Skip to main content

The Lense—Thirring Effect: From the Basic Notions to the Observed Effects

  • Conference paper
  • First Online:
Gyros, Clocks, Interferometers...: Testing Relativistic Graviy in Space

Part of the book series: Lecture Notes in Physics ((LNP,volume 562))

Abstract

A pedagogical derivation is given of the Lense-Thirring effect using basic notions from the motion of point particles and light rays. First, the notion of rotation is introduced using the properties of light rays only. Second, two realizations for a non- rotating propagation of space-like directions are presented: the gyroscope and the spin of elementary particles. Then the gravitational field around a rotating body is specified which is taken for determining the various effects connected with a point particle or a gyroscope: the deSitter precession (geodesic precession) and the Lense-Thirring effect (‘frame dragging’). The results are applied to the precession of gyroscopes and to the motion of satellites around the earth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.A.E. Pirani: A note on bouncing photons, Bull. Acad. Polon. Sci., Ser. Sci. Math. Astr. Phys. 13, 239 (1965).

    MathSciNet  Google Scholar 

  2. A. Papapetrou: Spinning test-particles in general relativity I, Proc. Roy. Soc. (London) A, 248 (1951).

    ADS  MathSciNet  Google Scholar 

  3. E. Corinaldesi and A. Papapetrou: Spinning test-particles in general relativity II, Proc. Roy. Soc. (London) A, 259 (1951).

    ADS  MathSciNet  Google Scholar 

  4. W.G. Dixon: Dynamics of extended bodies in General Relativity III: Equations of motion, Phil. Trans. R. Soc. London A 277, 59 (1974).

    Article  ADS  MathSciNet  Google Scholar 

  5. J. Ehlers and E. Rudolph: Dynamics of extended bodies in general relativity: center-of-mass description and quasirigidity, Gen. Rel. Grav. 8 197 (1977).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. J. Ehlers: Beiträge zur relativistischen Mechanik kontinuierlicher Medien, Akad. Wiss. Lit. Mainz Abh. Math.-Nat. Kl., Seite 793 (1961).

    Google Scholar 

  7. J. Stachel und J. Plebanski: Classical particles with spin I: The WKBJ approximation, J. Math. Phys. 18, 2368 (1977).

    Article  ADS  Google Scholar 

  8. J. Audretsch: Trajectories and Spin Motion of Massive Spin 1/2 Particles in Gravitational Fields, J. Phys. A: Math. Gen. 14, 411 (1981).

    Article  ADS  Google Scholar 

  9. J.D. Bjorken and S.D. Drell: Relativistic Quantum Mechanics, McGraw-Hill, New York (1964).

    Google Scholar 

  10. P.B. Yasskin and W.R. Stoeger: Propagation equations for test bodies with spin and rotation in theories of gravity with torsion, Phys. Rev. D 21, 2081 (1980).

    ADS  MathSciNet  Google Scholar 

  11. S. Schlamminger, E. Holzschuh, W. Kündig, F. Nolting, and J. Schurr: Determination of the Gravitational Constant, this volume p. 15.

    Google Scholar 

  12. C.W. Misner, K.S. Thorne, J.A. Wheeler: Gravitation, Freeman, San Francisco 1973.

    Google Scholar 

  13. G. Neugebauer and R. Meinel: General Relativistic Gravitational Field of a Rigidly Rotating Disk of Dust: Solution in Terms of Ultraelliptic Functions, Phys. Rev. Lett. 75, 3046 (1995).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. I. Ciufolini and J.A. Wheeler: Gravitation and Inertia, Princeton Series in Physics, Princeton University Press, Princeton 1995.

    MATH  Google Scholar 

  15. W. De Sitter: On Einstein’s theory of gravitation and its astronomical consequences, Mon. Not. Roy. Astron. Soc. 77, 155 and 481 (1916).

    ADS  Google Scholar 

  16. I.I. Shapiro, R.D. Reasenberg, J.F. Chandler, R.W. Babcock: Measurement of the deSitter perecession of the Moon: A relativistic three-body effect, Phys. Rev. Lett. 61, 2643 (1988).

    Article  ADS  Google Scholar 

  17. J.G. Williams, and X.X. Newhall, J.O. Dickey: Relativity parameters determined from lunar laser ranging, Phys. Rev. D 53, 6730 (1995).

    ADS  Google Scholar 

  18. J. Lense and H. Thirring: Über den Einfluß der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie, Physik. Zeitschr. 19, 156 (1918).

    ADS  Google Scholar 

  19. I. Ciufolini, D. Lucchesi, F. Vespe, and F. Chieppa: Measurement of gravitomagnetism, Europhys. Lett. 39, 359 (1997).

    Article  ADS  Google Scholar 

  20. I. Ciufolini, F. Chieppa, D. Luccesi, and F. Vespe: Test of Lense-Thirring orbital effect due to spin, Class. Quantum Grav. 14, 2701 (1997).

    Article  MATH  ADS  Google Scholar 

  21. I. Ciufolini, E. Pavlis, F. Chieppa, E. Fernandes-Vieira, and J. Pérez-Mercader: Test of General Relativity and measurement of the Lense-Thirring effect with two Earth satellites, Science 279, 2100 (1998).

    Article  ADS  Google Scholar 

  22. M. Schneider: Himmelsmechanik (Band 4: Theorie der Satellitenbewegung, Bahnbestimmung) (Celestial Mechanics, Volume 4: Theory of Satellite Motion, Determination of Paths, in German), Spektrum Akademischer Verlag, Heidelberg, Berlin 1999.

    Google Scholar 

  23. C.W.F. Everitt et al.: this volume, p. 52.

    Google Scholar 

  24. R.J. Adler, A.S. Silbergleit: A General Treatment of Orbiting Gyroscope Precession, http://arXiv.org/abs/gr-qc/9909054.

  25. T.L. Gustavson, P. Boyer, M. Kasevich: Precision rotation measurements with an atom interferometer gyroscope, Phys. Rev. Lett. 78, 2046 (1997).

    Article  ADS  Google Scholar 

  26. B.J. Venema, P.K. Majumder, S.K. Lamoreaux, B.R. Heckel, and E.N. Fortson: Search for a Coupling of the Earth’s Gravitational Field to Nuclear Spins in Atomic Mercury, Phys. Rev. Lett. 68, 135 (1992).

    Article  ADS  Google Scholar 

  27. B. Mashhoon: On the coupling of intrinsic spin with the rotation of the earth, Phys. Lett. A 198, 9 (1995).

    ADS  Google Scholar 

  28. B. Mashhoon: Neutron Interferometry in a Rotating Frame of Reference, Phys. Rev. Lett. 61, 2639 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lämmerzahl, C., Neugebauer, G. (2001). The Lense—Thirring Effect: From the Basic Notions to the Observed Effects. In: Lämmerzahl, C., Everitt, C.W.F., Hehl, F.W. (eds) Gyros, Clocks, Interferometers...: Testing Relativistic Graviy in Space. Lecture Notes in Physics, vol 562. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-40988-2_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-40988-2_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41236-6

  • Online ISBN: 978-3-540-40988-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics