Skip to main content

How Is Epigenetic Information on Chromatin Inherited After DNA Replication?

  • Conference paper
The Histone Code and Beyond

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 57))

Abstract

Although most somatic cells have identical genetic information, gene expression profiles are quite distinct in each cell type. The gene expression profiles are considered to be determined mainly by chromatin-encoded epigenetic information that includes histone modifications, histone variants, and factors such as HP1 and polycomb group proteins that organize higher-ordered chromatin structures. To gain insights into how such epigenetic information on chromatin is inherited on daughter DNA strands after DNA replication, we have purified the preassembled form of histone H3 by immunoaffinity purification. The histone H3 complex contains the two histone H3-H4 chaperones CAF1 and ASF1. Surprisingly, the H3 complex also contains a pair of H3-H4 dimers. This observation is striking because histones H3-H4 are known to exist as tetramers in solution. Since histones H3-H4 in the predeposition complex exist as a dimer, this raises the possibility that the H3-H4 dimer in the complex pairs with a parental H3-H4 dimer, assembling the de novo-synthesized and parental H3-H4 dimers in the same nucleosome. Based on these results, we propose a semi-conservative model of nucleosome duplication, which allows for segregation of parental H3-H4 dimers with encoded epigenetic information evenly to daughter DNA strands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alekseev OM, Bencic DC, Richardson RT, Widgren EE, O’Rand MG (2003) Overexpression of the Linker histone-binding protein tNASP affects progression through the cell cycle. J Biol Chem 278:8846–8852

    Article  PubMed  CAS  Google Scholar 

  • Burhans WC, Vassilev LT, Wu J, Sogo JM, Nallaseth FS, DePamphilis ML (1991) Emetine allows identification of origins of mammalian DNA replication by imbalanced DNA synthesis, not through conservative nucleosome segregation. EMBO J 10:4351–4360

    PubMed  CAS  Google Scholar 

  • Cusick ME, DePamphilis ML, Wassarman PM (1984) Dispersive segregation of nucleosomes during replication of simian virus 40 chromosomes. J Mol Biol 178:249–271

    Article  PubMed  CAS  Google Scholar 

  • Felsenfeld G, Groudine M (2003) Controlling the double helix. Nature 421:448–453

    Article  PubMed  CAS  Google Scholar 

  • Grewal SI, Elgin SC (2002) Heterochromatin: new possibilities for the inheritance of structure. Curr Opin Genet Dev 12:178–187

    Article  PubMed  CAS  Google Scholar 

  • Gruss C, Wu J, Koller T, Sogo JM (1993) Disruption of the nucleosomes at the replication fork. EMBO J 12:4533–4545

    PubMed  CAS  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    Article  PubMed  CAS  Google Scholar 

  • Kamakaka RT, Biggins S (2005) Histone variants: deviants? Genes Dev 19:295–310

    Article  PubMed  CAS  Google Scholar 

  • Kaufman PD, Almouzni G (2000) DNA replication, nucleotide excision repair and nucleosome assembly. In: Elgin SCR, Workman JL (eds) Chromatin structure and gene expression. Oxford University Press, Oxford, pp 24–48

    Google Scholar 

  • Krude T, Keller C (2001) Chromatin assembly during S phase: contributions from histone deposition DNA replication and the cell division cycle. Cell Mol Life Sci 58:665–672

    Article  PubMed  CAS  Google Scholar 

  • Mello JA, Sillje HH, Roche DM, Kirschner DB, Nigg EA, Almouzni G (2002) Human Asf1 and CAF-1 interact and synergize in a repair-coupled nucleosome assembly pathway. EMBO Rep 3:329–334

    Article  PubMed  CAS  Google Scholar 

  • Munakata T, Adachi N, Yokoyama N, Kuzuhara T, Horikoshi M (2000) A human homologue of yeast anti-silencing factor has histone chaperone activity. Genes Cells 5:221–233

    Article  PubMed  CAS  Google Scholar 

  • Nakatani Y, Ogryzko V (2003) Immunoaffinity purification of mammalian protein complexes. Methods Enzymol 370:430–444

    Article  PubMed  CAS  Google Scholar 

  • Richardson RT, Batova IN, Widgren EE, Zheng LX, Whitfield M, Marzluff WF, O’Rand MG (2000) Characterization of the histone H1-binding protein NASP, as a cell cycle-regulated somatic protein. J Biol Chem 275:30378–30386

    Article  PubMed  CAS  Google Scholar 

  • Sillje HH, Nigg EA (2001) Identification of human Asf1 chromatin assembly factors as substrates of Tousled-like kinases. Curr Biol 11:1068–1073

    Article  PubMed  CAS  Google Scholar 

  • Smith S, Stillman B (1989) Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro. Cell 58:15–25

    Article  PubMed  CAS  Google Scholar 

  • Sogo JM, Stahl H, Koller T, Knippers R (1986) Structure of replicating simian virus 40 minichromosomes. The replication fork, core histone segregation and terminal structures. J Mol Biol 189:189–204

    Article  PubMed  CAS  Google Scholar 

  • Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y (2004) Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116:51–61

    Article  PubMed  CAS  Google Scholar 

  • Turner BM (2002) Cellular memory and the histone code. Cell 111:285–291

    Article  PubMed  CAS  Google Scholar 

  • Tyler JK, Collins KA, Prasad-Sinha J, Amiott E, Bulger M, Harte PJ, Kobayashi R, Kadonaga JT (2001) Interaction between the Drosophila CAF-1 and ASF1 chromatin assembly factors. Mol Cell Biol 21:6574–6584

    Article  PubMed  CAS  Google Scholar 

  • Verreault A (2000) De novo nucleosome assembly: new pieces in an old puzzle. Genes Dev 14:1430–1438

    PubMed  CAS  Google Scholar 

  • Wolffe A (1998) Chromatin: structure and function, 3rd edn. Academic Press, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nakatani, Y., Tagami, H., Shestakova, E. (2006). How Is Epigenetic Information on Chromatin Inherited After DNA Replication?. In: Berger, S.L., Nakanishi, O., Haendler, B. (eds) The Histone Code and Beyond. Ernst Schering Research Foundation Workshop, vol 57. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-37633-X_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-37633-X_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27857-3

  • Online ISBN: 978-3-540-37633-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics