Skip to main content

Spatial Knowledge Representation for Human-Robot Interaction

  • Conference paper
  • First Online:
Spatial Cognition III (Spatial Cognition 2002)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2685))

Included in the following conference series:

Abstract

Non-intuitive styles of interaction between humans and mobile robots still constitute a major barrier to the wider application and acceptance of mobile robot technology. More natural interaction can only be achieved if ways are found of bridging the gap between the forms of spatialkno wledge maintained by such robots and the forms of language used by humans to communicate such knowledge. In this paper, we present the beginnings of a computationalmodelfor representing spatialkno wledge that is appropriate for interaction between humans and mobile robots. Work on spatial reference in human-human communication has established a range of reference systems adopted when referring to objects; we show the extent to which these strategies transfer to the human-robot situation and touch upon the problem of differing perceptual systems. Our results were obtained within an implemented kernel system which permitted the performance of experiments with human test subjects interacting with the system. We show how the results of the experiments can be used to improve the adequacy and the coverage of the system, and highlight necessary directions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amalberti et al., 1993. Amalberti, R., Carbonell, N., and Falzon, P. (1993). User Representations of Computer Systems in Human-Computer Speech Interaction. International Journal of Man-Machine Studies, 38:547–566.

    Article  Google Scholar 

  2. Bateman, 1999. Bateman, J. A. (1999). Using aggregation for selecting content when generating referring expressions. In Proceedings of the 37th. Annual Meeting of the Association for Computational Linguistics (ACL’99), pages 127–134, University of Maryland. Association for Computational Linguistics.

    Google Scholar 

  3. Biber, 1988. Biber, D. (1988). Variation across speech and writing. Cambridge University Press, Cambridge.

    Google Scholar 

  4. Eschenbach, 2001. Eschenbach, C. (2001). Contextual, Functional, and Geometric Features and Projective Terms. In Proceedings of the 2nd annual language & space workshop: Defining Functional and Spatial Features, University of Notre Dame.

    Google Scholar 

  5. Eschenbach et al., 2000. Eschenbach, C., Tschander, T., Habel, C., and Kulik, L. (2000). Lexical Specification of Paths. In Freksa, C., Habel, C., and Wender, K. F., editors, Spatial Cognition II, Lecture Notes in Artificial Intelligence. Springer-Verlag, Berlin.

    Google Scholar 

  6. Fischer, 2000. Fischer, K. (2000). What is a situation? In Proceedings of G talog 2000, Fourth Workshop on the Semantics and Pragmatics of Dialogue, pages 85–92.

    Google Scholar 

  7. Habel et al., 1999. Habel, C., Hildebrandt, B., and Moratz, R. (1999). Interactive robot navigation based on qualitative spatial representations. In Wachsmuth, I. and Jung, B., editors, Proceedings Kogwis99, pages 219–225, St. Augustin. infix.

    Google Scholar 

  8. Hernández, 1994. Hernández, D. (1994). Qualitative representation of spatial knowledge. Lecture Notes in Artificial Intelligence. Springer Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  9. Herrmann, 1990. Herrmann, T. (1990). Vor, hinter, rechts und links: das 6h-modell. psychologische studien zum sprachlichen lokalisieren. Zeitschrift fur Literaturwissenschaft und Linguistik, 78:117–140.

    Google Scholar 

  10. Herrmann and Grabowski, 1994. Herrmann, T. and Grabowski, J. (1994). Sprechen: Psychologie der Sprachproduktion. Spektrum Verlag, Heidelberg.

    Google Scholar 

  11. Hildebrandt and Eikmeyer, 1999. Hildebrandt, B. and Eikmeyer, H.-J. (1999). Sprachverarbeitung mit Combinatory Categorial Grammar: Inkrementalitat & Effizienz. SFB 360: Situierte Kunstliche Kommunikatoren, Report 99/05, Bielefeld.

    Google Scholar 

  12. Hildebrandt et al., 1995. Hildebrandt, B., Moratz, R., Rickheit, G., and Sagerer, G. (1995). Integration von bild-und sprachverstehen in einer kognitiven architektur. In Kognitionswissenschaft, volume 4, pages 118–128, Berlin. Springer-Verlag.

    Google Scholar 

  13. Horacek, 2001. Horacek, H. (2001). Textgenerierung. In Carstensen, K.-U., Ebert, C., Endriss, C., Jekat, S., Klabunde, R., and Langer, H., editors, Computerlinguistik und Sprachtechnologie-Eine Einfü hrung, pages 331–360. Spektrum Akademischer Verlag, Heidelberg.

    Google Scholar 

  14. Kummert et al., 1993. Kummert, F., Niemann, H., Prechtel, R., and Sagerer, G. (1993). Control and explanation in a signal understanding environment. Signal Processing, special issue on ‘Intelligent Systems for Signal and Image Understanding’, 32:111–145.

    Google Scholar 

  15. Lay et al., 2001. Lay, K., Prassler, E., Dillmann, R., Grunwald, G., H gele, M., Lawitzky, G., Stopp, A., and von Seelen, W. (2001). MORPHA: Communication and Interaction with Intelligent, Anthropomorphic Robot Assistants. In International Status Conference: Lead Projects Human-Computer-Interaction, Saarbruecken, Germany.

    Google Scholar 

  16. Levelt, 1996. Levelt, W. J. M. (1996). Perspective Taking and Ellipsis in Spatial Descriptions. In Bloom, P., Peterson, M., Nadel, L., and Garrett, M., editors, Language and Space, pages 77–109. MIT Press, Cambridge, MA.

    Google Scholar 

  17. Levinson, 1996. Levinson, S. C. (1996). Frames of Reference and Molyneux’s Question: Crosslinguistic Evidence. In Bloom, P., Peterson, M., Nadel, L., and Garrett, M., editors, Language and Space, pages 109–169. MIT Press, Cambridge, MA.

    Google Scholar 

  18. Moratz, 1997. Moratz, R. (1997). Visuelle Objekterkennung als kognitive Simulation. Diski 174. Infix, Sankt Augustin.

    Google Scholar 

  19. Moratz et al., 1995. Moratz, R., Eikmeyer, H., Hildebrandt, B., Kummert, F., Rickheit, G., and Sagerer, G. (1995). Integrating speech and selective visual perception using a semantic network. Proc. AAAI-95 Fall Symposium on Computational Models for Integrating Language and Vision, pages 44–49.

    Google Scholar 

  20. Moratz et al., 2001. Moratz, R., Fischer, K., and Tenbrink, T. (2001). Cognitive Modeling of Spatial Reference for Human-Robot Interaction. International Journal on Artificial Intelligence Tools, 10(4): 589–611.

    Article  Google Scholar 

  21. Moratz and Hildebrandt, 1998. Moratz, R. and Hildebrandt, B. (1998). Deriving Spatial Goals from Verbal Instructions-A Speech Interface for Robot Navigation-. SFB 360: Situierte Kunstliche Kommunikatoren, Report 98/11, Bielefeld.

    Google Scholar 

  22. Moratz et al., 2002. Moratz, R., Nebel, B., and Freksa, C. (2002). Qualitative spatial reasoning about relative position: The tradeoff between strong formal properties and successful reasoning about route graphs. this volume.

    Google Scholar 

  23. Neumann and Novak, 1983. Neumann, B. and Novak, H.-J. (1983). Event models for recognition and natural language description of events in real-world image sequences. In IJCAI 1983, pages 643–646.

    Google Scholar 

  24. Niemann et al., 1990. Niemann, H., Sagerer, G., Schroder, S., and Kummert, F. (1990). ERNEST: a semantic network system for pattern understanding. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(9):883–905.

    Article  Google Scholar 

  25. Oviatt et al., 1998. Oviatt, S., MacEachern, M., and Levow, G.-A. (1998). Predicting hyperarticulate speech during human-computer error resolution. Speech Communication, 24:87–110.

    Article  Google Scholar 

  26. Reiter and Dale, 1992. Reiter, E. and Dale, R. (1992). A fast algorithm for the generation of referring expressions. In Proceedings of the fifteenth International Conference on Computational Linguistics (COLING-92), volume I, pages 232–238, Nantes, France. International Committe on Computational Linguistics.

    Google Scholar 

  27. Retz-Schmidt, 1988. Retz-Schmidt, G. (1988). Various Views on Spatial Prepositions. AI Magazine, 9(2):95–105.

    Google Scholar 

  28. Schegloff et al., 1977. Schegloff, E., Jefferson, G., and Sacks, H. (1977). The preference for self-correction in the organisation of repair in conversation. Language, 53:361–383.

    Article  Google Scholar 

  29. Steedman, 1996. Steedman, M. (1996). Surface Structure and Interpretation. MIT Press, Cambridge, MA.

    Google Scholar 

  30. Stopp et al., 1994. Stopp, E., Gapp, K.-P., Herzog, G., Laengle, T., and Lueth, T. C. (1994). Utilizing Spatial Relations for Natural Language Access to an Autonomous Mobile Agent. Kunstliche Intelligenz, pages 39–50.

    Google Scholar 

  31. Streit, 2001. Streit, M. (2001). Why Are Multimodal Systems so Difficult to Build?-About the Difference between Deictic Gestures and Direct Manipulation. In Bunt, H. and Beun, R.-J., editors, Cooperative Multimodal Communication. Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  32. Wahlster, 2001. Wahlster, W. (2001). SmartKom: Towards Multimodal Dialogues with Anthropomorphic Interface Agents. In International Status Conference: Lead Projects Human-Computer-Interaction, Saarbruecken, Germany.

    Google Scholar 

  33. Wahlster et al., 1983. Wahlster, W., Marburger, H., Jameson, A., and Busemann, S. (1983). Overanswering yes-no questions: Extended responses in a nl interface to a vision system. In IJCAI 1983, pages 643–646.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moratz, R., Tenbrink, T., Bateman, J., Fischer, K. (2003). Spatial Knowledge Representation for Human-Robot Interaction. In: Freksa, C., Brauer, W., Habel, C., Wender, K.F. (eds) Spatial Cognition III. Spatial Cognition 2002. Lecture Notes in Computer Science, vol 2685. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45004-1_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-45004-1_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40430-9

  • Online ISBN: 978-3-540-45004-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics