Skip to main content

The genetic analysis and tailoring of wine yeasts

  • Chapter
  • First Online:
Functional Genetics of Industrial Yeasts

Part of the book series: Topics in Current Genetics ((TCG,volume 2))

Abstract

An urgent need has arisen to develop starter culture strains of Saccharomyces cerevisiae possessing a wide range of specialised properties in order to meet the new and challenging demands of the various wine producers and consumers. Strain development is no longer limited to the primary role of wine yeasts, namely to catalyse the rapid and complete conversion of grape sugars to alcohol and carbon dioxide without distorting the flavour of the final product. Today, there is a much stronger emphasis on the development of wine yeasts for the cost-effective production of wine with minimised resource inputs, improved quality and low environmental impact. This chapter focuses on the genetic constitution, analysis, and improvement of wine yeasts and the potential role that customised starter yeast strains could play in improving the fermentation, processing and biopreservation of wines, their capacity to enhance the wholesomeness and sensory quality of wine, and their current status and future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • An D, Ough CS (1993) Urea excretion and uptake by wine yeasts as affected by various factors. Am J Enol Vitic 44:34–40

    Google Scholar 

  • Ansanay V, Dequin S, Blondin B, Barre P (1993) Cloning, sequence and expression of the gene encoding the malolactic enzyme from Lactococcus lactis. FEBS Lett 332:74–80

    Article  CAS  Google Scholar 

  • Ansanay V, Dequin S, Camarasa C, Schaeffer V, Grivet J-P, Blondin B, Salmon J-M, Barre P (1996) Malolactic fermentation by engineered Saccharomyces cerevisiae as compared with engineered Schizosaccharomyces pombe. Yeast 12:215–225

    Article  CAS  Google Scholar 

  • Armstrong GO, Lambrechts MG, Mansvelt EPG, Van Velden DP, Pretorius IS (2001) Wine and health. S Afr J sci 97:279–282

    CAS  Google Scholar 

  • Avery SV, Howlett NG, Eadice S (1996) Copper toxicity towards Saccharomyces cerevisiae: dependence on plasma membrane fatty acid composition. Appl Environ Microbiol 62:3960–3966

    CAS  Google Scholar 

  • Barre P, Vezinhet F, Dequin S, Blondin B (1993) Genetic improvement of wine yeast. In: Fleet GH (ed) Wine Microbiology and Biotechnology. Harwood Academic Publishers, Switzerland, pp 421–447

    Google Scholar 

  • Bauer FF, Pretorius IS (2000) Yeast stress response and fermentation efficiency: how to survive the making of wine. S Afr J Enol Vitic 21:27–51

    CAS  Google Scholar 

  • Becker JvW (2002) Plant defence genes expressed in tobacco and yeast. MSc Thesis, Stellenbosch University, Stellenbosch, South AfricaBeggs JD (1978) Transformation of yeast by a replicating hybrid plasmid. Nature 275:104–109

    Google Scholar 

  • Bidard F, Blondin B, Dequin S, Vezinhet F, Barre P (1994) Cloning and analysis of a FLO5 flocculation gene from S. cerevisiae. Curr Genet 25:196–201

    Article  CAS  Google Scholar 

  • Bisson LF (1999) Stuck and sluggish fermentations. Am J Enol Vitic 50: 107–1999

    CAS  Google Scholar 

  • Bisson LF, Waterhouse AL, Ebeler SE, Walker MA, Lapsley JT (2002) The present and future of the international wine industry. Nature 418:696–699

    Article  CAS  Google Scholar 

  • Boles E, Hollenberg CP (1997) The molecular genetics of hexose transport in yeasts. FEMS Microbiol Rev 21: 85–111

    Article  CAS  Google Scholar 

  • Bony M, Bidart F, Camarasa C, Ansanay V, Dulau L, Barre P, Dequin S (1997) Metabolic analysis of S. cerevisiae strains engineered for malolactic fermentation. FEBS Lett 410:452–456

    Article  CAS  Google Scholar 

  • Boone C, Sdicu AM, Wagner J, Degré R, Sanchez C, Bussey H (1990) Integration of the yeast K1 killer toxin gene into the genome of marked wine yeasts and its effect on vinification. Am J Enol Vitic 41:37–42

    CAS  Google Scholar 

  • Boulton B, Singleton VL, Bisson LF, Kunkee & RE (1996) Yeast and biochemistry of ethanol fermentation. In: Boulton B, Singleton VL, Bisson LF, Kunkee RE (eds) Principles and Practices of Winemaking. Chapman and Hall, New York, pp 139–172

    Google Scholar 

  • Canal-LI auberes R-M (1993) Enzymes in winemaking. In: Fleet GH (ed) Wine Microbiology and Biotechnology. Harwood Academic Publishers, Switzerland, pp 477–506

    Google Scholar 

  • Caputi A Jr, Ryan T (1996) Must and wine acidification. Presentation at a meeting of the OIV Expert Group Technologie du Vin, Paris

    Google Scholar 

  • Carstens E, Lambrechts MG, Pretorius IS (1998) Flocculation, pseudohyphal development and invasive growth in commercial wine yeast strains. S Afr J Enol Vitic 19:52–61

    CAS  Google Scholar 

  • Carstens M, Vivier MA, Van Rensburg P, Pretorius IS (2003) Overexpression, secretion and antifungal activity of the Saccharomyces cerevisiae chitinase. Ann Microbiol (in press)

    Google Scholar 

  • Colagrande O, Silva A, Fumi MD (1994) Recent applications of biotechnology in wine production. Biotechnol Prog 10:2–18

    Article  CAS  Google Scholar 

  • Cole VC, Noble AC (1995) Flavour chemistry and assessment. In: Lea AGH, Piggott JR (eds) Fermented Beverage Production. Blackie Academic and Professional, London, pp 361–385

    Google Scholar 

  • Crous JM, Pretorius IS, Van Zyl WH (1996) Cloning and expression of the ot-L-arabinofuranosidase gene (ABF2) of Aspergillus niger in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 46:256–260

    Article  CAS  Google Scholar 

  • Crous JM, Van Zyl WH, Pretorius IS (1995) Cloning and expression of an Aspergillus kawachii endo-1,4-β-xylanase gene in Saccharomyces cerevisiae. Curr Genet 28:467–473

    Article  CAS  Google Scholar 

  • De Barros Lopes M, Rehman A-U, Gockowiak H, Heinrich AJ, Langridge P, Henschke PA (2000) Fermentation properties of a wine yeast overexpressing the Saccharomyces cerevisiae glycerol 3-phosphate dehydrogenase gene (GPD2). Aust J Grape Wine Res 6:208–215

    Article  Google Scholar 

  • Degré R (1993) Selection and commercial cultivation of wine yeast and bacteria. In: Fleet GH (ed) Wine Microbiology and Biotechnology. Harwood Academic Publishers, Switzerland, pp 421–447

    Google Scholar 

  • Denayrolles M, Aigle M, Lonvaud-Funel A (1995) Functional expression in Saccharomyces cerevisiae of the Lactococcus lactis mleS gene encoding the malolactic enzyme. FEMS Microbiol Lett 125:37–44

    Article  CAS  Google Scholar 

  • Dequin S (2001) The potential of genetic engineering for improving brewing, wine-making and baking yeasts. Appl Microbiol Biotechnol 56:577–588

    Article  CAS  Google Scholar 

  • Dequin S, Barre P (1994) Mixed lactic acid-alcoholic fermentation by Saccharomyces cerevisiae expressing the Lactobacillus casei L(+)-LDH. Bio/Technol 12:173–177

    Article  CAS  Google Scholar 

  • Dequin S, Baptista E, Barre P (1999) Acidification of grape musts by Saccharomyces cerevisiae wine yeast strains genetically engineered to produce lactic acid. Am J Enol Vitic 50:45–50

    CAS  Google Scholar 

  • Donalies UEB, Stahl U (2002) Increasing sulphite formation in Saccharomyces cerevisiae by overexpression of MET14 and SSU1 Yeast 19:475–484

    Article  CAS  Google Scholar 

  • Du Toit C, Du Toit M, Rautenbach M, Van Rensburg P, Pretorius IS (2003) The application of nisin, pediocin and leucocin as biopreservatives in winemaking. Int J Food Microbiol (in press)

    Google Scholar 

  • Du Toit M, Pretorius IS (2000) Microbial spoilage and preservation of wine: using weapons from nature’s own arsenal. S Afr J Enol Vitic 21:74–96

    Google Scholar 

  • Eglinton JM, Heinrich AJ, Pollnitz AP, Langridge P, Henschke PA, De Barros Lopes M (2002) Decreasing acetic acid accumulation by a glycerol overproducing strain of Saccharomyces cerevisiae by deleting the ALD6 aldehyde dehydrogenase gene. Yeast 19:295–301

    Article  CAS  Google Scholar 

  • Fogel S, Welch JW, Cathala G, Karin M (1983) Gene amplification in yeast: CUP1 copy number regulates copper resistance. Curr Genet 7:347–355

    Article  CAS  Google Scholar 

  • Fugelsang KC (1997) Wine Microbiology. Chapman and Hill, New York

    Google Scholar 

  • Fuglsang CC, Johansen C, Christgau S, Adler-Nissen J (1995) Antimicrobial enzymes: Applications and future potential in the food industry. Trends Food sci Technol 6:390–396

    Article  CAS  Google Scholar 

  • Fujii T, Kobayashi O, Yoshomoto H, Furukawa S, Tamai Y (1997) Effect of aeration and unsaturated fatty acids on expression of the Saccharomyces cerevisiae alcohol acetyltransferase gene. Appl Environ Microbiol 63:910–915

    CAS  Google Scholar 

  • Fujii T, Nagasawa N, Iwamatsu A, Bogaki T, Tamai Y, Hamachi M (1994) Molecular cloning, sequence analysis, and expression of the yeast alcohol acetyltrans ferase gene. Appl Environ Microbiol 60:2786–2792

    CAS  Google Scholar 

  • Fujii T, Yoshimoto H, Tamai Y (1996) Acetate ester production by Saccharomyces cerevisiae lacking the ATF1 gene encoding the alcohol acetyltrans ferase. J Ferment Bioeng 81:538–542

    Article  CAS  Google Scholar 

  • Gagiano M, Bauer FF, Pretorius IS (2002) The sensing and signalling of nutritional status and the relationship to filamentous growth in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 2:433–470

    CAS  Google Scholar 

  • Gagiano M, Van Dyk D, Bauer FF, Lambrechts MG, Pretorius IS (1999a) Msnlp/Mss10p, Mssllp and Muclp are part of a signal transduction pathway downstream of Mep2p regulating invasive growth and pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Microbiol 31:103–116

    Article  CAS  Google Scholar 

  • Gagiano M, Van Dyk D, Bauer FF, Lambrechts MG, Pretorius IS (1999b) Divergent regulation of the evolutionary closely related promoters of the Saccharomyces cerevisiae STA2 and MUC1 genes. J Bacteriol 181:6497–6508

    CAS  Google Scholar 

  • Gainvors SA, Frézier V, Lemaresquier H, Lequart C, Aigle M, Belarbi A (1994) Detection of polygalacturonase, pectin-lyase and pectin-esterase activities in a Saccharomyces cerevisiae strain. Yeast 10:1311–1319

    Article  CAS  Google Scholar 

  • Gallander JF (1977) Deacidification of eastern table wines with Schizosaccharomyces pombe. Am J Enol Vitic 28:65–68

    CAS  Google Scholar 

  • Giudici P, Romano P, Zambonelli C (1990) A biometric study of higher alcohol production in Saccharomyces cerevisiae. Can J Microbiol 36:61–64

    Article  CAS  Google Scholar 

  • Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with 6000 genes. Science 274:546–567

    Article  CAS  Google Scholar 

  • Gognies S, Belarbi A (2001) Endopolygalacturonase of Saccharomyces cerevisiae involvement in pseudohyphae development and its pathogenicity of Vitis vimfera. Yeast 18:423–432

    Article  CAS  Google Scholar 

  • Gognies S, Gainvors A, Aigle M, Belarbi A (1999) Cloning, sequence analysis and overexpression of a Saccharomyces cerevisiae endopolygalacturonase-encoding gene (PGU). Yeast 15:11–21

    Article  CAS  Google Scholar 

  • Gognies S, Simon G, Belarbi A (2001) Regulation of the expression of endopolygalacturonase gene PGU1 in Saccharomyces. Yeast 18:423–432

    Article  CAS  Google Scholar 

  • Gomez E, Laencina J, Martinez A (1994) Vinification effects on changes in volatile compounds of wine. J Food sci 59:406–409

    Article  CAS  Google Scholar 

  • Grossmann MK, Pretorius IS (1999) Verfahren zur Identifizierung von Weinhefen und Verbesserung der Eigenschaften von Saccharomyces cerevisiae. Die Weinwissenschaft 54:61–72

    Google Scholar 

  • Guerrini S, Mangani SD, Granchi L, Vincenzini M (2002) Biogenic amine production by Oenococcus oeni. Curr Microbiol 44:374–378

    Article  CAS  Google Scholar 

  • Hammond JRM (1996) Yeast genetics. In: Priest FG, Campbell I (eds) Brewing Microbiology. Chapman and Hall, London, pp 45–82

    Google Scholar 

  • Henderson RCA, Cox BS, Tubb R (1985) The transformation of brewing yeasts with a plasmid containing the gene for copper resistance. Curr Genet 9:133–138

    Article  CAS  Google Scholar 

  • Henschke PA (1997) Wine Yeast. In: Zimmermann FK, Entian K-D (eds) Yeast Sugar Metabolism. Technomic Publishing Co, Pennsylvania, pp 527–560

    Google Scholar 

  • Henschke PA, Jiranek V (1993) Yeasts-Metabolism of nitrogen compounds. In: Fleet GH (ed) Wine Microbiology and Biotechnology. Harwood Academic Publishers, Switzerland, pp 77–164

    Google Scholar 

  • Hinnen A, Hicks JB, Fink GR (1978) Transformation of yeast. Proc Natl Acad sci USA 75:1929–1933

    Article  CAS  Google Scholar 

  • Ibrahim HR, Yamada M, Kobayashi K, Kato A (1992) Bactericidal action of lysozyme against gram-negative bacteria due to insertion of a hydrophobic pentapeptide into its C-terminus. Biosci Biotech Biochem 56:1361–1363

    Article  CAS  Google Scholar 

  • Ingraham JL, Guymon JF (1960) The formation of higher aliphatic alcohols by mutant strains of Saccharomyces cerevisiae. Arch Biochem Biophys 88:157–166

    Article  CAS  Google Scholar 

  • Ingraham JL, Guymon JF, Crowell EA (1961) The pathway of formation of N-butyl and n-amyl alcohols by a mutant strain of Saccharomyces cerevisiae. Arch Biochem Biophys 95:169–175

    Article  CAS  Google Scholar 

  • Ishida-Fujii K, Goto S, Sugiyama H, Tagaki Y, Saiki T, Tagaki M (1998) Breeding of flocculent industrial yeast strains by self-cloning of the flocculation gene FLO1 and repeated-batch fermentation by transformants. J Gen Appl Microbiol 44:347–353

    Article  CAS  Google Scholar 

  • Ivorra C, Perez-Ortin JE, Del Olmo MI (1999) An inverse correlation between stress resistance and stuck fermentations in wine yeasts. A molecular study. Biotechnol Bioeng 64:698–708

    Article  CAS  Google Scholar 

  • Kim J, Alizadeh P, Harding T, Hemer-Gravink A, Klionsky DJ (1996) Disruption of the yeast A TH1 gene confers better survival after dehydration, freezing, and ethanol shock: potential commercial applications. Appl Environ Microbiol 62:1563–1569

    CAS  Google Scholar 

  • Kitamoto K, Oda K, Gomi K, Takahashi K (1991) Genetic engineering of a sake yeast producing no urea by successive disruption of arginase gene. Appl Environ Microbiol 57:301–306

    CAS  Google Scholar 

  • Kruckeberg AL (1996) The hexose transporter family of Saccharomyces cerevisiae. Arch Microbiol 166: 233–292

    Article  Google Scholar 

  • La Grange DC, Claeyssens IM, Pretorius IS, Van Zyl WH (2001) Degradation of xylan to D-xylose by recombinant Saccharomyces cerevisiae co-expressing the Aspergillus niger β-xylosidase (xlnD) and the Trichoderma reesei xylanase II (xyn2) genes. Appl Environ Microbiol 67:5512–5519

    Article  CAS  Google Scholar 

  • La Grange DC, Pretorius IS, Van Zyl WH (1996) Expression of the Tnchoderma reesei β-xylanase gene (XYN2) in Saccharomyces cerevisiae. Appl Environ Microbiol 62:1036–1044

    Google Scholar 

  • La Grange DC, Pretorius IS, Van Zyl WH (1997) Cloning of the Bacillus pumilus β-xylosidase gene (xynB) and its expression in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 47:262–266

    Article  Google Scholar 

  • Labarre C, Guzzo J, Cavin J-F, Diviès C (1996) Cloning and characterisation of the genes encoding the malolactic enzyme and the malate permease of Leuconostoc oenos. Appl Environ Microbiol 62:1274–1282

    CAS  Google Scholar 

  • Laing E, Pretorius IS (1992) Synthesis and secretion of an Erwinia chrysanthemi pectate lyase in Saccharomyces cerevisiae regulated by different combinations of bacterial and yeast promoter and signal sequences. Gene 121:35–45

    Article  CAS  Google Scholar 

  • Laing E, Pretorius IS (1993a) The primary structure and expression of an Erwinia carotovora polygalacturonase-encoding gene (peh1) in Escherichia coli and yeast. J Appl Bacteriol 75:149–158

    CAS  Google Scholar 

  • Laing E, Pretorius IS (1993b) Co-expression of an Erwinia chrysanthemi pectate lyaseencoding gene (pelE) and an Erwmia carotovora polygalacturonase-encoding gene (peh l) in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 39:181–188

    Article  CAS  Google Scholar 

  • Lambrechts MG, Pretorius IS (2000) Yeast and its importance to wine aroma. S Afr J Enol Vitic 21:97–129

    CAS  Google Scholar 

  • Lambrechts MG, Bauer FF, Marmur J, Pretorius IS (1996) Mucl, a mucin-like protein that is regulated by MSS10, is critical for pseudohyphal differentiation in yeast. Proc Natl Acad sci USA 93:8419–8424

    Article  CAS  Google Scholar 

  • Lilly M, Lambrechts MG, Pretorius IS (2000) The effect of increased yeast alcohol acetyltransferase activity on the sensorial quality of wine and brandy. Appl Environ Microbiol 66:744–753

    Article  CAS  Google Scholar 

  • Lo W-S, Dranginis AM (1996) FLO11, a yeast gene related to the STA genes, encodes a novel cell surface flocculin. JBacteriol 178:7144–7151

    CAS  Google Scholar 

  • Luttig M, Pretorius IS, Van Zyl WH (1997) Cloning of two β-xylanase-encoding genes from Aspergillus niger and their expression in Saccharomyces cerevisiae. Biotechnol Lett 19:411–415

    Article  CAS  Google Scholar 

  • Luvten, K, Eiou, C, Blondin, B (2002) The hexose transporters of Saccharomyces cerevisiae play different roles during enological fermentation. Yeast 19: 713–726

    Article  CAS  Google Scholar 

  • Lynd LE, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  CAS  Google Scholar 

  • Malcorps P, Dufour JP (1987) Ester synthesis by Saccharomyces cerevisiae: Localisation of acetyl-CoA: Iso-amylalcohol acetyltrans ferase (“AT”). Proc Eur Brew Conv 21:377–384

    Google Scholar 

  • Malcorps P, Cheval JM, Jamil S, Dufour JP (1991) A new model for the regulation of ester synthesis by alcohol acetyltrans ferase in Saccharomyces cerevisiae during fermentation. J Am Soc Brew Chem 49:47–53

    CAS  Google Scholar 

  • Malherbe DF, Du Toit M, Cordero Otero RR, Van Rensburg P, Pretorius IS (2002) Expression of the Aspergillus niger glucose oxidase gene (GOX1) in Saccharomyces cerevisiae and its potential application in wine production. Appl Microbiol Biotechnol (in press)

    Google Scholar 

  • Michnick S, Roustan J-L, Remize F, Barre P, Dequin S (1997) Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPD1 encoding glycerol 3-phosphate dehydrogenase. Yeast 13:783–793

    Article  CAS  Google Scholar 

  • Nakamura S, Takasaki H, Kobayashi K, Kato A (1993) Hyperglycosylation of hen egg white lysozyme in yeast. J Biol Chem 268:12706–12712

    CAS  Google Scholar 

  • Noble AC (1994) Wine flavour. In: Piggott JR, Patterson A (eds) Understanding Natural Flavours. Blackie and Professional, Glasgow, pp 228–242

    Google Scholar 

  • Oliver SG (1996) From DNA sequence to biological function. Nature 379:597–600

    Article  CAS  Google Scholar 

  • Østergaard S, Olsson L, Nielsen J (2000) Metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 64: 34–50

    Article  Google Scholar 

  • Ough CS, Crowel EA, Gutlove BR (1988) Carbamyl compound reactions with ethanol. Am J Enol Vitic 39:239–242

    CAS  Google Scholar 

  • Ozcan S, Johnston M (1999) Function and regulation of yeast hexose transporters. Microbiol Mol Biol Rev 63: 554–569

    CAS  Google Scholar 

  • Pérez-González JA, De Graaf LH, Visser J, Ramon D (1996) Molecular cloning and expression in Saccharomyces cerevisiae of two Aspergillus mdulans xylanase genes. Appl Environ Microbiol 62:2179–2182

    Google Scholar 

  • Pérez-González JA, González R, Querol A, Sendra J, Ramon D (1993) Construction of a recombinant wine yeast strain expressing β-(1,4)-endoglucanase and its use in micro vinification processes. Appl Environ Microbiol 59:2801–2806

    Google Scholar 

  • Peterson SH, Van Zyl WH, Pretorius IS (1998) Development of a polysacchari de-de grading strain of Saccharomyces cerevisiae. Biotechnol Tech 12:615–619

    Article  Google Scholar 

  • Pickering G (1998) The use of enzymes to stabilise colour and flavour in wine-an alternative to SO2. Aust Grapegrower & Winemaker September: 101–103

    Google Scholar 

  • Pickering G, Heatherbell DA (1996) Characterisation of reduced alcohol wine made from glucose oxidase treated must. Food Technol 26:101–107

    Google Scholar 

  • Pickering GJ, Heatherbell DA, Barnes MF (1998) Optimising glucose conversion in the production of reduced alcohol wine using glucose oxidase. Food Res Int 31:685–692

    Article  CAS  Google Scholar 

  • Pickering GJ, Heatherbell DA, Barnes MF (1999a) The production of reduced-alcohol wine using glucose oxidase treated juice. Part I Composition. Am J Enol Vitic 50:291–298

    CAS  Google Scholar 

  • Pickering GJ, Heatherbell DA, Barnes MF (1999b) The production of reduced-alcohol wine using glucose oxidase treated juice. Part II Stability and SO2-binding. Am J Enol Vitic 50:299–306

    CAS  Google Scholar 

  • Pickering GJ, Heatherbell DA, Barnes MF (1999c). The production of reduced-alcohol wine using glucose oxidase treated juice. Part HE Sensory. Am J Enol Vitic 50:307–316

    Google Scholar 

  • Porro DL, Brambilla L, Ranzi BM, Martegani E, Alberghina L (1995) Development of metabolically engineered Saccharomyces cerevisiae cells for the production of lactic acid. Biotechnol Prog 11:294–298

    Article  CAS  Google Scholar 

  • Pretorius IS (1997) Utilization of polysacchari des by Saccharomyces cerevisiae. In: Zimmermann FK, Entian K-D (eds) Yeast Sugar Metabolism. Technomic Publishing, Pennsylvania, pp 459–501

    Google Scholar 

  • Pretorius IS (1999) Engineering designer genes for wine yeasts. Aust NZ Wine Indust J 14:42–47

    Google Scholar 

  • Pretorius IS (2000) Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast 16:675–729

    Article  CAS  Google Scholar 

  • Pretorius IS (2001) Gene technology in winemaking: new approaches to an ancient art. Agri Consp sci 66:1–20

    Google Scholar 

  • Pretorius IS (2003) The genetic improvement of wine yeasts. In: Arora D (ed) Fungal Biotechnology. Marcel Decker (in press)

    Google Scholar 

  • Pretorius IS, Bauer FF (2002) Meeting the consumer challenge through genetically customized wine-yeast strains. Trends Biotechnol 20: 426–432

    Article  CAS  Google Scholar 

  • Pretorius IS, Van der Westhuizen TJ (1991) The impact of yeast genetics and recombinant DNA technology on the wine industry. S Afr J Enol Vitic 12:3–31

    CAS  Google Scholar 

  • Pretorius IS, Van der Westhuizen TJ, Augustyn OPH (1999) The importance of yeast biodiversity in South African vineyards and wineries. S Afr J Enol Vitic 20:61–74

    Google Scholar 

  • Pretorius IS, Du Toit M, Van Rensburg P (2003) Designer yeasts for the fermentation industry of the 21st century. Food Technol Biotechnol (in press)

    Google Scholar 

  • Prior BA, Hohmann S (1997) Glycerol production and osmoregulation. In: Zimmermann FK, Entian K-D (eds) Yeast Sugar Metabolism. Technomic Publishing Co, Pennsylvania, pp 313–337

    Google Scholar 

  • Querol A, Ramon D (1996) The application of molecular techniques in wine microbiology. Trends Food sci Technol 7:73–73

    Article  CAS  Google Scholar 

  • Rainieri S, Pretorius IS (2000) Selection and improvement of wine yeasts. Ann Microbiol 50:15–31

    CAS  Google Scholar 

  • Rauhut D (1993) Yeast-Production of sulphur compounds. In: Fleet GH (ed) Wine Microbiology and Biotechnology. Harwood Academic Publishers, Switzerland, pp 183–223

    Google Scholar 

  • Remize F, Roustan JL, Sablayrolles JM, Barre P, Dequin S (1999) Glycerol overproduction by engineered Saccharomyces cerevisiae wine yeast strains leads to substantial changes in by-product formation and to a stimulation of fermentation rate in stationary phase. Appl Environ Microbiol 65:143–149

    CAS  Google Scholar 

  • Ribéreau-Gayon P, Dubourdieu D, Donéche B, Lonvaud A (2000) Handbook of Enology. The Microbiology of Wine and Vinifications, Vol 1. John Wiley & Sons Ltd, Chichester

    Google Scholar 

  • Salmon J-M, Barre P (1998) Improvement of nitrogen assimilation and fermentation kinetics under enological conditions by derepression of alternative nitrogen-assimilatory pathways in an industrial Saccharomyces cerevisiae strain. Appl Environ Microbiol 64:3831–3837

    CAS  Google Scholar 

  • Scanes KT, Hohmann S, Prior BA (1998) Glycerol production by the yeast Saccharomyces cerevisiae and its relevance to wine: A review. S Afr J Enol Vitic 19:17–22

    CAS  Google Scholar 

  • Schmitt MJ, Klavehn P, Wang J, Schönig I, Tipper DJ (1996) Cell cycle studies on the mode of action of yeast K28 killer toxin. Microbiology (UK) 142:2655–2662

    Article  CAS  Google Scholar 

  • Schoeman H, Vivier MA, Du Toit M, Dicks LMT, Pretorius IS (1999) The development of bactericidal yeast strains by expressing the Pediococcus acidilactici pediocin gene (pedA) in Saccharomyces cerevisiae. Yeast 15:647–656

    Article  CAS  Google Scholar 

  • Scudamore-Smith P, Moran J (1997) A growing market for reduced alcohol wines. Wine IndJ 12:165–167

    Google Scholar 

  • Shima J, Hino A, Yamada-Iyo C, Suzuki Y, Nakajima R, Watanabe H, Mori K, Takano H (1999) Stress tolerance in doughs of Saccharomyces cerevisiae trehalase mutants derived from commercial baker’s yeast. Appl Environ Microbiol 65:2841–2846

    CAS  Google Scholar 

  • Shimizu K (1993) Killer yeasts. In: Fleet GH (ed) Wine Microbiology and Biotechnology. Harwood Academic Publishers, Switzerland, pp 243–264

    Google Scholar 

  • Smit A, Cordero Otero RR, Lambrechts MG, Pretorius IS, Van Rensburg P (2003) Manipulation of volatile phenol concentrations in wine by expressing various phenolic acid decarboxylase genes in Saccharomyces cerevisiae. Appl Microbiol Biotechnol (in press)

    Google Scholar 

  • Smits HP, Hauf J, Müller S, Hobley TJ, Zimmermann FK, Hahn-Hägerdal B, Nielsen J, Olsson L (2000) Simultaneous overexpression of enzymes of the lower part of glycolysis can enhance the fermentative capacity of Saccharomyces cerevisiae. Yeast 16:1325–1334

    Article  CAS  Google Scholar 

  • Snow R (1983) Genetic improvement of wine yeast. In: Spencer JFT, Spencer DM, Smith ARW (eds) Yeast Genetics-Fundamental and Applied Aspects. Springer-Verlag, New York, pp 439–459

    Google Scholar 

  • Stokes DE (1997) Pasteur’s quadrant: Basic science and technological innovation. Brookings Institution Press, Portland

    Google Scholar 

  • Tanghe A, Teunissen A, Van Dijck P, Thevelein JM (2000) Identification of genes responsible for improved cryoresi stance in fermenting yeast cells. Int J Food Microbiol 55:259–262

    Article  CAS  Google Scholar 

  • Tanghe A, Van Dijck P, Dumortier F, Teunissen A, Hohmann S, Thevelein JM (2002) Aquaporin expression correlates with freeze tolerance in yeast and overexpression improves freeze tolerance industrial yeast. Appl Environ Microbiol 68: 5981–5989

    Article  CAS  Google Scholar 

  • Teunissen A, Dumortier F, Gorwa M-F, Bauer J, Tanghe A, Loïez A, Smet P, Van Dijck P, Thevelein JM (2002) Isolation and characterization of a freeze-tolerant diploid derivative of an industrial baker’s yeast strain and its use in frozen doughs. Appl Environ Microbiol 68:4780–4787

    Article  CAS  Google Scholar 

  • Teunissen AW, Steensma HY (1995) Review: The dominant flocculation genes of Saccharomyces cerevisiae constitute a new subtelomeric gene family. Yeast 11:1001–1013

    Article  CAS  Google Scholar 

  • Thevelein JM (1996) Regulation of trehalose metabolism and its relevance to cell growth and function. In: Brambl R, Marzluf GA (eds) The Mycota III. Springer-Verlag, Berlin and Heidelberg, pp 395–420

    Google Scholar 

  • Thevelein JM, De Winde JH (1999) Novel sensing mechanisms and targets for the cAMPprotein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 33:904–918

    Article  CAS  Google Scholar 

  • Torrea Goñi D, Ancín Azpilicueta C (2001) Influence of yeast strain on biogenic amines content in wines: relationship with the utilization of amino acids during fermentation. Am J Enol Vitic 52:185–190

    Google Scholar 

  • Tromp A, De Klerk CA (1988) Effect of copperoxychloride on the fermentation of must and on wine quality. S Afr J Enol Vitic 9:31–36

    CAS  Google Scholar 

  • Vadasz AS, Franken DB, Govender, BL, Jagganath DB, Govender P, Ariatti M, Pretorius IS, Gupthar AS (2002) Properties of a wine yeast antagonist, Saccharomyces cerevisiae T206. S Afr J Enol Vitic 23:39–47

    Google Scholar 

  • Van Dijck P, Gorwa M-F, Lemaire K, Teunissen A, Versele M, Colombo S, Dumortier F, Ma P, Tanghe A, Loïez A, Thevelein JM (2000) Characterisation of a new set of mutants deficient in fermentation induced loss of stress resistance for use in frozen dough applications. Int J Food Microbiol 55:187–192

    Article  Google Scholar 

  • Van Rensburg P, Pretorius IS (2000) Enzymes in winemaking: harnessing natural catalysts for efficient biotransformations. S Afr J Enol Vitic 21:52–73

    Google Scholar 

  • Van Rensburg P, Van Zyl WH, Pretorius IS (1994) Expression of the Butynvibno fibrisolvens endo-β-1,4-glucanase gene together with the Erwinia pectate lyase and polygalacturonase gene in Saccharomyces cerevisiae. Curr Genet 27:17–22

    Article  Google Scholar 

  • Van Rensburg P, Van Zyl WH, Pretorius IS (1995) Expression of the Ruminococcus flavefaciens cellodextrinase gene in Saccharomyces cerevisiae. Biotech Lett 17:481–486

    Article  Google Scholar 

  • Van Rensburg P, Van Zyl WH, Pretorius IS (1996) Co-expression of a Phanerochaete chrysosporium cellobiohydrolase gene and a Butynvibno fibrisolvens endo-β-1,4-glucanase gene in Saccharomyces cerevisiae. Curr Genet 30:246–250

    Article  Google Scholar 

  • Van Rensburg P, Van Zyl WH, Pretorius IS (1997) Over-expres si on of the Saccharomyces cerevisiae exo-β-1,3-glucanase gene together with the Bacillus subtilis endo-β-1,3-1,4-glucanase gene and the Butynvibrio fibrisolvens endo-β-1,4-glucanase gene in yeast. J Biotechnol 55:43–53

    Article  Google Scholar 

  • Van Rensburg P, Van Zyl WH, Pretorius IS (1998) Engineering yeast for efficient cellulose degradation. Yeast 14:67–76

    Article  Google Scholar 

  • Verstrepen KJ, Bauer FF, Winderickx J, Derdelinckx G, Pretorius IS, Thevelein JM, Delvaux FR (2001) Late fermentation expression of FLO1 in Saccharomyces cerevisiae. J Amer Soc Brew Chem 52:69–76

    Google Scholar 

  • Visser JJ (1999) Cloning and expression of the Lactobacillus fermentum acid ureases gene in Saccharomyces cerevisiae. MSc thesis, Stellenbosch University, Stellenbosch, South Africa

    Google Scholar 

  • Vivier MA, Pretorius IS (2000) Genetic improvement of grapevine: tailoring grape varieties for the third millennium. S Afr JEnol Vitic 21:5–26

    CAS  Google Scholar 

  • Vivier MA, Pretorius IS (2002) Genetically tailored grapevines for the wine industry. Trends Biotechnol 20:472–478

    Article  CAS  Google Scholar 

  • Volschenk H, Viljoen M, Grobler J, Petzold B, Bauer FF, Subden R, Young RA, Lonvaud A, Denayrolles M, Van Vuuren HJJ (1997) Engineering pathways for malate degradation in Saccharomyces cerevisiae. Nature Biotech 15:253–257

    Article  CAS  Google Scholar 

  • Walker GM (1998) Yeast Physiology and Biotechnology. John Wiley and Sons, New York

    Google Scholar 

  • Watari J, Nomura M, Sahara H, Koshino S (1993) Construction of flocculent brewer’s yeast by chromosomal integration of the yeast flocculation gene FLO1. J Inst Brew 100:73–77

    Google Scholar 

  • Webber AL, Lambrechts MG, Pretorius IS (1997) MSS11, a novel yeast gene involved in the regulation of starch metabolism. Curr Genet 32:260–266

    Article  CAS  Google Scholar 

  • Williams SA, Hodges RA, Strike TL, Snow R, Kunkee RE (1984) Cloning the gene for the malolactic fermentation of wine from Lactobacillus delbrueckii in Eschenchia coli and yeasts. Appl Environ Microbiol 47:288–293

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pretorius, I.S. (2003). The genetic analysis and tailoring of wine yeasts. In: de Winde, J.H. (eds) Functional Genetics of Industrial Yeasts. Topics in Current Genetics, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-37003-X_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-37003-X_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-02489-7

  • Online ISBN: 978-3-540-37003-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics