Skip to main content

Refinement of Conceptual Graphs

  • Conference paper
  • First Online:
Conceptual Structures: Broadening the Base (ICCS 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2120))

Included in the following conference series:

Abstract

The semantic validation of a knowledge base (KB) consists in checking its quality according to constraints given by an expert. The refinement of a KB consists in correcting the errors that are detected during the validation, in order to restore the KB validity. We propose to perform the semantic validation and refinement of a KB composed of conceptual graphs in two stages. First, we study the coherence of the KB with respect to negative constraints, which represent the knowledge that the KB must not contain. When the KB is not coherent, we propose a solution to correct all the errors of the KB. Second, we study the completeness of the KB with respect to positive constraints, which represent the knowledge that the KB must contain. When the KB is not complete, we propose an assistant, which helps the user to correct the errors of the KB one by one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M.C. Rousset. On the consistency of knowledge bases: the COVADIS system. European Conference of Artificial Intelligence, ECAI’88, pages 79–84, 1988.

    Google Scholar 

  2. P. Meseguer. Verification of multi-level rule-based expert systems. National conference of American Association of Artificial Intelligence, AAAI’91, pages 323–328, 1991.

    Google Scholar 

  3. S. Loiseau. Refinement of knowledge bases based on consistency. European Conference of Artificial Intelligence, ECAI’92, pages 845–849, 1992.

    Google Scholar 

  4. A. Preece and N. P. Zlatareva. A state of the art in automated validation of knowledge-based systems. Expert Systems with Applications, 7(2):151–167, 1994.

    Article  Google Scholar 

  5. C. Haouche and J. Charlet. KBS validation: a knowledge acquisition perspective. European Conference of Artificial Intelligence, ECAI’96, pages 433–437, 1996.

    Google Scholar 

  6. F. Sellini. Contribution á la représentation et á la vérification de modéles de connaissances produits en ingéniérie d’ensembles mécaniques. PhD thesis, Ecole Centrale de Paris, mars 1999.

    Google Scholar 

  7. M.C. Rousset and A.Y. Levy. Verification of knowledge bases based on containment checking. national conference of American Association of Artificial Intelligence, AAAI’96, pages 585–591, 1996.

    Google Scholar 

  8. P. Hors and M.C. Rousset. Modeling and verifying complex objects: A declarative approach based on description logics. European Conference of Artificial Intelligence, ECAI’96, pages 328–332, 1996.

    Google Scholar 

  9. A. D. Preece, R. Shinghal, and A. Batarekh. Verifying expert systems: a logical framework and a pratical tool. Expert Systems with Applications, 5(3/4):421–436, 1992.

    Google Scholar 

  10. F. Bouali, S. Loiseau, and M. C. Rousset. Revision of rule bases. EUROpean conference on VAlidation and Verification of knowledge based systems, EUROVAV’97, pages 193–201, 1997.

    Google Scholar 

  11. J.F. Sowa. Conceptual structures: information processing in mind and machine. Addison Wesley Publishing Company, 1984.

    Google Scholar 

  12. M.L. Mugnier and M. Chein. Représenter des connaissances et raisonner avec des graphes. Revue d’Intelligence Artificielle, 10(1):7–56, 1996.

    MATH  Google Scholar 

  13. J. Dibie, O. Haemmerlé, and S. Loiseau. A semantic validation of conceptual graphs. In Proceedings of the 6th International Conference on Conceptual Structures, ICCS’98, Lecture Notes in Artificial Intelligence, pages 80–93, Montpellier, France, august 1998. Springer Verlag.

    Google Scholar 

  14. P. Kocura. Conceptual graph canonicity and semantic constraints. In Peter W. Eklund, Gerard Ellis, and Graham Mann, editors, Conceptual Structures: Knowledge Representation as Interlingua-Auxilliary Proceedings of the 4th International Conference on Conceptual Structures, pages 133–145, Sydney, Australia, August 1996. Springer Verlag.

    Google Scholar 

  15. G. W. Mineau and R. Missaoui. The representation of semantic constraints in conceptual graph systems. In Proceedings of the 5th International Conference on Conceptual Structures, ICCS’97, Lecture Notes in Artificial Intelligence 1257, pages 138–152, Seattle, U.S.A., 1997. Springer Verlag.

    Google Scholar 

  16. J. Dibie-Barthélemy. Validation et Réparation des Graphes Conceptuels. PhD thesis, Université PARIS-IX Dauphine, octobre 2000.

    Google Scholar 

  17. M. Chein and M.L. Mugnier. Conceptual graphs: fundamental notions. Revue d’Intelligence Artificielle, 6(4):365–406, 1992.

    Google Scholar 

  18. R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32:57–95, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  19. T. A. Nguyen, W. A. Perkins, T. J. Laffrey, and D. Pecora. Checking an expert system knowledge base for consistency and completness. International Join Conference of Artificial Intelligence, IJCAI’85, 1:375–378, 1985.

    Google Scholar 

  20. A. Ginsberg. Knowledge-base reduction: a new approach to checking knowledge bases for inconsistency and redundancy. National conference of American Association of Artificial Intelligence, AAAI’88, pages 585–589, 1988.

    Google Scholar 

  21. M. J. Pazzani and C. A. Brunk. Detecting and correcting errors in rule-based expert systems: an integration of empirical and explanation-based learning. Knowledge Acquisition, 3:157–173, 1991.

    Article  Google Scholar 

  22. O. Haemmerlé. CoGITo: une plate-forme de développement de logiciels sur les graphes conceptuels. PhD thesis, Université Montpellier II, Janvier 1995.

    Google Scholar 

  23. R. Dieng. Comparison of conceptual graphs for modelling knowledge of multiple experts: application to traffic accident analysis. Rapport de recherche 3161, INRIA, Sophia Antipolis, Avril 1997.

    Google Scholar 

  24. L. Sombé. Révision de bases de connaissances. Actes des quatriémes journées nationales PRC-GDR en Intelligence Artificielle, 1992.

    Google Scholar 

  25. J. McCarthy. Circumscription: a form of non-monotonic reasonning. Artificial Intelligence, 13(1-2):27–39, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  26. D. Makinson and P. Gärdenfors. Relations between the logic of theory change and nonmonotonic logic. In A. Fuhrmann and M. MOrreau, editors, The logic of theory change, Lecture Notes in Artificial Intelligence 465, pages 185–205, Berlin, 1991. Springer Verlag.

    Google Scholar 

  27. J. de Kleer. An assumption-based truth-maintenance system. Artificial Intelligence, 28(2):127–224, 1986.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dibie-Barthélemy, J., Haemmerlé, O., Loiseau, S. (2001). Refinement of Conceptual Graphs. In: Delugach, H.S., Stumme, G. (eds) Conceptual Structures: Broadening the Base. ICCS 2001. Lecture Notes in Computer Science(), vol 2120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44583-8_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-44583-8_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42344-7

  • Online ISBN: 978-3-540-44583-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics