Skip to main content

Boosting EM for Radiation Hybrid and Genetic Mapping

  • Conference paper
  • First Online:
Algorithms in Bioinformatics (WABI 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2149))

Included in the following conference series:

Abstract

Radiation hybrid (RH) mapping is a somatic cell technique that is used for ordering markers along a chromosome and estimating physical distances between them. It nicely complements the genetic mapping technique, allowing for finer resolution. Like genetic mapping, RH mapping consists in finding a marker ordering that maximizes a given criteria. Several software packages have been recently proposed to solve RH mapping problems. Each package offers specific criteria and specific ordering techniques. The most general packages look for maximum likelihood maps and may cope with errors, unknowns and polyploid hybrids at the cost of limited computational efficiency. More efficient packages look for minimum breaks or two-points approximated maximum likelihood maps but ignore errors, unknowns and polyploid hybrids.

In this paper, we present a simple improvement of the EM algorithm [5] that makes maximum likelihood estimation much more efficient (in practice and to some extent in theory too). The boosted EM algorithm can deal with unknowns in both error-free haploid data and error-free backcross data. Unknowns are usually quite limited in RH mapping but cannot be ignored when one deals with genetic data or multiple populations/panels consensus mapping (markers being not necessarily typed in all panels/populations). These improved EM algorithms have been implemented in the CarthtaGène software. We conclude with a comparison with similar packages (RHMAP and MapMaker) using simulated data sets and present preliminary results on mixed simultaneous RH/genetic mapping on pig data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amir Ben-Dor and Benny Chor. On constructing radiation hybrid maps. J. Comp. Biol. 4:517–533, 1997.

    Article  Google Scholar 

  2. Amir Ben-DOr, Benny Chor, and Dan Pelleg. RHO-radiation hybrid ordering. Genome Research, 10:365–378, 2000.

    Article  Google Scholar 

  3. Michael Boehnke, Kathryn Lunetta, Elisabeth Hauser, Kenneth Lange, Justine Uro, and Jill VanderStoep. RHMAP: Statistical Package for Multipoint Radiation Hybrid Mapping, 3.0 edition, September 1996.

    Google Scholar 

  4. D.R. Cox, M. Burmeister, E.R. Price, S. Kim, and R.M. Myers. Radiation hybrid mapping: A somatic cell genetic method for constructing high-resolution maps of mammalian chromosomes. Science, 250:245–250, 1990.

    Article  Google Scholar 

  5. A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. J. R. Statist. Soc. Ser., 39:1–38, 1977.

    MATH  MathSciNet  Google Scholar 

  6. R.J. Hawken, J. Murtaugh, G.H. Flickinger, M. Yerle, A. Robic, D. Milan, J. Gellin, C.W. Beattie, L.B. Schook, and L.J. Alexander. A first-generation porcine whole-genome radiation hybrid map. Mamm. Genome, 10:824–830, 1999.

    Article  Google Scholar 

  7. E.S. Lander, P. Green, J. Abrahamson, A. Barlow, M. J. Daly, S. E. Lincoln, and L. Newburg. MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1:174–181, 1987.

    Article  Google Scholar 

  8. E. Laurent, V.and Wajnberg, B. Mangin, T. Schiex, C. Gaspin, and F. Vanlerberghe-Masutti. A composite genetic map of the parasitoid wasp Trichogramma brassicae based on RAPD markers. Genetics, 150(1):275–282, 1998.

    Google Scholar 

  9. Kathryn L. Lunetta, Michael Boehnke, Kenneth Lange, and David R. Cox. Experimental design and error detection for polyploid radiation hybrid mapping. Genome Research, 5:151–163, 1995.

    Article  Google Scholar 

  10. Jurg Ott. Analysis of human genetic linkage. John Hopkins University Press, Baltimore, Maryland, 2nd edition, 1991.

    Google Scholar 

  11. Lawrence R. Rabiner. A tutorial on hidden markov models and selected applications in speech recognition. Proc. of the IEEE, 77(2):257–286, 1989.

    Article  Google Scholar 

  12. G.A. Rohrer, L.J. Alexander, J.W. Keele, T.P. Smith, and C.W. Beattie. A microsatellite linkage map of the porcine genome. Genetics, 136:231–245, 1994.

    Google Scholar 

  13. T. Schiex and C. Gaspin. Cartagene: Constructing and joining maximum likelihood genetic maps. In Proceedings of the fifth international conference on Intelligent Systems for Molecular Biology, Porto Carras, Halkidiki, Greece, 1997. Software available at http://www-bia.inra.fr/T/CartaGene.

  14. M. Yerle, P. Pinton, A. Robic, A. Alfonso, Y. Palvadeau, C. Delcros, R. Hawken, L. Alexander, C. Beattie, L. Schook, D. Milan, and J. Gellin. Construction of a whole-genome radiation hybrid panel for high-resolution gene mapping in pigs. Cytogenet. Cell Genet., 82:182–188, 1998.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schiex, T., Chabrier, P., Bouchez, M., Milan, D. (2001). Boosting EM for Radiation Hybrid and Genetic Mapping. In: Gascuel, O., Moret, B.M.E. (eds) Algorithms in Bioinformatics. WABI 2001. Lecture Notes in Computer Science, vol 2149. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44696-6_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-44696-6_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42516-8

  • Online ISBN: 978-3-540-44696-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics