Skip to main content

Generation of Similarity Measures from Different Sources

  • Conference paper
  • First Online:
Engineering of Intelligent Systems (IEA/AIE 2001)

Abstract

Knowledge that quantifies the similarity between complex objects forms a vital part of problem-solving expertise within several knowledge- intensive tasks. This paper shows how implicit knowledge about object similari- ties is made explicit in the form of a similarity measure.

The development of a similarity measure is highly domain-dependent. We will use the domain of fluidic engineering as a complex and realistic platform to present our ideas. The evaluation of the similarity between two fluidic circuits is needed for several tasks: (i) Design problems can be suppported by retrievimg an existing circuit which resembles an (incomplete) circuit description. (ii) The problem of visualizing technical documents can be reduced to the problem of arranging similar documents with respect to their similarity.

The paper in hand presents new approaches for the construction of a similarity function: Based on knowledge sources that allow for an expert-friendly knowl- edge acquisition, machine learning is used to compute an explicit similarity func- tion from the acquainted knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Aha. Tolerating noisy, irrelevant, and novel attributes in instance-based learning algorithms. International Journal of Man-Machine Studies, 1992.

    Google Scholar 

  2. K. Backhaus, B. Erichson, W. Plinke, and R. Weber. Multiv. Anaylsem.. Springer, 1996.

    Google Scholar 

  3. R. Beale and T. Jackson. Neural Computing. Inst. of Physics, Bristol, Phil., 1994.

    Google Scholar 

  4. A. Bonzano, P. Cunningham, and B. Smyth. Using introspective learning to improve retrieval in cbr: A case study in air traffic control. In Second ICCBR Conf., 1997.

    Google Scholar 

  5. I. Borg and P. Groenen. Modern Multidimensional Scaling. Springer, 1997.

    Google Scholar 

  6. R. H. Creecy, B. M. Masand, S. Smith, and D. Waltz. Trading mips and memory for knowledge engineering. Communications of the ACM, 35, 1992.

    Google Scholar 

  7. B. S. Everitt. Cluster analysis. Edward Arnolds, New York, Toronto, 1993.

    Google Scholar 

  8. F. Hayes-Roth, D. Waterman, and D. Lenat. Building Expert Systems. Addison Wesley Publishing Company, London, 1983.

    Google Scholar 

  9. M. Hoffmann. Zur Automatisierung des Designprozesses fluidischer Systeme. Diss., Univ. of Paderborn, Dept. of Mathematics and Computer Science, 1999.

    Google Scholar 

  10. D. W. Hosmer and S. Lemeshow. Applied Logistic Regression. Wiley & Sons, NY, 1989.

    Google Scholar 

  11. N. Howe and C. Cardie. Examining locally varying weights for nearest neighbor algorithms. In Proceedings of the Eleventh ICML. Morgan Kaufmann, 1997.

    Google Scholar 

  12. N. Jambu. Explorative Datenanalyse. Gustav Fischer Verlag, 1992.

    Google Scholar 

  13. K. Kira and L. Rendell. A practical approach to feature selection. In Proceedings of the Ninth International Conference on Machine Learning, 1992.

    Google Scholar 

  14. B. Nebel. Plan Modification versus Plan Generation. In A. Horz, editor, 7. Workshop “Planen und Konfigurieren”, Hamburg, number 723 in Arbeitspapiere der GMD, 1993.

    Google Scholar 

  15. A. Reckmann. Ähnlichkeitsmaß und deren Parametrisierung für due fallbasierte Diagnose am Beispiel einer medizinischen Anwendung. Master’s thesis, Univ. of Paderborn, 1999.

    Google Scholar 

  16. M. M. Richter. Introduction to CBR. In M. Lenz, B. Bartsch-Spörl, H.-D. Burkhard, and S. Weß, editors, Case-Based Reasoning Technology. From Foundations to Applications, Lecture Notes in Artificial Intelligence 1400, pages 1–15. Berlin: Springer-Verlag, 1998.

    Chapter  Google Scholar 

  17. S. L. Salzberg. A nearest hyperrectangle learning method. Machine Learning, 1991.

    Google Scholar 

  18. W. S. Sarle. Neural Networks and Statistical Models. In 9th Annual SAS Users Group Intl. Conf., 1994. SAS Instit. Inc.

    Google Scholar 

  19. C. Stanfill and D. Waltz. Toward memory-based learning. Communications of the ACM, 29:1213–1228, 1986.

    Article  Google Scholar 

  20. B. Stein. Optimized Design of Fluidic Drives–Objectives and Concepts. Techn. Rep. tr-ri-97-189, Uni. of Paderborn, Depart. of Mathematics and Computer Science, 1996.

    Google Scholar 

  21. B. Stein, O. Niggermann, and U. Husemeier. Learning Complex similarity Measures. In Jahrestagung der Gesellschaft für Klassifikation, Bielefeld, Germany, 1999.

    Google Scholar 

  22. E. Vier. Automatisierter Entwurf geregelter Hydrostatischer Systeme, volume 795 of Fortschritt-Berichte VDI. Reihe 8. VDI, Düsseldorf, 1999.

    Google Scholar 

  23. S. Wess. Fallbasiertes Problemlösen in wissensbasierten Systemen zur Entscheidungsunterstützung und Diagnostik: Grundlagen, Systeme und Anwendungen. Technical report, Sankt Augustin: Infix, 1996.

    Google Scholar 

  24. D. Wilson and T. Martinez. Improved Heterogeneous Distance Functions. Journal of Artificial Intelligence Research, 6, 1997.

    Google Scholar 

  25. T. Wonnacott and R. Wonnacott. Regression: a second course in statistics. John Wiley & Sons, New York, Chichester/Brisbane/Toronto, 1981.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stein, B., Niggemann, O. (2001). Generation of Similarity Measures from Different Sources. In: Monostori, L., Váncza, J., Ali, M. (eds) Engineering of Intelligent Systems. IEA/AIE 2001. Lecture Notes in Computer Science(), vol 2070. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45517-5_23

Download citation

  • DOI: https://doi.org/10.1007/3-540-45517-5_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42219-8

  • Online ISBN: 978-3-540-45517-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics