Skip to main content

Frequency-Temperature Compensation Techniques for High-Q Microwave Resonators

  • Chapter
  • First Online:
Frequency Measurement and Control

Part of the book series: Topics in Applied Physics ((TAP,volume 79))

Abstract

Low-noise high-stability resonator oscillators based on high-Q monolithic sapphire “Whispering Gallery” (WG)-mode resonators have become important devices for telecommunication, radar and metrological applications. The extremely high quality factor of sapphire, of 2 × 105 at room temperature, 5 × 107 at liquid nitrogen temperature and 5 × 109 at liquid helium temperature has enabled the lowest phase noise and highly frequency-stable oscillators in the microwave regime to be constructed. To create an oscillator with exceptional frequency stability, the resonator must have its frequency—temperature dependence annulled at some temperature, as well as a high quality factor. The Temperature Coefficient of Permittivity (TCP) for sapphire is quite large, at 10-100 parts per million/K above 77 K. This mechanism allows temperature fluctuations to transform to resonator frequency fluctuations.

A number of research groups worldwide have investigated various methods of compensating the TCP of a sapphire dielectric resonator at different temperatures. The usual electromagnetic technique of annulment involves the use of paramagnetic impurities contributing an opposite temperature coefficient of the magnetic susceptibility to the TCP. This technique has only been realized successfully in liquid helium environments. Near 4 K the thermal expansion and permittivity effects are small and only small quantities of the paramagnetic ions are necessary to compensate the mode frequency. Compensation is due to impurity ions that were incidentally left over from the manufacturing process.

Recently, there has been an effort to dispense with the need for liquid helium and make a compact flywheel oscillator for the new generation of primary frequency standards such as the cesium fountain at the Laboratoire Primaire du Temps et des Fréquences (LPTF), France. To achieve the stability limit imposed by quantum projection noise requires that the local oscillator stability is of the order of 10−14. Currently work is under way to achieve this goal in space-borne and mobile liquid-nitrogen-cooled systems. The work appears promising and, as at early 2000, the realization of this goal should not be far off.

In this contribution we review techniques that cancel the TCP of sapphire and other dielectric resonators. Details of the temperature control system required to achieve current and target frequency stabilities are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Krupka, K. Derzakowski, A. Abramowicz, M. E. Tobar, R. Geyer: Use of whispering gallery modes for complex permittivity determinations of ultra-low-loss dielectric materials. IEEE Trans. Microwave Theory Tech. 47, 752–759 (1999)

    Article  ADS  Google Scholar 

  2. M. E. Tobar, A. G. Mann: Resonant frequencies of high order modes in cylindrical anisotropic dielectric resonators. IEEE Trans. Microwave Theory Tech. 39, 2077–2083 (1991)

    Article  ADS  Google Scholar 

  3. D. G. Blair, I. N. Evans: high-Q microwave properties of a ring resonator. J. Phys. D 15, 1651–1656 (1982)

    Article  ADS  Google Scholar 

  4. S. N. Bunkov, B. A. Vtorushin, V. N. Yegorov, V. I. Konstantinov, V. L. Masalov, P. V. Smirnov: Cooled dielectric resonators for frequency stabilization. Radiotekhnika electronika 5, 1071–1080 (1987)

    ADS  Google Scholar 

  5. V. I. Kalinichev, P. N. Vadov: A numerical investigation of the excitation of a dielectric resonator by a dielectric waveguide. Radiotekhnika electronika 3, 464–473 (1988)

    ADS  Google Scholar 

  6. V. F. Vzyatyshev, V. I. Kalinichev, V. I. Kuimov: Physics of shielded dielectric resonators and problems of their design. Radiotekhnika electronika 4, 705–712 (1985)

    ADS  Google Scholar 

  7. V. I. Panov, P. R. Stankov: Frequency stabilization of oscillators by high-Q dielectric resonators made from leucosapphire. Radiotekhnika electronika 1, 213–216 (1986)

    ADS  Google Scholar 

  8. S. L. Abramov, E. N. Ivanov, D. P. Tsarapkin: Low noise microwave oscillator with a temperature stabilized disk dielectric resonator. Radiotechnika electronika 11, 81–83 (1988)

    Google Scholar 

  9. G. J. Dick, D. G. Santiago, R. T. Wang: Temperature compensated sapphire resonator for ultra-stable oscillator capability at temperatures above 77 Kelvin. IEEE Freq. Control Symp. Proc. 48, 421–432 (1994)

    Article  Google Scholar 

  10. M. E. Tobar, J. Krupka, J. G. Hartnett, E. N. Ivanov, R. A. Woode: Sapphire—rutile frequency—temperature compensated whispering gallery microwave resonators. IEEE Freq. Control Symp. Proc. 51, 1000–1008 (1997)

    Article  Google Scholar 

  11. M. E. Tobar, J. Krupka, J. G. Hartnett, E. N. Ivanov, R. A. Woode: high-Q Sapphire-rutile frequency—temperature compensated microwave dielectric resonators. IEEE Trans. Ultrason. Ferroel. Freq. Control 45, 830–836 (1998)

    Article  Google Scholar 

  12. L. Hao, N. Klein, W. J. Radcliffe, J. C. Gallop, I. S. Ghosh: Temperature compensated cryogenic whispering gallery mode resonator for microwave frequency standard applications. 1998 Conf. on Precision Electromagnetic Measurements, Tech. Dig. (1998)pp. 63–65

    Google Scholar 

  13. I. S. Ghosh, D. Schemion, N. Klein: Temperature compensated high-Q dielectric resonators for long term stable low phase noise oscillators. IEEE Int. Freq. Control Symp. Proc. 51, 1024–1029 (1997)

    Article  Google Scholar 

  14. S. K. Jones, D. G. Blair, M. J. Buckingham: The effects of paramagnetic impurities on the frequency of sapphire loading superconducting resonators. Electron. Lett. 24, 346–347 (1988)

    Article  Google Scholar 

  15. A. N. Luiten, A. G. Mann, D. G. Blair: Paramagnetic susceptibility and permittivity measurements at microwave frequencies in cryogenic sapphire resonators. J. Phys. D 29, 2082–2090 (1996)

    Article  ADS  Google Scholar 

  16. A. N. Luiten, A. G. Mann, N. J. McDonald, D. G. Blair: Latest results of the UWA cryogenic sapphire oscillator. IEEE Freq. Control Symp. Proc. 49, 433–437 (1995)

    Google Scholar 

  17. A. G. Mann, A. J. Giles, D. G. Blair, M. J. Buckingham: Ultra-stable cryogenic sapphire dielectric microwave resonators: mode frequency—temperature compensation by residual paramagnetic impurities. J. Phys. D 25, 1105–1109 (1992)

    Article  ADS  Google Scholar 

  18. J. G. Hartnett, M. E. Tobar, A. G. Mann, E. N. Ivanov, J. Krupka: frequency-temperature compensation in Ti3+ and Ti4+ doped sapphire whispering gallery mode resonators. IEEE Int. Freq. Control Symp. Proc. 52, 512–517 (1998)

    Google Scholar 

  19. J. G. Hartnett, M. E. Tobar, A. G. Mann, E. N. Ivanov, J. Krupka, R. Geyer: frequency-temperature compensation in Ti3+ and Ti4+ doped sapphire whispering gallery mode resonators. IEEE Trans. Ultrason. Ferroel. Freq. Control 46, 993–999 (1999)

    Article  Google Scholar 

  20. J. G. Hartnett, M. E. Tobar, A. G. Mann, E. N. Ivanov, J. Krupka, E. N. Ivanov: Temperature dependence of Ti3+ doped sapphire whispering gallery mode resonator. Electron. Lett. 34, 195–196 (1998)

    Article  Google Scholar 

  21. G. J. Dick, R. T. Wang: Cryo-cooled sapphire oscillator for the cassini Ka-band experiment. IEEE Int. Freq. Cont. Symp. Proc. 51, 1009–1014 (1997)

    Article  Google Scholar 

  22. G. J. Dick, R. T. Wang, R. T. Tjoelker: Cryo-cooled sapphire oscillator with ultra-high stability. IEEE Int. Freq. Cont. Symp. Proc. 52, 528–533 (1998)

    Google Scholar 

  23. R. Shelby, J. Fontanella: The low temperature electrical properties of some anisotropic crystals. J. Phys. Chem. Solids. 41, 69–74 (1980)

    Article  ADS  Google Scholar 

  24. Y. Kobayashi, T. Senju: Resonant modes in shielded uniaxial-anisotropic dielectric rod resonators. IEEE Trans. Microwave Theory Tech. 41, 2198–2205 (1993)

    Article  ADS  Google Scholar 

  25. D. Kajfez, P. Guillon: Dielectric Resonators (Artech House, Norwood, MA 1986)

    Google Scholar 

  26. C. E. Byvik, A. M. Buoncristiani: Analysis of vibronic transitions in titanium doped sapphire using the temperature of the fluorescence spectra. IEEE J. Quantum Electron. 21, 1619–1623 (1985)

    Article  ADS  Google Scholar 

  27. R. L. Carlin, A. J. van Duyneveldt: Magnetic Properties of Transistion Metal Compounds, Inorganic Chem. Concepts, Vol. 2 (Springer, New York 1977)

    Google Scholar 

  28. V. B. Braginsky, V. P. Mitrofanov, V. I. Panov: Systems With Small Dissipation (Univ. Chicago Press, Chicago 1985)

    Google Scholar 

  29. G. K. White: Reference materials for thermal expansion: certified or not? Thermochim. Acta 218, 83–99 (1993)

    Article  Google Scholar 

  30. Y. S. Touloukian et al. (Series Editor Y. S. Touloukian): Thermophysical Properties of Matter Vols. 2, 4 (IFI/Plenum, New York 1970)

    Google Scholar 

  31. A. N. Luiten, M. E. Tobar, J. Krupka, R. A. Woode, E. N. Ivanov, A. G. Mann: Microwave properties of a rutile resonator between 2 and 10 K. J. Phys. D 31, 1383–1391 (1998)

    Article  ADS  Google Scholar 

  32. M. E. Tobar, J. Krupka, E. N. Ivanov, R. A. Woode: Anisotropic complex permittivity measurements of mono-crystalline rutile between 10-300 Kelvin. J. Appl. Phys. 83, 1604–1609 (1998)

    Article  ADS  Google Scholar 

  33. G. K. White: Private communication (1996)

    Google Scholar 

  34. M. E. Tobar, D. G. Blair: A generalized equivalent circuit applied to a tunable sapphire loaded superconducting cavity. IEEE Trans. Microwave Theory Tech. 39, 1582–1593 (1991)

    Article  ADS  Google Scholar 

  35. I. A. Bilenko, E. N. Ivanov, M. E. Tobar, D. G. Blair: Sapphire high-Q low temperature transducer for resonant bar gravitational wave antennas. Phys. Lett. A 211, 139–142 (1996)

    Article  ADS  Google Scholar 

  36. A. J. Giles, A. G. Mann, S. K. Jones, D. Blair, M. Buckingham: A very high stability sapphire loaded superconducting cavity oscillator. Physica B 165, 145–146 (1990)

    Article  ADS  Google Scholar 

  37. A. N. Luiten: Sapphire Secondary Frequency Standards. Ph.D. thesis, University of Western Australia (1995)

    Google Scholar 

  38. A. G. Mann, G. Santarelli, S. Chang, A. Luiten, P. Laurent, C. Salomon, D. G. Blair, A. Clairon: A high stability atomic fountain clock using a cryogenic sapphire interrogation oscillator. IEEE Freq. Control Symp. Proc. 52, 13–22 (1998)

    Google Scholar 

  39. M. E. Tobar, J. G. Hartnett, D. Cros, P. Blondy, J. Krupka, E. N. Ivanov, P. Guillon: Design of high-Q frequency—temperature compensated dielectric resonators. Electron. Lett. 35, 303–304 (1999)

    Article  Google Scholar 

  40. M. E. Tobar, J. Krupka, R. A. Woode, E. N. Ivanov: Dielectric frequency-temperature compensation of high quality sapphire dielectric resonators. IEEE Int. Freq. Control Symp. Proc. 50, 799–806 (1996)

    Article  Google Scholar 

  41. J. G. Hartnett, M. E. Tobar, A. G. Mann, J. Krupka, E. N. Ivanov, S. N. Jacobsen, L. Madsen, U. Helmersson: Electromagnetic frequency—temperature compensation techniques for high-Q sapphire resonators. Proc. Asia Pacific Microwave Conf. Yokohama Japan pp. 159–162 (1998)

    Google Scholar 

  42. D. M. Strayer, G. J. Dick, J. E. Mercereau: Performance of a superconducting cavity stabilized ruby maser oscillator. IEEE Trans Magn. 23, 1624–1628 (1987)

    Article  ADS  Google Scholar 

  43. V. B. Braginsky, V. I. Panov: Superconducting resonators on sapphire. IEEE Trans. Magn. 15, 30–32 (1979)

    Article  ADS  Google Scholar 

  44. S. R. Stein, J. P. Turneaure: Superconducting-cavity stabilized oscillators with improved frequency stability. Proc. IEEE 63, 1249–1250 (1975)

    Article  ADS  Google Scholar 

  45. G. J. Dick, D. G. Santiago, R. T. Wang: Temperature-compensated sapphire resonator for ultra-stable oscillator capability at temperature above 77 K. IEEE Trans. Ultrason. Ferroelec. Freq. Control 42, 815–819 (1995)

    Article  Google Scholar 

  46. D. G. Santiago, G. J. Dick, R. T. Wang: Frequency stability of 10−13 in a compensated sapphire oscillator operating above 77 K. IEEE Int. Freq. Control Symp. Proc. 50, 772–775 (1996)

    Article  Google Scholar 

  47. D. G. Santiago, R. T. Wang, G. J. Dick: Improved performance of a temperature compensated LN2 cooled sapphire oscillator. IEEE Int. Freq. Control Symp. Proc. 49, 397–400 (1995)

    Google Scholar 

  48. P. Boolchand, G. H. Lemon, W. J. Bresser, R. N. Enzweller, R. Harris: A general purpose cold finger using a vibration-free mounted He closed-cycle cryostat. Rev. Sci. Instrum. 66, 3015–3057 (1995)

    Article  Google Scholar 

  49. C. D. Langham, J. C. Gallop: Performance of a cryogenic sapphire dielectric resonator. Proc. 1996 Europ. Frequency and Time Forum, 10, 266–269 (1996)

    Google Scholar 

  50. C. D. Langham, J. C. Gallop: Cryogenic sapphire dielectric resonators: performance and potential. IEEE Trans Instrum. Meas. 46, 130–132 (1997)

    Article  Google Scholar 

  51. S. Buchman, J. P. Turneaure, J. A. Lipa, M. Dong, K. M. Cumbermack, S. Wang: A superconducting microwave oscillator clock for use on the space station. Int. Freq. Control Symp. Proc. 52, 534–539 (1998)

    Google Scholar 

  52. M. E. Tobar, D. Cros, P. Blondy, J. G. Hartnett, P. Guillon: Finite element realization of ultra-high quality factor frequency—temperature compensated Sapphire—rutile whispering gallery mode resonators. Proc. 1999 Int. Microwave Symp., pp. 1323–1326 (1999)

    Google Scholar 

  53. M. Aubourg, P. Guillon: A mixed finite element formulation for microwave device problems: Application to MIS structure. J. Electromag. Waves Appl. 45, 371–386 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hartnett, J.G., Tobar, M.E. (2001). Frequency-Temperature Compensation Techniques for High-Q Microwave Resonators. In: Luiten, A.N. (eds) Frequency Measurement and Control. Topics in Applied Physics, vol 79. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44991-4_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-44991-4_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67694-2

  • Online ISBN: 978-3-540-44991-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics