Skip to main content

Neural Mechanisms for Representing Surface and Contour Features

  • Chapter
  • First Online:
Emergent Neural Computational Architectures Based on Neuroscience

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2036))

Abstract

Contours and surfaces are basic qualities which are processed by the visual system to aid the successful behavior of autonomous beings within the environment. There is increasing evidence that the two modal- ities of contours and surfaces are processed in separate, but interacting visual streams or sub-systems. Neurons at early stages in the visual sys- tem show strong responses only at locations of high contrast, such as edges, but only weak responses within homogeneous regions. Thus, for the processing and representation of surfaces, the visual system has to in- tegrate sparse local measurements into a dense, coherent representation. We suggest a mechanism of confidence-based filling-in, where a confi- dence measure ensures a robust selection of sparse contrast signals. The new mechanism supports the generation of surface representations which are invariant against size and shape transformation. The filling-in pro- cess is controlled by contour or boundary signals which stop the filling-in of contrast signals at region boundaries. Localized responses to contours are most often noisy and fragmented. We suggest a recurrent processing scheme for the extraction of contours that incorporates long-range con- nections. The recurrent long-range processing enhances coaligned activ- ity which is consistent within a more global context, while inconsistent noisy activity is suppressed. The capability of the model is shown for noisy synthesized and natural stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.F. Arrington. Directional filling-in. Neural Comput., 8:300–318, 1996.

    Article  Google Scholar 

  2. M. Bertero, T. Poggio, and V. Torre. Ill-posed problems in early vision. Proc. IEEE, 76(8):869–889, 1988.

    Article  Google Scholar 

  3. I. Biederman. Human image understanding: Recent research and a theory. CVGIP, 32(1):29–73, 1985.

    Google Scholar 

  4. B. Blakeslee and M.E. McCourt. A multiscale spatial filtering account of the white effect, simultaneous brightness contrast and grating induction. Vision Res., 38:4361–4377, 1999.

    Article  Google Scholar 

  5. W.H. Bosking, Y. Zhang, B. Schofield, and D. Fitzpatrick. Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J. Neurosci., 17(6):2112–2127, 1997.

    Google Scholar 

  6. P. Bressan, E. Mingolla, L. Spillmann, and T. Watanabe. Neon color spreading: A review. Perception, 26:1353–1366, 1997.

    Article  Google Scholar 

  7. G. Caputo. Texture brightness filling-in. Vision Res., 38(6):841–851, 1998.

    Article  Google Scholar 

  8. M. Cohen and S. Grossberg. Neural dynamics of brightness perception: Features, boundaries, difusion, and resonance. Percept. Psychophys., 36:428–456, 1984.

    Google Scholar 

  9. M.P. Davey, T. Maddess, and M.V. Srinivasan. The spatiotemporal properties of the Craik-O’Brien-Cornsweet effect are consistent with ‘filling-in’. Vision Res., 38:2037–2046, 1998.

    Article  Google Scholar 

  10. R.L. Elder and S. Zucker. Evidence for boundary specific grouping. Vision Res., 38:143–152, 1998.

    Article  Google Scholar 

  11. C. Enroth-Cugell and J.G. Robson. Functional characteristics and diversity of cat retinal ganglion cells. Invest. Ophthalmol. Visual Sci., 25:250–267, 1984.

    Google Scholar 

  12. H.J.M. Gerrits and A.J.H. Vendrik. Simultaneous contrast, filling-in process and information processing in man’s visual system. Exp. Brain Res., 11:411–430, 1970.

    Article  Google Scholar 

  13. C.D. Gilbert. Circuitry, architecture, and functional dynamics of visual cortex. Cereb. Cortex, 3(5):373–386, 1993.

    Article  Google Scholar 

  14. A. Gove, S. Grossberg, and E. Mingolla. Brightness perception, illusory contours and corticogeniculate feedback. Visual Neurosci., 12:1027–1052, 1995.

    Article  Google Scholar 

  15. S. Grossberg. 3-D vision and figure-ground separation by visual cortex. Percept. Psychophys., 55(1):48–121, 1994.

    MathSciNet  Google Scholar 

  16. S. Grossberg and N. McLoughlin. Cortical dynamics of three-dimensional surface perception: Binocular and half-occluded scenic images. Neural Networks, 10:1583–1605, 1997.

    Article  Google Scholar 

  17. S. Grossberg and E. Mingolla. Neural dynamics of perceptual grouping: Textures, boundaries, and emergent segmentation. Percept. Psychophys., 38:141–171, 1985.

    Google Scholar 

  18. S. Grossberg and D. Todorović. Neural dynamics of 1-D and 2-D brightness perception: A unified model of classical and recent phenomena. Percept. Psychophys., 43:241–277, 1988.

    Google Scholar 

  19. T. Hansen, G. Baratoff, and H. Neumann. A simple cell model with dominating opponent inhibition for robust contrast detection. Kognitionswissenschaft, 9(2):93–100, 2000.

    Google Scholar 

  20. T. Hansen and H. Neumann. A model of V1 visual contrast processing utilizing long-range connections and recurrent interactions. In Proc. ICANN, pages 61–66, Edinburgh, UK, Sept. 7-10 1999.

    Google Scholar 

  21. T. Hansen, W. Sepp, and H. Neumann. Recurrent long-range interactions in early vision. In S. Wermter, J. Austin, and D. Willshaw, editors, Emergent Neural Computational Architectures based on Neuroscience, LNCS/LNAI. Springer, Heidelberg, 2000. In press.

    Google Scholar 

  22. D. Heeger. Normalization of cell responses in cat striate cortex. Visual Neurosci., 9:181–197, 1992.

    Google Scholar 

  23. J.A. Hirsch and C.D. Gilbert. Synaptic physiology of horizontal connections in the cat’s visual cortex. J. Neurosci., 11(6):1800–1809, 1991.

    Google Scholar 

  24. J.M. Hupé, A.C. James, B.R. Payne, S.G. Lomber, P. Girard, and J. Bullier. Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. Nature, 394:784–787, 1998.

    Article  Google Scholar 

  25. H. Komatsu, I. Murakami, and M. Kinoshita. Surface representation in the visual system. Brain. Res. Cogn. Brain. Res., 5(1):97–104, 1996.

    Article  Google Scholar 

  26. D. Mumford. Neural architectures for pattern-theoretic problems. In C. Koch and J.L. Davis, editors, Large-scale neuronal theories of the brain. MIT Press, Cambridge, MA,, 1994.

    Google Scholar 

  27. H. Neumann. Completion phenomena in vision: A computational approach. In L. Pessoa and P. de Weerd, editors, Filling-in: From perceptual completion to skill learning. Oxford Univ. Press. In preparation.

    Google Scholar 

  28. H. Neumann. Mechanisms of neural architecture for visual contrast and brightness perception. Neural Networks, 9(6):921–936, 1996.

    Article  Google Scholar 

  29. H. Neumann, L. Pessoa, and T. Hansen. Interaction of ON and OFF pathways for visual contrast measurement. Biol. Cybern., 81:515–532, 1999.

    Article  Google Scholar 

  30. H. Neumann, L. Pessoa, and T. Hansen. Visual filling-in for computing perceptual surface properties. 2000. Submitted.

    Google Scholar 

  31. H. Neumann and W. Sepp. Recurrent V1-V2 interaction in early visual boundary processing. Biol. Cybern., 81:425–444, 1999.

    Article  Google Scholar 

  32. M.A. Paradiso and K. Nakayama. Brightness perception and filling-in. Vision Res., 31:1221–1236, 1991.

    Article  Google Scholar 

  33. L. Pessoa, E. Mingolla, and H. Neumann. A contrast-and luminance-driven multiscale network model of brightness perception. Vision Res., 35(15):2201–2223, 1995.

    Article  Google Scholar 

  34. L. Pessoa and H. Neumann. Why does the brain fill in? Trends Cogn. Sci., 2(11):422–424, 1998.

    Article  Google Scholar 

  35. L. Pessoa, E. Thompson, and A. Noé. Finding out about filling-in: A guide to perceptual completion for visual science and the philosophy of perception. Behav. Brain. Sci., 21(6):723–802, 1998.

    Article  Google Scholar 

  36. T. Poggio, V. Torre, and C. Koch. Computational vision and regularization theory. Nature, 317(26):314–319, 1985.

    Article  Google Scholar 

  37. D.A. Pollen and S.F. Ronner. Visual cortical neurons as localized spatial frequency filters. IEEE Transactions on Systems, Man, and Cybernetics, SMC-13(5):907–916, 1983.

    Google Scholar 

  38. D.C. Rogers-Ramachandran and V.S. Ramachandran. Psychophysical evidence for boundary and surface systems in human vision. Vision Res., 38:71–77, 1998.

    Article  Google Scholar 

  39. K. Schmidt, R. Goebel, S. Löwel, and W. Singer. The perceptual grouping criterion of colinearity is reflected by anisotropies of connections in the primary visual cortex. Europ. J. Neurosci., 9:1083–1089, 1997.

    Article  Google Scholar 

  40. W. Sepp and H. Neumann. A multi-resolution filling-in model for brightness perception. In Proc. ICANN, Edinburgh, UK, Sept. 7-10 1999.

    Google Scholar 

  41. A.N. Tikhonov and V.Y. Arsenin. Solutions of ill-posed problems. V. H. Winston & Sons, Washington D. C., 1977.

    MATH  Google Scholar 

  42. R. von der Heydt, E. Peterhans, and G. Baumgartner. Illusory contours and cortical neuron responses. Science, 224:1260–1262, 1984.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hansen, T., Neumann, H. (2001). Neural Mechanisms for Representing Surface and Contour Features. In: Wermter, S., Austin, J., Willshaw, D. (eds) Emergent Neural Computational Architectures Based on Neuroscience. Lecture Notes in Computer Science(), vol 2036. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44597-8_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-44597-8_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42363-8

  • Online ISBN: 978-3-540-44597-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics