Skip to main content

Wagner’s Theorem on Realizers

  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2380))

Included in the following conference series:

Abstract

A realizer of a maximal plane graph is a set of three particular spanning trees. It has been used in several graph algorithms and particularly in graph drawing algorithms. We propose colored flips on realizers to generalize Wagner’s theorem on maximal planar graphs to realizers. From this result, it is proved that ξ0 + ξ1 + ξ2 − Δ = n − 1 where ξi is the number of inner nodes in the tree T i, Δ is the number of three colored faces in the realizer and n is the number of vertices. As an application of this formula, we show that orderly spanning trees with at most \( \left\lfloor {\frac{{2n + 1--\Delta }} {3}} \right\rfloor \) leaves can be computed in linear time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

erences

  1. E. Brehm. 3-orientations and Schnyder 3-tree-decompositions. PhD thesis, FB Mathematik und Informatik, Freie Universität Berlin, 2000.

    Google Scholar 

  2. Yi-Ting Chiang Ching-Chi and Hsueh-I Lu. Orderly spanning trees with applications to graph encoding and graph drawing. In Proc. 12th Symp. Discrete Algorithms, pages 506–515. ACM and SIAM, 2001.

    Google Scholar 

  3. Richie Chih-Nan Chuang, Ashim Garg, Xin He, Ming-Yang Kao, and Hsueh-I Lu. Compact encodings of planar graphs via canonical ordering and multiple parentheses. In Proc. 25th International Colloquium on Automata, Languages, and Programming (ICALP’98), volume 1443, pages 118–129, 1998.

    Article  MathSciNet  Google Scholar 

  4. P. Ossona de Mendez. Orientations bipolaires. PhD thesis, Ecole des Hautes Etudes en Sciences Sociales, 1994.

    Google Scholar 

  5. A. K. Dewdney. Wagner’s theorem for torus graphs. Discrete Math., 4:139–149, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  6. S. Eliahou. Signed diagonal flips and the four color theorem. Europ. J. Combinatorics, 20:641–646, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  7. S. Eliahou, S. Gravier, and C. Payan. Three moves on signed surface triangulations. Les cahiers du laboratoire leibniz, 2000.

    Google Scholar 

  8. I. Fary. On straight lines representation of planar graphs. Acta Sci. Math. Szeged, 11:229–233, 1948.

    MathSciNet  Google Scholar 

  9. H. De Frayseix, J. Pach, and J. Pollack. How to draw a planar graph on a grid. Combinatorica, 10:41–51, 1990.

    Article  MathSciNet  Google Scholar 

  10. S. Gravier and C. Payan. Flips signés et triangulations d’un polygone. Les cahiers du laboratoire leibniz, 2000.

    Google Scholar 

  11. G. Kant. Drawing planar graphs using the canonical ordering. Algorithmica, 16:4–32, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  12. P. Rosenstiehl and R.E. Tarjan. Rectilinear planar layouts and bipolar orientations of planar graphs. Discrete Comput. Geom., 1:343–353, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  13. W. Schnyder. Planar graphs and poset dimension. Order, 5:323–343, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  14. W. Schnyder. Embedding planar graphs on the grid. Proc. 1st ACM-SIAM Symp. Discrete Algorithms, pages 138–148, 1990.

    Google Scholar 

  15. S.K. Stein. Convex maps. In Proc. Amer. Math. Soc., volume 2, pages 464–466, 1951.

    Article  MATH  MathSciNet  Google Scholar 

  16. K. Wagner. Bemerkungen zum Vierfarbenproblem. In Jahresber. Deutsche Math.-Verein., volume 46, pages 26–32, 1936.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bonichon, N., Le Saëc, B., Mosbah, M. (2002). Wagner’s Theorem on Realizers. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds) Automata, Languages and Programming. ICALP 2002. Lecture Notes in Computer Science, vol 2380. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45465-9_89

Download citation

  • DOI: https://doi.org/10.1007/3-540-45465-9_89

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43864-9

  • Online ISBN: 978-3-540-45465-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics