Skip to main content

Genetics and classical genetic manipulations of industrial yeasts

  • Chapter
  • First Online:
Functional Genetics of Industrial Yeasts

Part of the book series: Topics in Current Genetics ((TCG,volume 2))

Abstract

Yeasts represent highly important and valuable organisms for research and industrial applications. Although Saccharomyces cerevisiae has historically been a key species, other yeast genera and species are increasingly important. The rapid emergence and expansion of genomic and functional genetic information on various yeasts indicates a high level of complexity amongst these organisms. It is apparent that the S. cerevisiae genome was duplicated some 100 million years ago and that several of the other important yeast species diverged prior to this duplication, whilst others diverged post-polyploidization of the ancestral yeast genome. Here we present an overview of the various yeast genomes that serves to highlight the complexity of yeasts, especially within the context of industrially relevant strains. The challenges faced by industrial yeast geneticists are discussed and key issues concerning strategies of mating, mutagenesis, spheroplast fusion and cytoduction are presented. Examples of strain improvements achieved via classical genetics are presented, along with an analysis of molecular genetics of maltose metabolism in industrial yeasts, which serves to highlight the usefulness of combined molecular and classical genetics in strain improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angelov AI, Karadjov GI, Roshkova ZG (1996) Strains selection of bake’s yeast with improved technological properties. Food Res Int 29:235–239

    Article  CAS  Google Scholar 

  • Backhus LE, DeRisi J, Brown PO, Bisson LF (2001) Functional genomic analysis of a commercial wine strain of Saccharomyces cerevisiae under differing nitrogen conditions. FEMS Yeast Res 1:111–125

    Article  CAS  Google Scholar 

  • Bai Y, Kohlaw, GB (1991) Manipulation of the ‘zinc cluster’ region of transcriptional activator LEU3 by site-directed mutagenesis. Nucl Acid Res 19:5991–5997

    Article  CAS  Google Scholar 

  • Bakalinsky AT, Snow R (1990) The chromosomal constitution of wine strains of Saccharomyces cerevisiae. Yeast 6:367–382

    Article  CAS  Google Scholar 

  • Banerjee N, Zhang MQ (2002) Functional genomics as applied to mapping transcription regulatory networks. Curr Opin Microbiol 5:313–317

    Article  CAS  Google Scholar 

  • Barth G, Gaillardin C (1997) Physiology and genetics of the dimorphic fungus Yarrowia hpolytica. FEMS Microbiol Rev 19:219–237

    Article  CAS  Google Scholar 

  • Barre P, Vézinhet F, Dequin S, Blondin B (1993) Genetic improvement of wine yeast. In: Fleet GH (ed) Wine microbiology and biotechnology. Harwood Academic Press, Reading, UK, pp 421–447.

    Google Scholar 

  • Bassel J, Warfel J, Mortimer RK (1971) Complementation and genetic recombination in Candida hpolytica. J Bacteriol 108:609–611

    CAS  Google Scholar 

  • Basrai MA, Hieter P, Boeke JD (1997) Small open reading frames: beautiful needles in the haystack Genome Res 7:768–771

    CAS  Google Scholar 

  • Bell PJL, Deere D, Shen J, Chapman B, Bissinger PH, Attfield PV, Veal DA (1998) A flow cytometric method for rapid selection of novel industrial yeast hybrids. Appl Environ Microbiol 64:1669–1672

    CAS  Google Scholar 

  • Bell PJL, Higgins VJ, Dawes IW, Bissinger PH (1997) Tandemly repeated 147b bp elements cause structural and functional variation in divergent MAL promoters of Saccharomyces cerevisiae. Yeast 13:1135–1144

    Article  CAS  Google Scholar 

  • Bell PJL, Higgins VJ, Attfield PV (2001) Comparison of fermentative capacities of industrial baking and wild-type yeasts of the species Saccharomyces cerevisiae in different sugar media. Letts Appl Microbiol 32:224–229

    Article  CAS  Google Scholar 

  • Belloch C, Fernández-Espinar T, Querol A, García MD, Barrio E (2002) An analysis of inter-and intraspecific genetic variabilities in the Kluyveromyces marxianus group of yeast species for the reconsideration of the Klactis taxon. Yeast 19:257–268

    Article  CAS  Google Scholar 

  • Benítez T, Martínez P, Codón AC (1996) Genetic constitution of industrial yeast. Microbiologia 12:371–384

    Google Scholar 

  • Bianchi MM, Ngo S, Vandenbol M, Sarton G, Morlupi A, Ricci C, Stafani S, Morlino GB, Hilger F, Carignani G, Slonimski PP, Frontali L (2001) Large-scale phenotypic analysis reveals identical contributions to cell functions of known and unknown yeast genes. Yeast 18:1397–1412

    Article  CAS  Google Scholar 

  • Bidenne C, Blondin B, Dequin S, Vézinhet F (1992) Analysis of the chromosomal DNA polymorphism of wine strains of Saccharomyces cerevisiae. Curr Genet 22:1–7

    Article  CAS  Google Scholar 

  • Blandin G, Ozier-Kalogeropoulos O, Wincker P, Artiguenave F, Dujon B (2000) Genomic exploration of the herniascornycetous yeasts: 16. Candida tropicalis. FEBS Lett 487:91–94

    Article  CAS  Google Scholar 

  • Blomberg A (1997) Osmoresponsive proteins and functional assessment strategies in Saccharomyces cerevisiae. Electrophoresis 18:1429–1440

    Article  CAS  Google Scholar 

  • Bolotin-Fukuhara M, Toffano-Nioche C, Artiguenave F, Duchateau-Nguyen G, Lemaire M, Marmeisse R, Montrocher R, Robert C, Termier M, Wincker P, Wésolowski-Louvel M (2000) Genomic exploration of the hernias corny cetous yeasts: 11. Kluyveromyces lactis. FEBS Lett 487:66–70

    Article  CAS  Google Scholar 

  • Bon E, Neuvéglise C, Casaregola S, Artiguenave F, Wincker P, Aigle M, Durrens P (2000) Genomic exploration of the hernias corny cetous yeasts: 5. Saccharomyces bayanus var. uvarum. FEBS Lett 487:37–41

    Article  CAS  Google Scholar 

  • Brejning J, Jespersen L (2002) Protein expression during lag phase and growth initiation in Saccharomyces cerevisiae. Int J Food Microbiol 75:27–38

    Article  CAS  Google Scholar 

  • Cadez N, Raspor P, de Cock AW, Boekhout T, Smith MT (2002) Molecular identification and genetic diversity within species of the genera Hansemaspora and Kloeckera. FEMS Yeast Res 1:279–289

    CAS  Google Scholar 

  • Casarégola S, Feynerol C, Diez M, Fournier P, Gaillardin C (1997) Genomic organization of the yeast Yarrow lipolytica. Chromosoma 106:380–390

    Article  Google Scholar 

  • Casarégola S, Neuvéglise C, Léplingle A, Bon E, Feynerol C, Artiguenave F, Wincker P, Gaillardin C (2000) Genomic exploration of the herniascornycetous yeasts: 17. Yarrowia lipolytica. FEBS Lett 487:95–100

    Article  Google Scholar 

  • Cavalieri D, Barberio C, Casalone E, Pinzauti F, Sebastiani E, Mortimer R, Poisinelli M (1998) Genetic and molecular diversity in Saccharomyces cerevisiae natural population. Food Technol Biotechnol 36:45–50

    CAS  Google Scholar 

  • Charron MJ, Michels CA (1987) The constitutive, glucose-repression-insensitive mutation of the yeast MAL4 locus is an alteration of the MAL43 gene. Genetics 116:23–31

    CAS  Google Scholar 

  • Charron MJ, Michels CA (1988) The naturally occurring alleles of MALI in Saccharomyces species evolved by various mutagenic processes including chromosomal rearrangement. Genetics 120: 83–93

    CAS  Google Scholar 

  • Cherry JM, Ball C, Weng S, Juvik G, Schmidt R, Adler C, Dunn B, Dwight S, Riles L, Mortimer RK, Botstein D (1997) Genetic and physical maps of Saccharomyces cerevisiae. Nature 387 suppl: 67–73

    Article  CAS  Google Scholar 

  • Chow T, Goldenthal MJ, Cohen ID, Hedge M, Marmur J (1983) Identification and physical characterization of yeast maltase structural genes. Mol Gen Genet 191: 366–71

    Article  CAS  Google Scholar 

  • Chow THC, Sollitti P, Marmur J (1989) Structure of the multigene family of MAL loci in Saccharomyces cerevisiae. Mol Gen Genet 217: 60–69

    Article  CAS  Google Scholar 

  • Codón AC, Benítez T, Korhola M (1997) Chromosomal reorganization during meiosis of Saccharomyces cerevisiae baker’s yeasts. Curr Genet 32:247–259

    Article  Google Scholar 

  • Codón AC, Gasent-Ramírez JM, Benítez T (1995) Factors which affect the frequency of sporulation and tetrad formation in Saccharomyces cerevisiae baker’s yeasts. Appl Environ Microbiol 61:630–638

    Google Scholar 

  • Danzi SE, Zhang B, and Michels CA (2000) Alterations in the Saccharomyces MALactivator cause constitutivity but can be suppressed by intragenic mutations. Curr Genet 38:233–240

    Article  CAS  Google Scholar 

  • Day RE, Rogers PJ, Dawes IW, Higgins VJ (2002) Molecular analysis of maltotriose transport and utilization by Saccharomyces cerevisiae. Appl Environ Microbiol 68:5326–5335

    Article  CAS  Google Scholar 

  • De Barros Lopes M, Bellon JR, Shirley NJ, Ganter PF (2002) Evidence for multiple interspecific hybridization in Saccharomyces sensu stricto species. FEMS Yeast Res 1:323–331

    Article  Google Scholar 

  • De Nobel H, Lawrie L, Brul S, Klis F, Davis M, Alloush H, Coote P (2001) Parallel and comparative analysis of the proteome and transcriptome of sorbic acid-stressed Saccharomyces cerevisiae. Yeast 18:1413–1428

    Article  Google Scholar 

  • Dequin S (2001) The potential of genetic engineering for improving brewing, wine-making and baking yeasts. Appl Microbiol Biotechnol 56:577–588

    Article  CAS  Google Scholar 

  • DeRisi JL, Iyer VR, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680–686

    Article  CAS  Google Scholar 

  • Dubin RA, Charron MJ, Haut SR, Needleman RB (1988) Constitutive expression of the maltose fermentation enzymes in Saccharomyces carlsbergensis is dependent upon the mutational activation of a nonessential homolog of MAL63. Mol Cell Biol 8:1027–1035

    CAS  Google Scholar 

  • Dujon B (1996) The yeast genome project: What did we learn? Trend Genet 12:263–270

    Article  CAS  Google Scholar 

  • Dutcher SK (1981) Internuclear transfer of genetic information in Karl-I/KAR heterokaryons in Saccharomyces cerevisiae. Mol Cell Biol 1:245–253

    CAS  Google Scholar 

  • Ejiofor AO, Okafor N, Ugwueze EN (1994) Development of baking yeast from Nigerian palm-wine yeast. World JMicrobiol Biotechnol 10:199–202

    Article  Google Scholar 

  • Evans IH (1990) Yeast strains for baking: recent developments. In: Spencer JET, Spencer DM (eds) Yeast technology. Spring er-Verlag, Berlin Heidelberg, pp 13–54

    Google Scholar 

  • Ezeronye OU, Okerentugba PO (2001) Genetic and physiological variants of yeast selected from palm wine. Mycopathologia 152:85–89

    Article  CAS  Google Scholar 

  • Farahnak F, Seki T, Ryu DDY, Ogrydziak D (1986) Construction of lactose-assimilating and high ethanol producing yeasts by protoplast fusion. Appl Environ Microbiol 51:362–367

    CAS  Google Scholar 

  • Featherstone DE, Broadie K (2002) Wrestling with pleiotropy: genomic and topological analysis of the yeast gene expression network. BioEssays 24:267–274

    Article  CAS  Google Scholar 

  • Feuermann M, Charbonnel L, de Montigny J, Bloch JC, Potier S, Souciet JL (1995) Sequence of a 9.8kb segment of yeast chromosome II including three genes of the MAL3 locus and three unidentified open reading frames. Yeast 11:667–672

    Article  CAS  Google Scholar 

  • Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340:245–246

    Article  CAS  Google Scholar 

  • Fromont-Racine M, Mayes A, Brunet-Simon A, Rain J-C, Colley A, Dix I, Decourty L, Joly N, Ricard F, Beggs JD, Legrain P (2000) Genome-wide protein interaction screens reveal functional networks involving Sm-like proteins. Yeast 17:95–110

    Article  CAS  Google Scholar 

  • Garrels JI, McLaughlin CS, Warner JR, Futcher B, Latter GI, Kobayashi R, Schwender B, Volpe T, Anderson DS, Mesquita-Fuentes R, Payne WE (1997) Proteome studies of Saccharomyces cerevisiae: identification of abundant proteins. Electrophoresis 18:1347–1360

    Article  CAS  Google Scholar 

  • Gibson AW, Wojciechowicz LA, Danzi SE, Zhang B, Kim JH, Hu Z, Michels CA (1997) Constitutive mutations of the Saccharomyces cerevisiae MAL-activator gene, MAL23, MAL43,MAL63, and mal64. Genetica 146: 1287–1298

    CAS  Google Scholar 

  • Godon C, Lagniel G, Lee J, Buhler JM, Kieffer S, Perrot M, Boucherie H, Toledano MB, Labarre J (1998) The H2O2 stimulon in Saccharomyces cerevisiae. J Biol Chem 273:22480–22489

    Article  CAS  Google Scholar 

  • Goffeau A (2000) Four years of post-genomic life with 6000 yeast genes. FEBS Lett 480:37–41

    Article  CAS  Google Scholar 

  • Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with 6000 genes. Science 274:563–567

    Article  Google Scholar 

  • Guijo S, Mauricio JC, Salmon JM, Ortega JM (1997) Determination of the relative ploidy in different Saccharomyces cerevisiae strains used for fermentation and ‘flor’ film ageing of dry sherry-type wines. Yeast 13:111–117

    Article  Google Scholar 

  • Gysler C, Niederberger P (2002) The development of low temperature inactive (Lti) baker’s yeast. Appl Microbiol Biotechnol 58:210–216

    Article  CAS  Google Scholar 

  • Hahn YS, Kawai H (1990) Isolation and characterization of freeze-tolerant yeast from nature available for the frozen-dough method. Agric Biol Chem 54:829–831

    CAS  Google Scholar 

  • Hammond JRM (1996) Yeast genetics. In: Priest FG, Campbell I (eds) Brewing Microbiology. Chapman and Hall, London, pp 45–82

    Google Scholar 

  • Hansen J, Kielland-Brandt MC (1996) Modification of biochemical pathways in industrial yeasts. J Biotechnol 49:1–12

    Article  CAS  Google Scholar 

  • Herskowitz I, Oshima Y (1981) Control of cell type in Saccharomyces cerevisiae: Mating type and mating-type interconversion. In: Srathern JN, Jones EW, Broach JR (eds) The molecular biology of the yeast Saccharomyces: life cycle and inheritance. Cold Spring Harbor Laboratory, New York, pp 181–209

    Google Scholar 

  • Higgins VJ, Braidwood M, Bell P, Bissinger P, Dawes IW, Attfield PV (1999a) Genetic evidence that high noninduced maltase and maltose permease activities, governed by Malx3-encoded transcriptional regulators, determine efficiency of gas production by baker’s yeast in unsugared dough. Appl Environ Microbiol 65:680–685

    CAS  Google Scholar 

  • Higgins VJ, Braidwood M, Bissinger P, Dawes IW, Attfield PV (1999b) Leu343Phe substitution in the Malx3 protein of Saccharomyces cerevisiae increases the constitutivity and glucose insensitivity of MAL gene expression. Curr Genet 35:491–498

    Article  CAS  Google Scholar 

  • Higgins VJ, Bell PJL, Dawes IW, Attfield PV (2001) Generation of a novel Saccharomyces cerevisiae strain that exhibits strong maltose utilization and hyperosmotic resistance using nonre combinant techniques. Appl Environ Microbiol 67:4346–4348

    Article  CAS  Google Scholar 

  • Hino A, Takano H, Tanaka Y (1987) New freeze-tolerant yeast for frozen dough preparations. Cereal Chem 64:269–275

    Google Scholar 

  • Hong SH, Marmur J (1986) Primary structure of the maltase gene of the MAL6 locus of Saccharomyces cerevisiae. Gene 41: 75–84

    Article  CAS  Google Scholar 

  • Hottinger H, Gysler C, Niederberger P (1998) Baker’s yeast having a low temperature inactivation property. US patent no. 5,827,724

    Google Scholar 

  • Hu Z, Nehlin JO, Ronne H, Michels CA (1995) MIG1-dependent and MIG1-independent glucose regulation of MAL gene expression in Saccharomyces cerevisiae. Curr Genet 28:258–266

    Article  CAS  Google Scholar 

  • Hughes TR with 21 others (2000) Functional discovery via a compendium of expression profiles. Cell 102:109–126

    Article  CAS  Google Scholar 

  • Inge-Vechtomov SG, Repnevskaia MV, Karpova TS (1986) Hybridization of cells of the same mating type in Saccharomyces yeasts. Genetika 22:2625–2636

    CAS  Google Scholar 

  • Ito T, Chiba T, Ozawa R, Yoshida, Hattori M, Sakaki Y (2001) A comprehensive twohybrid analysis to explore the yeast protein interactome. Proc Natl Acad sci USA 98:4569–4574

    Article  CAS  Google Scholar 

  • Ito T, Tashiro K, Muta S, Ozawa R, Chiba T, Nishizawa M, Yamamoto K, Kuhara S, Sakaki Y (2000) Toward a protein-protein interaction map of the budding yeast: a comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proc Natl Acad sci USA 97:1143–1147

    Article  CAS  Google Scholar 

  • Jacobson GK, Trivedi NB (1990) Yeast strains, method of production and use in baking. US patent 4 973 560

    Google Scholar 

  • Javadekar VS, SivaRaman H, Gokhale DV (1995) Industrial yeast strain improvement: construction of a highly flocculent yeast with a killer character by protoplast fusion. J Ind Microbiol 15:94–102

    Article  CAS  Google Scholar 

  • Johnston JR (1990) Brewing and distilling yeasts. In: Spencer JFT, Spencer DM (eds) Yeast technology. Springer-Verlag, Berlin Heidelberg, pp 55–104

    Google Scholar 

  • Johnston JR., Baccari C, Mortimer RK (2000) Genotypic characterization of strains of commercial wine yeasts by tetrad analysis. Res Microbiol 151:583–590

    Article  CAS  Google Scholar 

  • Johnston JR., Oberman H (1979) Yeast genetics in industry. In: Bull, MJ (ed) Progress in industrial microbiology. Elsevier, Amsterdam, vol 15, pp 151–205

    Google Scholar 

  • Joubert R, Brignon P, Lehmann C, Monribot C, Gendre F, Boucherie H (2000) Twodimensional gel analysis of lager brewing yeasts. Yeast 16:511–522

    Article  CAS  Google Scholar 

  • Khan NA, Eaton NR (1971) Genetic control of maltase formation in yeast. I. Strains producing high and low basal levels of enzyme. Mol Gen Genet 112:317–22

    Article  CAS  Google Scholar 

  • Kielland-Brandt MC, Nilsson-Tillgren T, Gjermnsen C, Holmberg S, Pedersen MB (1995) Genetics of brewing yeasts. In: Wheals AE, Rose AH, Harrison JS (eds) The yeasts, 2nd edn. Academic Press Inc, New York, vol 6, pp 223–254

    Google Scholar 

  • Kim J, Michels CA (1988) The MAL63 gene of Saccharomyces cerevisiae encodes a cysteine-zinc protein. Curr Genet 14:319–323

    Article  CAS  Google Scholar 

  • Korhola M (1983) Improvement of yeast strains for added ethanol tolerance. In: Korhola M, Vaisanen E (eds) Gene Expression in Yeasts. Foundation Biotech Ind Ferm Res 1:231–242

    Google Scholar 

  • Kowalczuk M, Mackiewicz P, Gierlik A, Dudek MR, Cebrat S (1999) Total number of coding open reading frames in the yeast genome. Yeast 15:1031–1034

    Article  CAS  Google Scholar 

  • Lahtchev KL, Semenova VD, Tolstorukov II, van der Klei I, Veenhuis M (2002) Isolation and properties of genetically defined strains of the methylotrophic yeast Hansenida polymorpha CBS4732. Arch Microbiol 177:150–158

    Article  CAS  Google Scholar 

  • Levine J, Tanouye L, Michels CA (1992) The UASmal is a bidirectional promoter element required for the expression of both the MAL61 and MAL62 genes of the Saccharomyces MAL6 locus. Curr Genet 22:181–189

    Article  CAS  Google Scholar 

  • Llorente B, Malpertuy A, Blandin G, Artiguenave F, Wincker P, Dujon B (2000) Genomic exploration of the hemiascomycetous yeasts: 12. Kluyveromyces marxianus var. marxlanus. FEBS Letts 487:71–75

    Article  CAS  Google Scholar 

  • Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, Mittmann M, Wang C, Kobayashi M, Horton H, Brown PO (1996) Expression monitoring by hybridization to high density oligonucleotide arrays. Nature Biotechnol 14:1675–1680

    Article  CAS  Google Scholar 

  • Loïez A, Clement P, Colavizza D (1992) Baker’s yeast strains, their process of obtention, corresponding fresh and dry yeasts. European Patent EPO 0511108

    Google Scholar 

  • Longo E, Vézinhet F (1993) Chromosomal rearrangements during vegetative growth of a wild strains of Saccharomyces cerevisiae. Appl Environ Microbiol 59:322–326

    CAS  Google Scholar 

  • Mewes HW, Albermann K, Bahr M, Frishman D, Gleissner A, Hani, J, Heumann K, Kleine K, Maierl A, Oliver SG, Pfeiffer F, Zollner A (1997) Overview of the yeast genome Nature 387 suppl: 7–8

    Article  Google Scholar 

  • Michels CA, Needleman RB (1984) The dispersed, repeated family of MAL loci in Saccharomyces spp. J Bacteriol 157: 949–952

    CAS  Google Scholar 

  • Montigny J de, Straub M-L, Potier S, Tekaia F, Dujon B, Wincker P, Artiguenave F, Souciet J-L (2000) Genomic exploration of the hemiascomycetous yeasts: 8. Zygosaccharomyces rouxii. FEBS Lett 487:52–55

    Article  Google Scholar 

  • Morgan AJ (1983) Yeast strain improvement by protoplast fusion and transformation. Experientia suppl 46:155–166

    CAS  Google Scholar 

  • Mortimer RK (2000) Evolution and variation of the yeast (Saccharomyces) genome. Genome Res 10:403–409

    Article  CAS  Google Scholar 

  • Mortimer RK, Contopoulou CR, King JS (1992) Genetic and physical maps of Saccharomyces cerevisiae, edn 11. Yeast 8:817–902

    Article  CAS  Google Scholar 

  • Mortimer RK, Johnston JR (1986) Genealogy of principle strains of the Yeast Genetic Stock Center. Genetics 113:35–43

    CAS  Google Scholar 

  • Mortimer RK, Romano P, Suzzi G, Polsinelli M (1994) Genome renewal: A new phenomenon revealed from a genetic study of 43 strains of Saccharomyces cerevisiae derived from natural fermentation of grape musts. Yeast 10:1543–1552

    Article  CAS  Google Scholar 

  • Mortimer RK, Schild D (1981) Genetic mapping in Saccharomyces cerevisiae. In: Srathern JN, Jones EW, Broach JR. (eds) The molecular biology of the yeast Saccharomyces: life cycle and inheritance. Cold Spring Harbor Laboratory, New York, pp 11–26

    Google Scholar 

  • Nakagawa S, Ouchi K (1994) Construction from a single parent of baker’s yeast strains with high freeze tolerance and fermentative activity in both lean and sweet doughs. Appl Environ Microbiol 60:3499–3502

    CAS  Google Scholar 

  • Naumov GI, Naumov ES, Schnürer (2001) Genetic characterization of the nonconventional yeast Hansenida anomala. Res Microbiol 152:551–562

    Article  CAS  Google Scholar 

  • Needleman, RB (1991) Control of maltase synthesis in yeast. Mol Microbiol 5:2079–2084

    Article  CAS  Google Scholar 

  • Neuveglise C, Feldmann H, Bon E, Gaillardin C, Casarégola S (2002) Genomic evolution of the long terminal repeat retrotransp osons in herniascornycetous yeasts. Genome Res 12:930–943

    Article  CAS  Google Scholar 

  • Nevzgliadova OV, Davydenko SG, Smirnova TI, Soidla TR (1998) Cryptic heterokaryons in Saccharomyces cerevisiae strains: Model experiments. Genetika 34:1603–1609

    CAS  Google Scholar 

  • Nevzgliadova OV, Gaivoronskii AA, Aretemov AB, Soidla TP (2002) Factors affecting the frequency of concealed heterokaryosis in Saccharomyces cerevisiae. Genetika 38:293–299

    CAS  Google Scholar 

  • Oda Y, Ouchi K (1990) Hybridization of baker’s yeast by the rare-mating method to improve leavening ability in dough. Enzyme Microbiol Technol 12:989–993

    Article  CAS  Google Scholar 

  • Olesen K, Feiding T, Gjermansen C, Hansen J (2002) The dynamics of the Saccharomyces carlsbergensis brewing yeast transcriptome during a production-scale lager beer fermentation. FEMS Yeast Res 2:563–573

    CAS  Google Scholar 

  • Oliver SG (1996) From DNA sequencing to biological function. Nature 379:597–600

    Article  CAS  Google Scholar 

  • Oliver SG (2002) Functional genomics: lessons from yeast. Phil Trans R Soc Lond B 357:17–23

    Article  CAS  Google Scholar 

  • Oliver SG, Winson MK, Kell DB, Baganz F (1998) Systematic functional analysis of the yeast genome. Trend Biotechnol 16:373–378

    Article  CAS  Google Scholar 

  • Onishi H (1990) Yeasts in fermented foods. In: Spencer JFT, Spencer DM (eds) Yeast technology. Springer-Verlag, Berlin Heidelberg, pp 167–198

    Google Scholar 

  • Ouchi K, Nishiya T, Akiyama H (1983) UV-killed protoplast fusion as a method for breeding killer yeasts. J Ferment Technol 61:631–635

    CAS  Google Scholar 

  • Parker KR, von Borstel RC (1987) Base-substitution and frameshift mutagenesis by sodium chloride and potassium chloride in Saccharomyces cerevisiae. Mutat Res 189:11–14

    Article  CAS  Google Scholar 

  • Pedersen MB (1985) DNA sequence polymorphisms in the genus Saccharomyces. II. Analysis of the genes RDNI, HIS4, LEU2 and Ty transposable elements in Carlsberg, Tuborg and 22 Bavarian brewing strains. Carlsberg Res Comun 50:263–272

    Article  CAS  Google Scholar 

  • Pedersen MB (1986) DNA sequence polymorphisms in the genus Saccharomyces. HE. Restriction endonuclease fragment patterns of chromosomal regions in brewing and other yeast strains. Carlsberg Res Commun 51:163–183

    Article  CAS  Google Scholar 

  • Pérez-Ortín JE, García-Martinez J, Alberola TM (2002) DNA chips for yeast biotechnology: The case of wine yeasts. J Biotechnol 98:227–241

    Article  Google Scholar 

  • Perkins EL, Needleman EB (1988) MAL64c is a global regulator of α-glucoside fermentation: identification of a new gene involved in melezitose fermentation. Curr Genet 13:369–375

    Article  CAS  Google Scholar 

  • Polaina J, Adam AC, del Castillo L (1993) Self-diploidization in Saccharomyces cerevisiae kar2 heterokaryons. Curr Genet 24:369–372

    Article  CAS  Google Scholar 

  • Pretorius IS (2000) Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast 16:675–729

    Article  CAS  Google Scholar 

  • Puig S, Querol A, Barrio E, Pérrez-Ortín JE (2000) Mitotic recombination and genetic changes in Saccharomyces cerevisiae during wine fermentation. Appl Environ Microbiol 6:2057–2061

    Article  Google Scholar 

  • Putrament A, Baranowska H, Ejchart A, Prazmo W (1978) Manganese mutagenesis in yeast. Methods Cell Biol 20:25–34

    Article  CAS  Google Scholar 

  • Putrament A, Baranowska H, Prazmo W (1973) Induction by manganese of mitochondrial antibiotic resistance mutation in yeast. Mol Gen Genet 126:357–366

    Article  CAS  Google Scholar 

  • Rachidi N, Barre P, Blondin B (1999) Multiple Ty-mediated chromosomal translocations lead to karyotype changes in a wine strain of Saccharomyces cerevisiae. Mol Gen Genet 261:841–850

    Article  CAS  Google Scholar 

  • Randez-Gil F, Sanz P, Prieto JA (1999) Engineering baker’s yeast: room for improvement. Trends Biotechnol 17:237–244

    Article  CAS  Google Scholar 

  • Rank GH, Casey, GP, Xiao W, Pringle AT (1991) Polymorphism within the nuclear and 2-pm genomes of Saccharomyces cerevisiae. Curr Genet 20:189–194

    Article  CAS  Google Scholar 

  • Reed G, Nagodawithana TW (1991) Yeast technology, 2nd edn. Van Nostrand Reinhold, New York

    Google Scholar 

  • Rodicio R (1986) Insertion of non-homologous DNA sequences into a regulatory gene cause a constitutive maltase synthesis in yeast. Curr Genet 11:235–241

    Article  CAS  Google Scholar 

  • Roman, H (1981) Development of yeast as an experimental organism. In: Srathern JN, Jones EW, Broach JR (eds) The molecular biology of the yeast Saccharomyces: life cycle and inheritance. Cold Spring Harbor Laboratory, New York, pp 1–10

    Google Scholar 

  • Romano P, Soli MG, Suzzi G, Grazia L, Zambonelli C (1985) Improvement of a wine Saccharomyces cerevisiae strain by a breeding program. Appl Environ Microbiol 57:830–835

    Google Scholar 

  • Ross-Macdonald P (2000) Functional analysis of the yeast genome. Func Integ Genomics 1:99–113

    Article  CAS  Google Scholar 

  • Russell I, Stewart GG (1979) Spheroplast fusion of brewer’s yeast strains. J Inst Brew 85:95–98

    Google Scholar 

  • Salmon J-M, Barre P (1998) Improvement of nitrogen assimilation and fermentation kinetics under enological conditions by derepression of alternative nitrogen-assimilatory pathways in an industrial Saccharomyces cerevisiae strain. Appl Environ Microbiol 64:3831–3837

    CAS  Google Scholar 

  • Schaffrath R, Breunig KD (2000) Genetics and molecular physiology of the yeast Kluyveromyces lactis. Fung Genet Biol 30:173–190

    Article  CAS  Google Scholar 

  • Schnettler R, Zimmermann U, Emeris CC (1984) Large scale production of yeast hybrids by electrofusion. FEMS Microbiol Lett 24:81–85

    Article  Google Scholar 

  • Schwikowski B, Uetz P, Fields S (2000) A network of protein-protein interactions in yeast. Nature Biotechnol. 18:1257–1261

    Article  CAS  Google Scholar 

  • Seoighe C, Wolfe KH (1998) Extent of genomic rearrangement after genome duplication in yeast. Proc Natl Acad sci USA 95:4447–4452

    Article  CAS  Google Scholar 

  • Shalon D, Smith SJ, Brown PO (1996) A DNA microarray system for analyzing complex DNA samples using two-colour fluorescent probe hybridization. Genome Res 6:639–645

    Article  CAS  Google Scholar 

  • Sills AM, Panchal CJ, Russell I, Stewart GG (1983) Genetic manipulation of amylolytic enzyme production by yeasts. Found Biotech Ind Ferm Res 1:209–228

    CAS  Google Scholar 

  • Sirenko OI, Needleman RB (1995) Purification and binding properties of the Mal63p activator of Saccharomyces cerevisiae. Curr Genet 27:509–516

    Article  CAS  Google Scholar 

  • Snow R (1983) Genetic improvement of wine yeast. In: Spencer JFT, Spencer DM, Smith ARW (eds)Yeast genetics-fundamental and applied aspects. Springer-Verlag, New York, pp 439–459

    Google Scholar 

  • Sollitti P, Marmur J (1988) Primary structure of the regulatory gene from the MAL6 locus of Saccharomyces carlsbergensis. Mol Gen Genet 213:56–62

    Article  CAS  Google Scholar 

  • Sor F, Fukuhara H (1989) Analysis of chromosome patterns of the genus Kluyveromyces. Yeast 5:1–10

    Article  CAS  Google Scholar 

  • Souciet J-L with 23 others (2000) Genomic exploration of the herniascornycetous yeasts: 1. A set of yeast species for molecular evolution studies. FEBS Letts 487:3–12

    Article  Google Scholar 

  • Spencer DM, Reynolds N, Spencer JFT (1990) Protoplast fusions: application to industrial yeasts. In: Spencer JFT, Spencer DM (eds) Yeast technology. Springer-Verlag, Berlin Heidelberg, pp 348–354

    Google Scholar 

  • Spencer JFT, Spencer DM (1983) Genetic improvement of industrial yeasts. Ann Rev Microbio l37:121–142.

    Article  Google Scholar 

  • Spencer JFT, Spencer DM (1990) Yeast technology. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  • Stambuk BU, de Araujo PS (2001) Kinetics of active α-glucoside transport in Saccharomyces cerevisiae. FEMS Yeast Res 1:73–78

    CAS  Google Scholar 

  • Stewart GG, Jones R, Russell I (1985) The use of derepressed yeast mutants in the fermentation of brewery wort. Proc 20th Cong Eur Brew Conv, Helsinki, pp 243–250

    Google Scholar 

  • Sychrova H, Braun V, Poteir S, Souciet J-L (2000) Organization of specific genomic regions of Zygosaccharomyces rouxii and Pichia sorbitophila: comparison with Saccharomyces cerevisiae. Yeast 16:1377–1385

    Article  CAS  Google Scholar 

  • Tamames J, Clark D, Herrero J, Dopazo J, Blaschke C, Fernandez JM, Oliveros JC, Valencia A (2002) Bioinformatics methods for the analysis of expression arrays: data clustering and information extraction. J Biotechnol 98:269–283

    Article  CAS  Google Scholar 

  • Tanghe A, Teunissen A, Van Dijck P, Thevelein JM (2000) Identification of genes responsible for improved cryoresistance in fermenting yeast cells. Int J Food Microbiol 55:259–262

    Article  CAS  Google Scholar 

  • Ten Berge AMA, Zoutewelle G, van de Poll KW (1973) Regulation of maltose fermentation in Saccharomyces carlsbergensis. II. Properties of a constitutive. MAL6-mutant. Mol Gen Genet 125:139–146

    Article  CAS  Google Scholar 

  • Teunissen A, Dumortier F, Gorwa M-F, Bauer J, Tanghe A, Loïez A, Van Dijck P, Thevelein JM (2002) Isolation and characterization of a freeze-tolerant diploid derivative of an industrial baker’s yeast strain and its use in frozen doughs. Appl Environ Microbiol 68:4780–4787

    Article  CAS  Google Scholar 

  • Trivedi N, Jacobson G, Tesch W (1986) Baker’s yeast. CRC Crit Rev Biotechnol 4:75–109

    Article  Google Scholar 

  • Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochait P, Qureshi-Emili A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, Johnston M, Fields S, Rothberg JM (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403:623–627

    Article  CAS  Google Scholar 

  • Unaldi MN, Arikan B, Coral G (2002) Isolation of alcohol tolerant, osmotolerant and thermotolerant yeast strains and improvement of their alcohol tolerance by mutagenesis. Acta Microbiol Pol 51:115–120

    Google Scholar 

  • Urano N, Sato M, Sahara H, Koshino S (1993a) Conversion of a non-flocculent brewer’s yeast to flocculent ones by electrofusion. I. Identification and characterization of the fusants by pulse field gel electrophoresis. J Biotechnol 28:237–247

    Article  CAS  Google Scholar 

  • Urano N, Sato M, Sahara H, Koshino S (1993b) Conversion of a non-flocculent brewer’s yeast to flocculent ones by electro fusion. II. Small-scale brewing by fusants. J Biotechnol 28:249–261

    Article  CAS  Google Scholar 

  • Van Dijck P, Gorwa M-F, Lemaire K, Teunissen A, Versele M, Colombo S, Dumortier F, Ma P, Tanghe A, Loiez A, Thevelein JM (2000) Characterization of a new set of mutants deficient in fermentation-induced loss of stress resistance for use in frozen dough applications. Int J Food Microbiol 55:187–192

    Article  Google Scholar 

  • Vincent SF, Bell PJL, Bissinger P, Nevalainen KMH (1999) Comparison of melibiose utilizing baker’s yeast strains produced by genetic engineering and classical breeding. Letts Appl Microbiol 28:148–152

    Article  CAS  Google Scholar 

  • Volckaert G, Voet M, Robben J (1997) Sequence analysis of a near-subtelomeric 35.4 kb DNA segment on the right arm of chromosome VII from Saccharomyces cerevisiae carrying the MAL1 locus reveals 15 complete open reading frames, including ZUO1, BGL2 and BIO2 genes and an ABC transporter gene. Yeast 13:251–259

    Article  CAS  Google Scholar 

  • Von Borstel RC (1990) Mutagenesis principles and strategies applied to yeast. In: Spencer JFT, Spencer DM (eds) Yeast technology. Springer-Verlag, Berlin Heidelberg, pp 355–365

    Google Scholar 

  • Wang J, Needleman RB (1996) Removal of a MIG1p binding site converts a MAL63 constitutive mutant derived by chromosomal gene conversion to glucose insensitivity. Genetics 142:51–63

    CAS  Google Scholar 

  • Windisch S (1962) Genetic yeast research: methods and some new results. Wallerstein Comm 24:316–323

    Google Scholar 

  • Winzeler EA, Davis RW (1997) Functional analysis of the yeast genome. Curr Opin Genet Dev 7:771–776

    Article  CAS  Google Scholar 

  • Wodicka L, Dong, H, Mittmann M, Ho M-H, Lockhart DJ (1997) Genome-wide expression monitoring in Saccharomyces cerevisiae. Nature Biotechnol 15:1359–1367

    Article  CAS  Google Scholar 

  • Wolfe KH, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387:708–713

    Article  CAS  Google Scholar 

  • Wong S, Butler G, Wolfe KH (2002) Gene order evolution and paleopolyploidy in hemiascomycete yeasts. Proc Natl Acad sci USA 99:9272–9277

    Article  CAS  Google Scholar 

  • Wu LF, Hughes TR, Davierwala AP, Robinson MD, Stoughton R, Altschuler SJ (2002) Large-scale prediction of Saccharomyces cerevisiae gene function using overlapping transcriptional clusters. Nature Genet 31:255–265

    Article  CAS  Google Scholar 

  • Young TW (1983) The properties and brewing performance of brewing yeasts possessing killer character. J Am Soc Brew Chem 41:1–4

    CAS  Google Scholar 

  • Zimmermann FK, Eaton NR (1974) Genetics of induction and catabolite repression of maltase synthesis in Saccharomyces cerevisiae. Mol Gen Genet 134:261–271

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Attfield, P.V., Bell, P.J.L. (2003). Genetics and classical genetic manipulations of industrial yeasts. In: de Winde, J.H. (eds) Functional Genetics of Industrial Yeasts. Topics in Current Genetics, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-37003-X_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-37003-X_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-02489-7

  • Online ISBN: 978-3-540-37003-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics