Skip to main content

Visualizing Tree Structures in Genetic Programming

  • Conference paper
  • First Online:
Genetic and Evolutionary Computation — GECCO 2003 (GECCO 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2724))

Included in the following conference series:

Abstract

This paper presents methods to visualize the structure of trees that occur in genetic programming. These methods allow for the inspection of structure of entire trees of arbitrary size. The methods also scale to allow for the inspection of structure for an entire population. Examples are given from a typical problem. The examples indicate further studies that might be enabled by visualizing structure at these scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.H. Strogatz, “Exploring Complex Networks,” Nature, vol. 410, pp. 268–276, 2001.

    Article  Google Scholar 

  2. J.P. Rosca, “Analysis of Complexity Drift in Genetic Programming,” in GP 1997 Proceedings, J. R. Koza, et al., Eds. San Francisco: Morgan Kaufmann Publishers, 1997, pp. 286–94.

    Google Scholar 

  3. J.P. Rosca and D.H. Ballard, “Rooted-Tree Schemata in Genetic Programming,” in Advances in Genetic Programming 3, L. Spector, et al. Eds. Cambridge: The MIT Press, 1999, pp. 243–271.

    Google Scholar 

  4. C. Gathercole and P. Ross, “An Adverse Interaction Between Crossover and Restricted Tree Depth in Genetic Programming,” in GP 1996 Proceedings, J. R. Koza, et al., Eds. Cambridge: The MIT Press, 1996, pp. 291–96.

    Google Scholar 

  5. N.F. McPhee and N.J. Hopper, “Analysis of Genetic Diversity through Population History,” in GECCO’ 99 Proceedings, vol. 2, W. Banzhaf, et al., Eds. San Francisco: Morgan Kaufmann Publishers, 1999, pp. 1112–1120.

    Google Scholar 

  6. M. Mitchell, S. Forrest, and J.H. Holland, “The Royal Road for Genetic Algorithms: Fitness Landscapes and GA Performance,” in Proceedings of the First European Conference on Artificial Life., F.J. Varela and P. Bourgine, Eds. Cambridge: The MIT Press, 1992, pp. 245–254.

    Google Scholar 

  7. W. Punch, et al., “The Royal Tree Problem, A Benchmark for Single and Multiple Population GP,” in Advances in GP, vol. 2, P. J. Angeline and J.K.E. Kinnear, Eds. Cambridge: The MIT Press, 1996, pp. 299–316.

    Google Scholar 

  8. D.E. Goldberg and U.-M. O’Reilly, “Where Does the Good Stuff Go, and Why?,” in Proceedings of the First European Conference on Genetic Programming, W. Banzhaf, et al., Eds. Berlin: Springer-Verlag, 1998.

    Google Scholar 

  9. U.-M. O’Reilly and D.E. Goldberg, “How Fitness Structure Affects Subsolution Acquisition in GP,” in GP 1998 Proceedings, J. R. Koza, et al. Eds. San Francisco: Morgan Kaufmann Publishers, 1998, pp. 269–77.

    Google Scholar 

  10. T. Soule, J.A. Foster, and J. Dickinson, “Code Growth in Genetic Programming,” in GP 1996 Proceedings, J.R. Koza, et al., Eds. Cambridge: The MIT Press, 1996, pp. 215–223.

    Google Scholar 

  11. T. Soule and J.A. Foster, “Code Size and Depth Flows in Genetic Programming,” in GP 1997 Proceedings, J.R. Koza, et al., Eds. San Francisco: Morgan Kaufmann Publishers, 1997, pp. 313–320.

    Google Scholar 

  12. T. Soule and J.A. Foster, “Removal Bias: A New Cause of Code Growth in Tree Based Evolutionary Programming,” in ICEC 1998 Proceedings, vol. 1. Piscataway: IEEE Press, 1998, pp. 781–786.

    Google Scholar 

  13. W.B. Langdon, et al., “The Evolution of Size and Shape,” in Advances in Genetic Programming 3, L. Spector, et al., Eds. Cambridge: The MIT Press, 1999, pp. 163–190.

    Google Scholar 

  14. W.B. Langdon, “Size Fair and Homologous Tree Crossovers for Tree Genetic Programming,” Genetic Programming and Evolvable Machines, vol. 1, pp. 95–119, 2000.

    Article  MATH  Google Scholar 

  15. W.B. Langdon and R. Poli, Foundations of Genetic Programming. Berlin: Springer-Verlag, 2002.

    Book  MATH  Google Scholar 

  16. R. Poli and W.B. Langdon, “A New Schema Theory for GP with One-Point Crossover and Point Mutation,” in GP 1997 Proceedings, J.R. Koza, et al., Eds. San Francisco: Morgan Kaufmann Publishers, 1997, pp. 279–285.

    Google Scholar 

  17. R. Poli and W. B. Langdon, “Schema Theory for Genetic Programming with One-Point Crossover and Point Mutation,” Evolutionary Computation, vol. 6, pp. 231–252, 1998.

    Article  Google Scholar 

  18. R. Poli, “Exact Schema Theorem and Effective Fitness for GP with One-Point Crossover,” in GECCO 2000 Proceedings, L. D. Whitley, et al., Eds. San Francisco: Morgan Kaufmann Publishers, 2000, pp. 469–476.

    Google Scholar 

  19. W.B. Langdon and R. Poli, “Fitness Causes Bloat,” in Soft Computing in Engineering Design and Manufacturing, P.K. Chawdhry, R. Roy, and R.K. Pant, Eds. London: Springer-Verlag, 1997, pp. 23–27.

    Google Scholar 

  20. W.B. Langdon, “Quadratic Bloat in Genetic Programming,” in GECCO 2000 Proceedings, L.D. Whitley, et al., Eds. San Francisco: Morgan Kaufmann Publishers, 2000, pp. 451–458.

    Google Scholar 

  21. J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection. Cambridge: The MIT Press, 1992.

    MATH  Google Scholar 

  22. D.E. Knuth, The Art of Computer Programming: Volume 1: Fundamental Algorithms, vol. 1, Third ed. Reading: Addison-Wesley, 1997.

    MATH  Google Scholar 

  23. R.P. Stanley, Enumerative Combinatorics I, vol. 1. Cambridge: Cambridge University Press, 1997.

    Google Scholar 

  24. R.P. Stanley, Enumerative Combinatorics II, vol. 2. Cambridge: Cambridge University Press, 1999.

    Google Scholar 

  25. C. Jacob, Illustrating Evolutionary Computation with Mathematica. San Francisco: Morgan Kaufmann, 2001.

    Google Scholar 

  26. J.M. Daida, et al., “Analysis of Single-Node (Building) Blocks in GP,” in Advances in Genetic Programming 3, L. Spector, W.B. Langdon, U.-M. O’Reilly, and P. J. Angeline, Eds. Cambridge: The MIT Press, 1999, pp. 217–241.

    Google Scholar 

  27. J.M. Daida, et al., “What Makes a Problem GP-Hard? Analysis of a Tunably Difficult Problem in Genetic Programming,” in GECCO’ 99 Proceedings, vol. 2, W. Banzhaf, et al., Eds. San Francisco: Morgan Kaufmann Publishers, 1999, pp. 982–989.

    Google Scholar 

  28. O.A. Chaudhri, et al. “Characterizing a Tunably Difficult Problem in Genetic Programming,” in GECCO 2000 Proceedings, L.D. Whitley, et al., Eds. San Francisco: Morgan Kaufmann Publishers, 2000, pp. 395–402.

    Google Scholar 

  29. J.M. Daida, et al., “What Makes a Problem GP-Hard? Analysis of a Tunably Difficult Problem in Genetic Programming,” Journal of Genetic Programming and Evolvable Hardware, vol. 2, pp. 165–191, 2001.

    Article  MATH  Google Scholar 

  30. T. Bickle and L. Thiele, “A Mathematical Analysis of Tournament Selection,” in ICGA95 Proceedings, L.J. Eshelman, Ed. San Francisco: Morgan Kaufmann Publishers, 1995, pp. 9–16.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Daida, J.M., Hilss, A.M., Ward, D.J., Long, S.L. (2003). Visualizing Tree Structures in Genetic Programming. In: Cantú-Paz, E., et al. Genetic and Evolutionary Computation — GECCO 2003. GECCO 2003. Lecture Notes in Computer Science, vol 2724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45110-2_59

Download citation

  • DOI: https://doi.org/10.1007/3-540-45110-2_59

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40603-7

  • Online ISBN: 978-3-540-45110-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics