Skip to main content

Optimization over Zonotopes and Training Support Vector Machines

  • Conference paper
  • First Online:
Algorithms and Data Structures (WADS 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2125))

Included in the following conference series:

Abstract

We make a connection between classical polytopes called zonotopes and Support Vector Machine (SVM) classifiers. We combine this connection with the ellipsoid method to give some new theoretical results on training SVMs. We also describe some special properties of C-SVMs for C → ∞.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.P. Bennett and E.J. Bredensteiner. Duality and geometry in SVM classifiers. Proc. 17th Int. Conf. Machine Learning, Pat Langley, ed., Morgan Kaufmann, 2000, 57–64.

    Google Scholar 

  2. M. Bern, D. Eppstein, L. Guibas, J. Hershberger, S. Suri, and J. Wolter. The centroid of points with approximate weights. 3rd European Symposium on Algorithms, Corfu, 1995. Springer Verlag LNCS 979, 1995, 460–472.

    Google Scholar 

  3. C.J.C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, Vol. 2, No. 2, 1998, 121–167. http://svm.research.bell-labs.com/SVMrefs.html

    Article  Google Scholar 

  4. C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 1995, 273–297.

    Google Scholar 

  5. D.J. Crisp and C.J.C. Burges. A geometric interpretation of i-SVM classifiers. Advances in Neural Information Processing Systems 12. S.A. Solla, T.K. Leen, and K.-R. Müller, eds. MIT Press, 1999. http://svm.research.bell-labs.com/SVMrefs.html

  6. N. Cristianini and J. Shawe-Taylor. Support Vector Machines. Cambridge U. Press, 2000.

    Google Scholar 

  7. H. Edelsbrunner. Algorithms in Combinatorial Geometry, Springer Verlag, 1987.

    Google Scholar 

  8. B. Gärtner. A subexponential algorithm for abstract optimization problems. SI AM J. Computing 24 (1995), 1018–1035.

    Article  MATH  Google Scholar 

  9. S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, and K.R.K. Murthy. A fast iterative nearest point algorithm for support vector machine classifier design. IEEE Trans. Neural Networks 11 (2000), 124–136. http://guppy.mpe.nus.edu.sg/~mpessk/

    Article  Google Scholar 

  10. M.K. Kozlov, S.P. Tarasov, L.G. Khachiyan. Polynomial solvability of convex quadratic programming. Soviet Math. Doklady 20 (1979) 1108–1111.

    MATH  Google Scholar 

  11. J. Matoušek, M. Sharir, and E. Welzl. A subexponential bound for linear programming. Tech. Report B 92-17, Freie Univ. Berlin, Fachb. Mathematik, 1992

    Google Scholar 

  12. J.C. Platt. Fast training of support vector machines using sequential minimal optimization. Chapter 12 of Advances in Kernel Methods: Support Vector Learning, B. Schölkopf, C. Burges, and A. Smola, eds. MIT Press, 1998, 185–208. http://www.research.microsoft.com/~jplatt

  13. B. Schölkopf, A.J. Smola, R. Williamson, and P. Bartlett. New support vector algorithms. Neural Computatation Vol. 12, No. 5, 2000, 1207–1245. NeuroCOLT2 Technical Report NC2-TR-1998-031. 1998. http://svm.first.gmd.de/papers/tr-31-1998.ps.gz

    Article  Google Scholar 

  14. B. Schölkopf, S. Mika, C.J.C. Burges, P. Knirsch, K.-R. Müller, G. Rätsch, and A.J. Smola. Input space vs. feature space in kernel-based methods. IEEE Trans, on Neural Networks 10 (1999) 1000–1017. http://svm.research.bell-labs.com/SVMrefs.html

    Article  Google Scholar 

  15. A. Schrijver. Theory of Linear and Integer Programming John Wiley & Sons, 1986.

    Google Scholar 

  16. M.J. Todd. Mathematical Programming. Chapter 39 of Handbook of Discrete and Computational Geometry, J.E. Goodman and J. O’Rourke, eds., CRC Press, 1997.

    Google Scholar 

  17. G. Tóth. Point sets with many k-sets. Proc. 16th Annual ACM Symp. Computational Geometry, 2000, 37–42.

    Google Scholar 

  18. V. Vapnik. Statistical Learning Theory. Wiley, 1998.

    Google Scholar 

  19. R.T. Zivaljević and S.T. Vrećica. The colored Tverberg’s problem and complexes of injective functions. J. Comb. Theory, Series A, 61 (1992) 309–318.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bern, M., Eppstein, D. (2001). Optimization over Zonotopes and Training Support Vector Machines. In: Dehne, F., Sack, JR., Tamassia, R. (eds) Algorithms and Data Structures. WADS 2001. Lecture Notes in Computer Science, vol 2125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44634-6_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-44634-6_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42423-9

  • Online ISBN: 978-3-540-44634-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics