Skip to main content

On the Practical Solution of the Reversal Median Problem

  • Conference paper
  • First Online:
Algorithms in Bioinformatics (WABI 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2149))

Included in the following conference series:

Abstract

In this paper, we study the Reversal Median Problem (RMP), which arises in computational biology and is a basic model for the reconstruction of evolutionary trees. Given q genomes, RMP calls for another genome such that the sum of the reversal distances between this genome and the given ones is minimized. So far, the problem was considered too complex to derive mathematical models useful for its practical solution. We use the graph theoretic relaxation of RMP that we developed in a previous paper [6], essentially calling for a perfect matching in a graph that forms the maximum number of cycles jointly with q given perfect matchings, to design effective algorithms for its exact and heuristic solution. We report the solution of a few hundred instances associated with real-world genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.A. Bader, B.M.E. Moret, M. Yan, “A Linear-Time Algorithm for Computing Inversion Distance Between Signed Permutations with an Experimental Study”, Proceedings of the Seventh Workshop on Algorithms and Data Structgures (WADS’01) (2001), to appear in Lecture Notes in Computer Science; available at http://www.cs.unm.edu/.

    Google Scholar 

  2. V. Bafna and P.A. Pevzner, “Genome Rearrangements and Sorting by Reversals”, SIAM Journal on Computing 25 (1996) 272–289.

    Article  MATH  MathSciNet  Google Scholar 

  3. M. Blanchette, G. Bourque and D. Sankoff, “Breakpoint Phylogenies”, in S. Miyano and T. Takagi (eds.), Proceedings of Genome Informatics 1997, (1997) 25–34, Universal Academy Press.

    Google Scholar 

  4. M. Blanchette, personal communication.

    Google Scholar 

  5. D. Bryant, “A Lower Bound for the Breakpoint Phylogeny Problem”, to appear in Journal of Discrete Algorithms (2001).

    Google Scholar 

  6. A. Caprara, “Formulations and Hardness of Multiple Sorting by Reversals”, Proceedings of the Third Annual International Conference on Computational Molecular Biology (RECOMB’99) (1999) 84–93, ACM Press.

    Google Scholar 

  7. A. Caprara, G. Lancia and S.K. Ng, “Sorting Permutations by Reversals through Branch-and-Price”, to appear in INFORMS Journal on Computing (2001).

    Google Scholar 

  8. M.E. Cosner, R.K. Jansen, B.M.E. Moret, L.A. Rauberson, L.-S. Wang, T. Warnow and S. Wyman, “An Empirical Comparison of Phylogenetic Methods on Chloroplast Gene Order Data in Campanulaceae”, in [19], 99–121.

    Google Scholar 

  9. M. Grötschel, L. Lovàsz and A. Schrijver, “The Ellipsoid Method and its Consequences in Combinatorial Optimization”, Combinatorica 1 (1981), 169–197.

    Article  MATH  MathSciNet  Google Scholar 

  10. D. Gusfield, Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology, (1997), Cambridge University Press.

    Google Scholar 

  11. S. Hannenhalli, C. Chappey, E.V. Koonin and P.A. Pevzner, “Genome Sequence Comparison and Scenarios for Gene Rearrangements: A Test Case”, Genomics 30 (1995) 299–311.

    Article  Google Scholar 

  12. S. Hannenhalli and P.A. Pevzner, “Transforming Cabbage into Turnip (Polynomial Algorithm for Sorting Signed Permutations by Reversals)”, Journal of the ACM 48 (1999) 1–27.

    Article  MathSciNet  Google Scholar 

  13. M. Jünger, G. Reinelt and G. Rinaldi, “The traveling salesman problem”, in M. Ball, T. Magnanti, C. Monma, G. Nemhauser (eds.), Network Models, Handbooks in Operations Research and Management Science, 7 (1995) 225–330, Elsevier.

    Google Scholar 

  14. H. Kaplan, R. Shamir and R.E. Tarjan, “Faster and Simpler Algorithm for Sorting Signed Permutations by Reversals”, SIAM Journal on Computing 29 (2000) 880–892.

    Article  MATH  MathSciNet  Google Scholar 

  15. J. Kececioglu and D. Sankoff, “Efficient Bounds for Oriented Chromosome Inversion Distance”, Proceedings of 5th Annual Symposium on Combinatorial Pattern Matching, Lecture Notes in Computer Science 807 (1994) 307–325, Springer Verlag.

    Google Scholar 

  16. J. Kececioglu and D. Sankoff, “Exact and Approximation Algorithms for Sorting by Reversals, with Application to Genome Rearrangement”, Algorithmica 13 (1995) 180–210.

    Article  MATH  MathSciNet  Google Scholar 

  17. B.M.E. Moret, L.-S. Wang, T. Warnow and S.K. Wyman. “Highly accurate reconstruction of phylogenies from gene order data”, Tech. Report TR-CS-2000-51 Dept. of Computer Science, University of New Mexico (2000), available at http://www.cs.unm.edu/.

  18. B.M.E. Moret, S.K. Wyman, D.A. Bader, T. Warnow and M. Yan, “A New Implementation and Detailed Study of Breakpoint Analysis”, Proceedings of the Sixth Pacific Symposium on Biocomputing (PSB 2001) (2001) 583–594, World Scientific Pub.

    Google Scholar 

  19. D. Sankoff and J.H. Nadeau (eds.) Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, (2000) Kluwer Academic Publishers.

    Google Scholar 

  20. I. Pe’er and R. Shamir, “The Median Problems for Breakpoints are \( \mathcal{N}\mathcal{P} \) -Complete”, ECCC Report No. 71 (1998), University of Trier, 1998, available at http://www.eccc.uni-trier.de/.

  21. I. Pe’er and R. Shamir, “Approximation Algorithms for the Median Problem in the Breakpoint Model”, in [19], 225–241.

    Google Scholar 

  22. D. Sankoff and M. Blanchette, “Multiple Genome Rearrangement and Breakpoint Phylogenies”, Journal of Computational Biology 5 (2000) 555–570.

    Article  Google Scholar 

  23. D. Sankoff, D. Bryant, M. Denault, B.F. Lang, G. Burger, “Early Eukaryote Evolution Based on Mitochondrial Gene Order Breakpoints”, to appear in Journal of Computational Biology (2001).

    Google Scholar 

  24. D. Sankoff and N. El-Mabrouk, “Duplication, Rearrangement and Reconciliation”, in [19], 537–550.

    Google Scholar 

  25. D. Sankoff, G. Sundaram and J. Kececioglu, “Steiner Points in the Space of Genome Rearrangements”, International Journal of Foundations of Computer Science 7 (1996) 1–9.

    Article  MATH  Google Scholar 

  26. J. Setubal and J. Meidanis, Introduction to Computational Molecular Biology, (1997), PWS Publising.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Caprara, A. (2001). On the Practical Solution of the Reversal Median Problem. In: Gascuel, O., Moret, B.M.E. (eds) Algorithms in Bioinformatics. WABI 2001. Lecture Notes in Computer Science, vol 2149. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44696-6_19

Download citation

  • DOI: https://doi.org/10.1007/3-540-44696-6_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42516-8

  • Online ISBN: 978-3-540-44696-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics