Skip to main content

Polynomial-Time Approximation Schemes for the Euclidean Survivable Network Design Problem

  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2380))

Included in the following conference series:

Abstract

The survivable network design problem is a classical problem in combinatorial optimization of constructing a minimum-cost subgraph satisfying predetermined connectivity requirements. In this paper we consider its geometric version in which the input is a complete Euclidean graph. We assume that each vertex v has been assigned a connectivity requirement r v . The output subgraph is supposed to have the vertex-(or edge-, respectively) connectivity of at least minr v, r u for any pair of vertices v, u.

We present the first polynomial-time approximation schemes (PTAS) for basic variants of the survivable network design problem in Euclidean graphs. We first show a PTAS for the Steiner tree problem, which is the survivable network design problem with r v ∈ 0, 1 for any vertex v. Then, we extend it to include the most widely applied case where r v ∈ 0, 1, 2 for any vertex v. Our polynomial-time approximation schemes work for both vertex-and edge-connectivity requirements in time \( \mathcal{O} \) (n log n), where the constants depend on the dimension and the accuracy of approximation. Finally, we observe that our techniques yield also a PTAS for the multigraph variant of the problem where the edge-connectivity requirements satisfy r v ∈ 0,1,..., k and k = \( \mathcal{O} \) (1).

Research supported in part by NSF grant CCR-0105701, SBR grant No. 421090, and TFR grant 221-99-344.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. Arora. Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. J. Assoc. Comput. Mach., 45(5):753–782, 1998.

    MATH  MathSciNet  Google Scholar 

  2. S. Chopra and C.-Y. Tsai. A branch-and-cut approach for minimum cost multi-level network design. Discrete Math., 242:65–92, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Czumaj and A. Lingas. On approximability of the minimum-cost k-connected spanning subgraph problem. In Proc. 10th ACM-SIAM SODA, pp. 281–290, 1999.

    Google Scholar 

  4. A. Czumaj and A. Lingas. Fast approximation schemes for Euclidean multi-connectivity problems. In Proc. 27th ICALP, pp. 856–868, 2000.

    Google Scholar 

  5. L. Fleischer. A 2-approximation for minimum cost 0,1, 2 vertex connectivity. In Proc. 8th IPCO, pp. 115–129, 2001.

    Google Scholar 

  6. L. Fleischer, K. Jain, and D. P. Williamson. An iterative rounding 2-approximation algorithm for the element connectivity problem. In Proc. 42nd FOCS, pp. 339–347, 2001.

    Google Scholar 

  7. G. N. Frederickson and J. JáJá. On the relationship between the biconnectivity augmentation and Traveling Salesman Problem. Theoret. Comput. Sci., 19(2):189–201, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  8. H. N. Gabow, M. X. Goemans, and D. P. Williamson. An efficient approximation algorithm for the survivable network design problem. Math. ProgrammingB, 82:13–40, 1998.

    MathSciNet  Google Scholar 

  9. E. N. Gilbert and H. O. Pollak. Steiner minimal trees. SIAM J. Appl. Math., 16(1):1–29, 1968.

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Grötschel and C. L. Monma. Integer polyhedra arising from certain network design problems with connectivity constraints. SIAM J. Discr. Math., 3(4):502–523, 1990.

    Article  MATH  Google Scholar 

  11. M. Grötschel, C. L. Monma, and M. Stoer. Computational results with a cutting plane algorithm for designing communication networks with low-connectivity constraints. Operations Research, 40(2):309–330, 1992.

    MATH  MathSciNet  Google Scholar 

  12. M. Grötschel, C. L. Monma, and M. Stoer. Polyhedral and computational investigations for designing communication networks with high survivability requirements. Operations Research, 43:1012–1024, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  13. M. Grötschel, C. L. Monma, and M. Stoer. Design of survivable networks. In M. O. Ball, T. L. Magnanti, C. L. Monma, and G. L. Nemhauser, editors, Handbooks in Operations Research and Management Science, volume 7: Network Models, chapter 10, pp. 617–672. North-Holland, Amsterdam, 1995.

    Google Scholar 

  14. J. Gudmundsson, C. Levcopoulos, and G. Narasimhan. Improved greedy algorithms for constructing sparse geometric spanners. In Proc. 7th SWAT, pp. 314–327, 2000.

    Google Scholar 

  15. F K. Hwang and D. S. Richards. Steiner tree problems. Networks, 22:55–89, 1991.

    Article  MathSciNet  Google Scholar 

  16. F. K. Hwang, D. S. Richards, and P. Winter. The Steiner Tree Problem. North-Holland, Amsterdam, 1992.

    MATH  Google Scholar 

  17. K. Jain. A factor 2 approximation algorithm for the generalized Steiner network problem. Combinatorica, 21(1):39–60, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  18. P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse of dimensionality. In Proc. 30th ACM STOC, pp. 604–613, 1998.

    Google Scholar 

  19. J. S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-time approximation scheme for geometric TSP, k-MST, and related problems. SIAM J. Comput., 28(4): 1298–1309, August 1999.

    Google Scholar 

  20. C. L. Monma and D. F. Shallcross. Methods for designing communications networks with certain two-connected survivability constraints. Operations Research, 37(4):531–541, July 1989.

    Google Scholar 

  21. H. J. Prömel and A. Steger. The Steiner Tree Problem. A Tour Through Graphs, Algorithms and Complexity. Vieweg Verlag, Wiesbaden, 2002.

    MATH  Google Scholar 

  22. S. B. Rao and W. D. Smith. Approximating geometrical graphs via “spanners” and ⌈dbanyans.” In Proc. 30th ACM STOC, pp. 540–550, 1998.

    Google Scholar 

  23. M. Stoer. Design of Survivable Networks, volume 1531 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1992.

    MATH  Google Scholar 

  24. D. P. Willimason, M. X. Goemans, M. Mihail, and V V Vazirani. A primal-dual approximation algorithm for generalized Steiner network problem. Combinatorica, 15:435–454, 1995.

    Article  MathSciNet  Google Scholar 

  25. P. Winter. Steiner problem in networks: A survey. Networks, 17:129–167, 1987.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Czumaj, A., Lingas, A., Zhao, H. (2002). Polynomial-Time Approximation Schemes for the Euclidean Survivable Network Design Problem. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds) Automata, Languages and Programming. ICALP 2002. Lecture Notes in Computer Science, vol 2380. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45465-9_83

Download citation

  • DOI: https://doi.org/10.1007/3-540-45465-9_83

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43864-9

  • Online ISBN: 978-3-540-45465-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics