Google Scholar 

  • Singh KK (2000) The Saccharomyces cerevisiae Sln1p-Ssk1p two-component system mediates response to oxidative stress and in an oxidant-specific fashion. Free Radic Biol Med 29:1043

    Article  PubMed  CAS  Google Scholar 

  • Slekar KH, Kosman DJ, Culotta VC (1996) The yeast copper/zinc superoxide dismutase and the pentose phosphate pathway play overlapping roles in oxidative stress protection. J Biol Chem 271:28831

    Article  PubMed  CAS  Google Scholar 

  • Spector D, Labarre J, Toledano MB (2001) A genetic investigation of the essential role of glutathione: mutations in the proline biosynthesis pathway are the only suppressors of glutathione auxotrophy in yeast. J Biol Chem 276:7011

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan C, Liba A, Imlay JA, Valentine JS, Gralla EB (2000) Yeast lacking superoxide dismutase(s) show elevated levels of “free iron” as measured by whole cell electron paramagnetic resonance. J Biol Chem 275:29187

    Article  PubMed  CAS  Google Scholar 

  • Stanhill A, Schick N, Engelberg D (1999) The yeast ras/cyclic AMP pathway induces invasive growth by suppressing the cellular stress response. Mol Cell Biol 19:7529

    PubMed  CAS  Google Scholar 

  • Stephen DW, Jamieson DJ (1996) Glutathione is an important antioxidant molecule in the yeast Saccharomyces cerevisiae. FEMS Microbiol Lett 141:207

    Article  PubMed  CAS  Google Scholar 

  • Stephen DW, Jamieson DJ (1997) Amino acid-dependent regulation of the Saccharomyces cerevisiae GSH1 gene by hydrogen peroxide. Mol Microbiol 23:203

    Article  PubMed  CAS  Google Scholar 

  • Stephen DW, Rivers SL, Jamieson DJ (1995) The role of the YAP1 and YAP2 genes in the regulation of the adaptive oxidative stress responses of Saccharomyces cerevisiae. Mol Microbiol 16:415

    Article  PubMed  CAS  Google Scholar 

  • Storz G, Imlay JA (1999) Oxidative stress. Curr Opin Microbiol 2:188

    Article  PubMed  CAS  Google Scholar 

  • Strain J et al. (1998) Suppressors of superoxide dismutase (SOD1) deficiency in Saccharomyces cerevisiae Identification of proteins predicted to mediate iron-sulfur cluster assembly. J Biol Chem 273:31138

    Article  PubMed  CAS  Google Scholar 

  • Sturtz LA, Diekert K, Jensen LT, Lill R, Culotta VC (2001) A fraction of yeast cu,zn-superoxide dismutase and its metallochaperone, ccs, localize to the intermembrane space of mitochondria a physiological role for sod1 in guarding against mitochondrial oxidative damage. J Biol Chem 276:38084

    PubMed  CAS  Google Scholar 

  • Takeda T, Toda T, Kominami K, Kohnosu A, Yanagida M, Jones N (1995) Schizosaccharomyces pombe atf1+ encodes a transcription factor required for sexual development and entry into stationary phase. EMBO J 14:6193

    PubMed  CAS  Google Scholar 

  • Takeuchi T, Miyahara K, Hirata D, Miyakawa T (1997) Mutational analysis of Yap 1 protein, an AP-1-like transcriptional activator of Saccharomyces cerevisiae. FEBS Lett 416:339

    Article  PubMed  CAS  Google Scholar 

  • Tamai KT, Gralla EB, Ellerby LM, Valentine JS, Thiele DJ (1993) Yeast and mammalian metallothioneins functionally substitute for yeast copper-zinc superoxide dismutase. Proc Natl Acad Sci U S A 90:8013

    Article  PubMed  CAS  Google Scholar 

  • Tamai KT, Liu X, Silar P, Sosinowski T, Thiele DJ (1994) Heat shock transcription factor activates yeast metallothionein gene expression in response to heat and glucose starvation via distinct signalling pathways. Mol Cell Biol 14:8155

    PubMed  CAS  Google Scholar 

  • Tao W, Deschenes RJ, Fassler JS (1999) Intracellular glycerol levels modulate the activity of Sln1p, a Saccharomyces cerevisiae two-component regulator. J Biol Chem 274:360

    Article  PubMed  CAS  Google Scholar 

  • Tenreiro S, Fernandes AR, Sa-Correia I (2001) Transcriptional activation of FLR1 gene during Saccharomyces cerevisiae adaptation to growth with benomyl: role of Yap1p and Pdr3p. Biochem Biophys Res Commun 280:216

    Article  PubMed  CAS  Google Scholar 

  • Thevelein JM et al. (2000) Nutrient-induced signal transduction through the protein kinase A pathway and its role in the control of metabolism, stress resistance, and growth in yeast. Enzyme Microb Technol 26:819

    Article  PubMed  CAS  Google Scholar 

  • Thevelein JM, de Winde JH (1999) Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 33:904

    Article  PubMed  CAS  Google Scholar 

  • Thiele DJ (1988) ACE1 regulates expression of the Saccharomyces cerevisiae metal-lothionein gene. Mol Cell Biol 8:2745

    PubMed  CAS  Google Scholar 

  • Thomas D, Cherest H, Surdin-Kerjan Y (1991) Identification of the structural gene for glucose-6-phosphate dehydrogenase in yeast Inactivation leads to a nutritional requirement for organic sulfur. EMBO J 10:547

    PubMed  CAS  Google Scholar 

  • Thomas D, Surdin-Kerjan Y (1997) Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 61:503

    PubMed  CAS  Google Scholar 

  • Thomas JA, Poland B, Honzatko R (1995) Protein sulfhydryls and their role in the antioxidant function of protein S-thiolation. Arch Biochem Biophys 319:1

    Article  PubMed  CAS  Google Scholar 

  • Toda T et al. (1992) Fission yeast pap 1-dependent transcription is negatively regulated by an essential nuclear protein, crm1. Mol Cel Biol 12:5474

    CAS  Google Scholar 

  • Toda T, Shimanuki M, Yanagida M (1991) Fission yeast genes that confer resistance to staurosporine encode an AP-1-like transcription factor and a protein kinase related to the mammalian ERK1/MAP2 and budding yeast FUS3 and KSS1 kinases. Genes Dev 5:60

    Article  PubMed  CAS  Google Scholar 

  • Toone WM, Jones N (1999) AP-1 transcription factors in yeast. Curr Opin Gen Dev 9:55

    Article  CAS  Google Scholar 

  • Toone WM, Kuge S, Samuels M, Morgan BA, Toda T, Jones N (1998) Regulation of the fission yeast transcription factor Pap1 by oxidative stress: requirement for the nuclear export factor Crm1 (Exportin) and the stress-activated MAP kinase Sty1. Genes Dev 12:1453

    Article  PubMed  CAS  Google Scholar 

  • Toone WM, Morgan BA, Jones N (2001) Redox control of AP-1-like factors in yeast and beyond. Oncogene 20:2336

    Article  PubMed  CAS  Google Scholar 

  • Tran LT, Inoue Y, Kimura A (1993) Oxidative stress response in yeast: purification and some properties of a membrane-bound glutathione peroxidase from Hansenula mrakii. Biochim Biophys Acta 1164:166

    PubMed  CAS  Google Scholar 

  • Treger JM, Schmitt AP, Simon JR, McEntee K (1998) Transcriptional factor mutations reveal regulatory complexities of heat shock and newly identified stress genes in Saccharomyces cerevisiae. J Biol Chem 273:26875

    Article  PubMed  CAS  Google Scholar 

  • Turton HE, Dawes IW, Grant CM (1997) Saccharomyces cerevisiae exhibits a yAP-1-mediated adaptive response to malondialdehyde. J Bacteriol 179:1096

    PubMed  CAS  Google Scholar 

  • van Loon AP, Pesold-Hurt B, Schatz G (1986) A yeast mutant lacking mitochondrial manganese-superoxide dismutase is hypersensitive to oxygen. Proc Natl Acad Sci USA 83:3820

    Article  PubMed  Google Scholar 

  • Verdoucq L, Vignols F, Jacquot JP, Chartier Y, Meyer Y (1999) In vivo characterization of a thioredoxin h target protein defines a new peroxiredoxin family. J Biol Chem 274:19714

    Article  PubMed  CAS  Google Scholar 

  • Vido K, Spector D, Lagniel G, Lopez S, Toledano MB, Labarre J (2001) A proteome analysis of the cadmium response in Saccharomyces cerevisiae. J Biol Chem 276:8469

    Article  PubMed  CAS  Google Scholar 

  • Vincent AC, Struhl K (1992) ACR1, a yeast ATF/CREB repressor. Mol Cell Biol 12:5394

    PubMed  CAS  Google Scholar 

  • Wanke V, Accorsi K, Porro D, Esposito F, Russo T, Vanoni M (1999) In budding yeast, reactive oxygen species induce both RAS-dependent and RAS-independent cell cyclespecific arrest. Mol Microbiol 32:753

    Article  PubMed  CAS  Google Scholar 

  • Wei JP, Srinivasan C, Han H, Valentine JS, Gralla EB (2001) Evidence for a novel role of copper-zinc superoxide dismutase in zinc metabolism. J Biol Chem 276:44798

    Article  PubMed  CAS  Google Scholar 

  • Wemmie JA, Steggerda SM, Moye-Rowley: WS (1997) The Saccharomyces cerevisiae AP-1 protein discriminates between oxidative stress elicited by the oxidants H2O2 and diamide. J Biol Chem 272:7809

    Google Scholar 

  • Wemmie JA, Szczypka MS, Thiele DJ, Moye-Rowley WS (1994) Cadmium tolerance mediated by the yeast AP-1 protein requires the presence of an ATP-binding cassette transporter-encoding gene, YCF1. J Biol Chem 269:32592

    PubMed  CAS  Google Scholar 

  • Werner-Washburne M, Braun E, Johnston GC, Singer RA (1993) Stationary phase in the yeast Saccharomyces cerevisiae. Microbiol Rev 57:383

    PubMed  CAS  Google Scholar 

  • Wieser R et al. (1991) Heat shock factor-independent heat control of transcription of the CTT1 Gene encoding the cytosolic catalase T of Saccharomyces cerevisiae. J Biol Chem 266:12406

    PubMed  CAS  Google Scholar 

  • Wilkinson MG et al. (1999) Sin1: an evolutionarily conserved component of the eukaryotic SAPK pathway. EMBO J 18:4210

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson MG et al. (1996) The Atf1 transcription factor is a target for the Sty1 stress activated MAP kinase pathway in fission yeast. Genes Dev 10:2289

    Article  PubMed  CAS  Google Scholar 

  • Williams KE, Cyert MS (2001) The eukaryotic response regulator Skn7p regulates calcineurin signaling through stabilization of Crz1p. EMBO J 20:3473

    Article  PubMed  CAS  Google Scholar 

  • Winge DR (1999) Copper-regulatory domain involved in gene expression. Adv Exp Med Biol 448:237

    PubMed  CAS  Google Scholar 

  • Wong CM, Zhou Y, Ng RW, Kung Hf H, Jin DY (2001) Cooperation of yeast peroxiredoxins Tsa1p and Tsa2p in the cellular defense against oxidative and nitrosative stress. J Biol Chem 10:10

    Google Scholar 

  • Wu A, Wemmie JA, Edgington NP, Goebl M, Guevara JL, Moye-Rowley WS (1993) Yeast bZip proteins mediate pleiotropic drug and metal resistance. J Biol Chem 268:18850

    PubMed  CAS  Google Scholar 

  • Wu AL, Moye-Rowley WS (1994) GSH1, which encodes gamma-glutamylcysteine synthetase, is a target gene for yAP-1 transcriptional regulation. Mol Cell Biol 14:5832

    PubMed  CAS  Google Scholar 

  • Yamada K, Nakagawa CW, Mutoh N (1999) Schizosaccharomyces pombe homologue of glutathione peroxidase, which does not contain selenocysteine, is induced by several stresses and works as an antioxidant. Yeast 15:1225

    Article  Google Scholar 

  • Yamaguchi-Iwai Y, Dancis A, Klausner RD (1995) AFT1: a mediator of iron regulated transcriptional control in Saccharomyces cerevisiae. EMBO J 14:1231

    PubMed  CAS  Google Scholar 

  • Yan C, Lee LH, Davis LI (1998) Crm1p mediates regulated nuclear export of a yeast AP-1-like transcription factor. EMBO J 17:7416

    Article  PubMed  CAS  Google Scholar 

  • Yurkow EJ, McKenzie MA (1993) Characterization of hypoxia-dependent peroxide production in cultures of Saccharomyces cerevisiae using flow cytometry: a model for ischemic tissue destruction. Cytometry 14:287

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, De Micheli M, Coleman ST, Sanglard D, Moye-Rowley WS (2000) Analysis of the oxidative stress regulation of the Candida albicans transcription factor, Cap1p. Mol Microbiol 36:618

    Article  PubMed  CAS  Google Scholar 

  • Zheng M, Aslund F, Storz G (1998) Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 279:1718

    Article  PubMed  CAS  Google Scholar 

  • Zheng M, Storz G (2000) Redox sensing by prokaryotic transcription factors. Biochem Pharmacol 59:1

    Article  PubMed  CAS  Google Scholar 

  • Zhu Z, Labbe S, Pena MM, Thiele DJ (1998) Copper differentially regulates the activity and degradation of yeast Mac1 transcription factor. J Biol Chem 273:1277

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Toledano, M.B., Delaunay, A., Biteau, B., Spector, D., Azevedo, D. (2003). Oxidative stress responses in yeast. In: Hohmann, S., Mager, W.H. (eds) Yeast Stress Responses. Topics in Current Genetics, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45611-2_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-45611-2_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43926-4

  • Online ISBN: 978-3-540-45611-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics