Skip to main content

The Myhill-Nerode Theorem for Recognizable Tree Series

  • Conference paper
  • First Online:
Developments in Language Theory (DLT 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2710))

Included in the following conference series:

Abstract

In this paper we prove a Myhill-Nerode theorem for recognizable tree series over commutative semifields and thereby present a minimization of bottom-up finite state weighted tree automata over a commutative semifield, where minimal means with respect to the number of states among all equivalent, deterministic devices.

Research was financially supported by the German Research Council under grant (DFG, GRK 433/2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Berstel and C. Reutenauer. Recognizable formal power series on trees. Theoretical Computer Science, 18:115–148, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  2. J. Berstel and Ch. Reutenauer. Rational Series and Their Languages, volume 12 of EATCS-Monographs. Springer Verlag, 1988.

    Google Scholar 

  3. B. Borchardt and H. Vogler. Determinization of Finite State Weighted Tree Automata. J. Automata, Languages and Combinatorics, accepted, 2003.

    Google Scholar 

  4. S. Bozapalidis. Effective constuction of the syntactic algebra of a recognizable series on trees. Acta Informatica, 28:351–363, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  5. J. Doner. Tree acceptors and some of their applications. J. Comput. System Sci., 4:406–451, 1970.

    Article  MATH  MathSciNet  Google Scholar 

  6. M. Droste and P. Gastin. The Kleene-Schützenberger theorem for formal power series in partially commuting variables. Information and Computation, 153:47–80, 1999. extended abstract in: 24th ICALP, LNCS vol. 1256, Springer, 1997, pp. 682–692.

    Article  MATH  MathSciNet  Google Scholar 

  7. M. Droste and D. Kuske. Skew and infinitary formal power series. Technical Report 2002-38, Department of Mathematics and Computer Science, University of Leicester, 2002.

    Google Scholar 

  8. S. Eilenberg. Automata, Languages, and Machines, Vol.A. Academic Press, 1974.

    Google Scholar 

  9. Z. Esik and W. Kuich. Formal Tree Series. J. Automata, Languages and Combinatorics, accepted, 2003.

    Google Scholar 

  10. Z. Fülöp and S. Vágvölgyi. Congruential tree languages are the same as recognizable tree languages. Bulletin of EATCS, 30:175–185, 1989.

    Google Scholar 

  11. Z. Fülöp and H. Vogler. Tree series transformations that respect copying. Theory of Computing Systems, to appear, 2003.

    Google Scholar 

  12. F. Gécseg and M. Steinby. Tree Automata. Akadémiai Kiadó, Budapest, 1984.

    MATH  Google Scholar 

  13. F. Gécseg and M. Steinby. Tree languages. In G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages, volume 3, chapter 1, pages 1–68. Springer-Verlag, 1997.

    Google Scholar 

  14. D. Kozen. On the Myhill-Nerode theorem for trees. EATCS Bulletin, 47:170–173, June 1992.

    MATH  Google Scholar 

  15. W. Kuich. Formal power series over trees. In S. Bozapalidis, editor, Proc. of the 3rd International Conference Developments in Language Theory, pages 61–101. Aristotle University of Thessaloniki, 1998.

    Google Scholar 

  16. W. Kuich and A. Salomaa. Semirings, Automata, Languages. EATCS Monographs on Theoretical Computer Science, Springer Verlag, 1986.

    Google Scholar 

  17. M. Magidor and G. Moran. Finite automata over finite trees. Technical Report 30, Hebrew University, Jerusalem, 1969.

    Google Scholar 

  18. M. Mohri. Finite-state transducers in language and speech processing. Computational Linguistics, 23:269–311 (1–42), 1997.

    MathSciNet  Google Scholar 

  19. M. O. Rabin. Decidability of second-order theories and automata in infinite trees. Transactions of the Amer. Math. Soc., 141:1–35, 1969.

    Article  MATH  MathSciNet  Google Scholar 

  20. M.P. Schützenberger. On the definition of a family of automata. Information and Control, 4:245–270, 1961.

    Article  MATH  MathSciNet  Google Scholar 

  21. H. Seidl. Finite tree automata with cost functions. Theoret. Comput. Sci., 126:113–142, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  22. J.W. Thatcher and J.B. Wright. Generalized finite automata theory with application to a decision problem of second-order logic. Math. Systems Theory, 2(1):57–81, 1968.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Borchardt, B. (2003). The Myhill-Nerode Theorem for Recognizable Tree Series. In: Ésik, Z., Fülöp, Z. (eds) Developments in Language Theory. DLT 2003. Lecture Notes in Computer Science, vol 2710. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45007-6_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-45007-6_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40434-7

  • Online ISBN: 978-3-540-45007-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics