Skip to main content

A Comparative Analysis of Cognitive Tutoring and Constraint-Based Modeling

  • Conference paper
  • First Online:
User Modeling 2003 (UM 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2702))

Included in the following conference series:

Abstract

Numerous approaches to student modeling have been proposed since the inception of the field more than three decades ago. What the field is lacking completely is comparative analyses of different student modeling approaches. In this paper we compare Cognitive Tutoring to Constraint-Based Modeling (CBM). We present our experiences in implementing a database design tutor using both methodologies and highlight their strengths and weaknesses. We compare their characteristics and argue the differences are often more apparent than real: for specific domains one approach may be favoured over the other, making them viable complementary methods for supporting learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleven, V., Koedinger, K.: An Effective Metacognitive Strategy: Learning by Doing and Explaining with a Computer-based Cognitive Tutor. Cognitive Science 26 (2002) 147–179

    Article  Google Scholar 

  2. Anderson, J. R., Lebiere, C.: The Atomic Components of Thought. Mahwah, NJ: Erlbaum (1998)

    Google Scholar 

  3. Chi, M. T. H., Bassok, M., Lewis, W., Reimann, P., Glaser, R.: Self-Explanations: How Students Study and Use Examples in Learning to Solve Problems. Cognitive Science, 13 (1989) 145–182

    Article  Google Scholar 

  4. Holt, P., Dubs, S., Jones, M., Greer, J.E.: The State of Student Modeling. In: Greer, J.E., McCalla, G.I. (eds.): Student Modeling: the Key to Individualized Knowledge-based Instruction. NATO ASI Series, Vol. 125. Springer (1994) 3–35

    Google Scholar 

  5. Koedinger, K. R., Anderson, J. R., Hadley, W. H., Mark, M. A.: Intelligent Tutoring Goes to School in the Big City. Int. J. Artificial Intelligence in Education, 8 (1997) 30–43

    Google Scholar 

  6. Mathan, S., Koedinger, K.: An Empirical Assessment of Comprehension Fostering Features in an Intelligent Tutoring System. In: S. Cerri, G. Gouarderes, F. Paraguacu (eds.) Proc. ITS 2002, LNCS Vol. 2363 Springer-Verlag, (2002) 330–343

    Google Scholar 

  7. Martin, B, Mitrovic, A.: Tailoring Feedback by Correcting Student Answers. Proc. ITS’2000, LNCS Vol. 1839, Springer-Verlag, (2000) 383–392

    Google Scholar 

  8. Mayo, M., Mitrovic, A.: Optimising ITS Behavior with Bayesian Networks and Decision Theory. Int. J. Artificial Intelligence in Education, 12 (2001) 124–153

    Google Scholar 

  9. Mitrovic, A.: NORMIT, a Web-enabled Tutor for Database Normalization. Kinshuk, R. Lewis, K. Akahori, R. Kemp, T. Okamoto, L. Henderson, C-H Lee (eds.) Proc. ICCE 2002 (2002) 1276–1280

    Google Scholar 

  10. Mitrovic, A., Ohlsson, S.: Evaluation of a Constraint-Based Tutor for a Database Language. Int. J. on Artificial Intelligence in Education 10(3–4) (1999) 238–256

    Google Scholar 

  11. Ohlsson, S.: Constraint-based Student Modeling. In Student Modeling: the Key to Individualized Knowledge-based Instruction. Springer (1994) 167–189

    Google Scholar 

  12. Ohlsson, S.: Learning from Performance Errors. Psychological Review 103 (1996) 241–262

    Article  Google Scholar 

  13. Payne, S., Squibb, H.: Algebra Mal-rules and Cognitive Accounts of Errors. Cognitive Science, 14 (1990) 445–481

    Article  Google Scholar 

  14. Self, J. A.: Bypassing the Intractable Problem of Student Modeling. In: C. Frasson and G. Gauthier (eds.), Intelligent Tutoring Systems: at the Crossroads of Artificial Intelligence and Education. Norwood: Ablex (1990) 107–123

    Google Scholar 

  15. Suraweera, P., Mitrovic, A.: KERMIT: a Constraint-based Tutor for Database Modeling. In: S. Cerri, G. Gouarderes, F. Paraguacu (eds.) Proc. ITS 2002, LNCS Vol. 2363 Springer-Verlag, (2002) 377–387

    Google Scholar 

  16. VanLehn, K. et al.: Fading and Deepening: the Next Steps for Andes and other Model-Tracing Tutors. In: Proc. ITS’2000, LNCS Vol. 1839, Springer-Verlag, (2000) 474–483

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mitrovic, A., Koedinger, K.R., Martin, B. (2003). A Comparative Analysis of Cognitive Tutoring and Constraint-Based Modeling. In: Brusilovsky, P., Corbett, A., de Rosis, F. (eds) User Modeling 2003. UM 2003. Lecture Notes in Computer Science(), vol 2702. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44963-9_42

Download citation

  • DOI: https://doi.org/10.1007/3-540-44963-9_42

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40381-4

  • Online ISBN: 978-3-540-44963-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics