Skip to main content

Studies on the partial specific volume of a poly(ethylene glycol) derivative in different solvent systems

  • Conference paper
  • First Online:
Analytical Ultracentrifugation VI

Abstract

The specific volume of charged supramolecular compounds dissolved in organic solvents varies considerably with the solvent system applied; in addition, it is influenced by the presence of salt. In this study we determined the specific volume of an uncharged molecule from the same molar mass range in order to find out whether it shows the same dependencies. To allow application of solvents of widely differing polarity, including water, a poly(ethylene glycol) derivative of molar mass 3,650 g/mol was used as a model system. The primary method applied for determining the specific volume was the buoyant density method, in which sedimentation equilibrium experiments using solvent mixtures of different density are performed and the specific volume is obtained as the reciprocal of that solvent density for which the compound is neutrally buoyant. A second method applied for determination of the specific volume was digital densimetry. We found that the strong influence of the solvent on the specific volume observed with charged compounds is also shown by the uncharged poly(ethylene glycol) derivative, the differences in the specific volume between different solvent systems amounting up to 15%; however, no significant dependence on the presence of salt was observed. We also found that, with the compound studied, a simple rule relating the specific volume and solvent polarity apparently does not exist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lehn J-M (1995) Supramolecular chemistry-concepts and perspectives. VCH, Weinheim

    Google Scholar 

  2. Lawrence DS, Jiang T, Levett M (1995) Chem Rev 95:2229

    Article  CAS  Google Scholar 

  3. Semenov A, Spatz JP, Moeller M, Lehn J-M, Sell B, Schubert D, Weidl CH, Schubert US (1999) Angew Chem 111:2701

    Article  Google Scholar 

  4. Semenov A, Spatz JP, Moeller M, Lehn J-M, Sell B, Schubert D, Weidl CH, Schubert US (1999) Angew Chem Int Ed Engl 38:2547

    Article  CAS  Google Scholar 

  5. Schubert D, van den Broek JA, Sell B, Durchschlag H, Maechtle W, Schubert US, Lehn J-M (1997) Prog Colloid Polym Sci 107:166

    Article  CAS  Google Scholar 

  6. Schubert D, Tziatzios C, Schuck P, Schubert US (1999) Chem Eur J 5:1377

    Article  CAS  Google Scholar 

  7. Schütte M, Kurth DG, Linford MR, Cölfen H, Möhwald H (1998) Angew Chem 110:3058

    Article  Google Scholar 

  8. Schütte M, Kurth DG, Linford MR, Cölfen H, Möhwald H (1998) Angew Chem Int EdEngl 37:2891

    Article  Google Scholar 

  9. Tziatzios C, Durchschlag H, Sell B, van den Broek JA, Maechtle W, Haase W, Lehn J-M, Weidl CH, Eschbaumer C, Schubert D, Schubert US (1999) Prog Colloid Polym Sci 113:114

    Article  CAS  Google Scholar 

  10. Newkome GR, Cho TJ, Moorefield CN, Baker GR, Cush R, Russo PS (1999) Angew Chem 111:3899

    Article  Google Scholar 

  11. Newkome GR, Cho TJ, Moorefield CN, Baker GR, Cush R, Russo PS (1999) Angew Chem Int Ed Engl 38:3717

    Article  CAS  Google Scholar 

  12. Kurth DG, Lehmann P, Volkmer D, Cölfen H, Koop MJ, Müller A, Du Chesne A (2000) Chem Eur J 6:385

    Article  CAS  Google Scholar 

  13. Tziatzios C, Durchschlag H, González JJ, Albertini E, Prados P, de Mendoza J, Eschbaumer C, Schubert US, Schuck P, Schubert D (2000) Polym Prepr Am Chem Soc Div Polym Chem 41:934

    CAS  Google Scholar 

  14. Eisenberg H (1976) Biological macro-molecules and polyelectrolytes in solution. Clarendon, Oxford

    Google Scholar 

  15. Eisenberg H (1981) Q Rev Biophys 14:141

    CAS  Google Scholar 

  16. Durchschlag H (1986) In: Hinz H-J (ed) Thermodynamic data for biochemistry and biotechnology. Springer, Berlin Heidelberg New York, pp 45–128

    Google Scholar 

  17. Durchschlag H (2001) In: Hinz H-J (ed) Landolt-Börnstein new series VII/ 2A. Springer, Berlin Heidelberg New York (in press)

    Google Scholar 

  18. Durchschlag H (1989) Colloid Polym Sci 267:1139

    Article  CAS  Google Scholar 

  19. Shima S, Tziatzios C, Schubert D, Fukada H, Takahashi K, Ermler U, Thauer RK (1998) Eur J Biochem 258:85

    Article  CAS  Google Scholar 

  20. Shima S, Thauer RK, Ermler U, Durchschlag H, Tziatzios C, Schubert D (2000) Eur J Biochem 267:6619

    Article  CAS  Google Scholar 

  21. Fujita H (1975) Foundations of ultracentrifugal analysis. Wiley, New York

    Google Scholar 

  22. Schachman HK (1959) Ultracentrifugation in biochemistry. Academic, New York

    Google Scholar 

  23. Tziatzios C, Durchschlag H, Weidl CH, Eschbaumer C, Maechtle W, Schuck P, Schubert US, Schubert D (2001) ACS symposium series. American Chemical Society, Washington, DC (in press)

    Google Scholar 

  24. Schuck P (1994) Prog Colloid Polym Sci 94:1

    Article  CAS  Google Scholar 

  25. Schuck P, Legrum B, Passow H, Schubert D (1995) Eur J Biochem 230:806

    Article  CAS  Google Scholar 

  26. Schuck P, MacPhee CE, Howlett GJ (1998) Biophys J 74:466

    Article  CAS  Google Scholar 

  27. Schuck P (1998) Biophys J 75:1503

    CAS  Google Scholar 

  28. Schuck P, Demeler B (1999) Biophys J 76:2288

    CAS  Google Scholar 

  29. Kratky O, Leopold H, Stabinger H (1973) Methods Enzymol 27:98

    Article  CAS  Google Scholar 

  30. Durchschlag H, Zipper P (1994) Prog Colloid Polym Sci 94:20

    Article  CAS  Google Scholar 

  31. Durchschlag H, Zipper P (1997) J Appl Crystallogr 30:803

    Article  CAS  Google Scholar 

  32. Merck & Co (1983) The Merck index, 10th edn. Merck & Co, Rayway

    Google Scholar 

  33. Weast RC, Selby SM (1967) Handbook of chemistry and physics, 48th edn. CRC, Cleveland

    Google Scholar 

  34. Mächtle W (1992) In: Harding SE, Rowe AJ, Horton JC (eds) Analytical ultracentrifugation in biochemistry and polymer science. Royal Society of Chemistry, Cambridge, pp 147–175

    Google Scholar 

  35. Hermans JJ, Ende HA (1963) J Polym Sci Part C Polym Symp 1:161

    Article  Google Scholar 

  36. Mächtle W, Lechner MD (2001) Prog Colloid Polym Sci

    Google Scholar 

  37. Lange H (1964) Kolloid Z Z Polym 199:128

    Article  CAS  Google Scholar 

  38. Casassa EF, Eisenberg H (1964) Adv Protein Chem 19:287

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

W. Borchard A. Straatmann

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag

About this paper

Cite this paper

Tziatzios, C. et al. (2002). Studies on the partial specific volume of a poly(ethylene glycol) derivative in different solvent systems. In: Borchard, W., Straatmann, A. (eds) Analytical Ultracentrifugation VI. Progress in Colloid and Polymer Science, vol 119. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44672-9_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-44672-9_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42489-5

  • Online ISBN: 978-3-540-44672-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics