Skip to main content

Numerical Relativity with the Conformal Field Equations

  • Chapter
  • First Online:
Current Trends in Relativistic Astrophysics

Part of the book series: Lecture Notes in Physics ((LNP,volume 617))

Abstract

I discuss the conformal approach to the numerical simulation of radiating isolated systems in general relativity. The method is based on conformal compactification and a reformulation of the Einstein equations in terms of rescaled variables, the so-called “conformal field equations” developed by Friedrich. These equations allow to include “infinity” on a finite grid, solving regular equations, whose solutions give rise to solutions of the Einstein equations of (vacuum) general relativity. The conformal approach promises certain advantages, in particular with respect to the treatment of radiation extraction and boundary conditions. I will discuss the essential features of the analytical approach to the problem, previous work on the problem— in particular a code for simulations in 3+1 dimensions, some new results, open problems and strategies for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Choptuik: Phys. Rev. Lett. 70, 9 (1993)

    Article  ADS  Google Scholar 

  2. B. Kleihaus, J. Kunz: Phys. Rev. Lett. 78, 2527 (1997), Phys. Rev. Lett. 79 1595 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. A. Rendall, M. Weaver: Class. Quantum Grav. 18, 2959 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. R. Penrose: Phys. Rev. Lett. 10, 66 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  5. H. Friedrich, Proc. R. Soc. A375, 169 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  6. H. Friedrich, Proc. R. Soc. A378, 401 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  7. H. Friedrich, Commun. Math. Phys. 91, 445 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  8. H. Friedrich, Journal of Geometry and Physics 24, 83 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  9. H. Friedrich: gr-qc/0201006

    Google Scholar 

  10. P. Hübner, Black Class. Quantum Grav. 16, 2145 (1999)

    Article  ADS  MATH  Google Scholar 

  11. P. Hübner, Equation Class. Quantum Grav. 16, 2823 (1999)

    Article  ADS  MATH  Google Scholar 

  12. P. Hübner, Class. Quantum Grav. 18, 1421 (2001)

    Article  ADS  MATH  Google Scholar 

  13. P. Hübner, Class. Quantum Grav. 18, 1871 (2001)

    Article  ADS  MATH  Google Scholar 

  14. E. T. Newman, K. P. Tod: ‘Asymptotically Flat Space-Times’. In: General Relativity and Gravitation. ed. by A. Held (Plenum Press, New York, 1980) pp. 1–36.

    Google Scholar 

  15. R. Wald: General Relativity (University of Chicago Press, Chicago, 1984)

    MATH  Google Scholar 

  16. J. Stewart: Advanced General Relativity (Cambridge University Press, Cambridge, 1991)

    Book  Google Scholar 

  17. J. Frauendiener: LivingRev. Rel. 4, 1 (2000)

    Google Scholar 

  18. R. Penrose: Proc. R. Soc. A284 159 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  19. R. Arnowitt, S. Deser, C. W. Misner: ‘The dynamics of general relativity’. In: Gravitation: An Introduction to Current Research. ed. by L. Witten (Wiley, New York, 1962) pp. 227–265

    Google Scholar 

  20. H. Bondi, M. van der Burg, A. Metzner: Proc. R. Soc. A269, 21 (1962)

    Article  ADS  Google Scholar 

  21. R. Schoen, S. T. Yau: Commun. Math. Phys. 65, 54 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  22. G. Horowitz, M. Perry: Phys. Rev. Lett. 48, 371 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  23. H. Friedrich, ‘Einstein’s Equation and Geometric Asymptotics’. In: Proceedings of the GR-15 conference. ed. by N. Dadhich, J. Narlikar (IUCAA, Pune, 1998)

    Google Scholar 

  24. J. Frauendiener: Class. Quantum Grav. 17, 373 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. P. Hübner, M. Weaver: unpublished

    Google Scholar 

  26. J. Frauendiener: Phys. Rev. D58, 064003 (1998)

    ADS  MathSciNet  Google Scholar 

  27. J. Frauendiener: Phys. Rev. D58, 064002 (1998)

    ADS  MathSciNet  Google Scholar 

  28. A. Butscher: In: Proceedings of the International Workshop on the Conformal Structure of Spacetime. ed. by J. Frauendiener, H. Friedrich (Springer Verlag, Lecture Notes of Physics series, to be published)

    Google Scholar 

  29. L. Andersson, P. T. Chruściel, H. Friedrich: Comm. Math. Phys. 149, 587 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. J. Frauendiener: J. Comput. Appl. Math. 109, 475 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. V. Moncrief: In: Workshop on Mathematical Issues in Numerical Relativity http://online.itp.ucsb.edu/online/numrel00/moncrief/ (ITP, Santa Barbara January 10–28th, 2000)

    Google Scholar 

  32. P. Hübner: Numerische und analytische Untersuchungen von (singulären) asymptotisch flachen Raumzeiten mit konformen Techniken. PhD thesis, Ludwig-Maximilians-Universität, München, (1993)

    Google Scholar 

  33. P. Hübner, Phys. Rev. D53, 701 (1996)

    ADS  Google Scholar 

  34. M. Pürrer. Diploma thesis, University of Vienna, Vienna, in preparation

    Google Scholar 

  35. B. Schmidt: Class. Quantum Grav. 13 2811 (1996)

    Article  ADS  MATH  Google Scholar 

  36. T. Foertsch: Spacetimes AdmittingNull Infinities with Toroidal Sections. Diploma thesis, Technical University of Berlin, Berlin (1997)

    Google Scholar 

  37. J. Ehlers, W. Kundt, ‘Exact solutions of the gravitational field equations’ In: Gravitation: an introduction to current research. ed. by L. Witten (J. Wiley, New York, 1962)

    Google Scholar 

  38. P. Hübner, Class. Quantum Grav. 15, L21 (1998)

    Article  Google Scholar 

  39. R. Penrose, W. Rindler: Spinors and Spacetime, volume 2 (Cambridge University Press, Cambridge, 1986)

    Book  Google Scholar 

  40. L. N. Trefethen: SIAM Review, 24, 113 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  41. M. Hein: Numerische Simulation axialsymmetrischer, isolierter Systeme in der Allgemeinen Relativitätstheorie. Diploma thesis, University of Tübingen, Tübingen (2002)

    Google Scholar 

  42. M. Alcubierre, S. Brandt, B. Bruegmann, D. Holz, E. Seidel, R. Takahashi, J. Thornburg: Int. J. Mod. Phys. D10, 273 (2001)

    ADS  Google Scholar 

  43. B. Gustafsson, H.-O. Kreiss, J. Oliger: Time Dependent Problems and Difference Methods, (Wiley, New York, 1995)

    MATH  Google Scholar 

  44. M. Weaver: private communication

    Google Scholar 

  45. H. Friedrich: Commun. Math. Phys. 107, 587 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. S. Husa: Proceedings of the International Workshop on the Conformal Structure of Spacetime. ed. by J. Frauendiener, H. Friedrich (Springer Verlag, Lecture Notes of Physics series, to be published)

    Google Scholar 

  47. M. Alcubierre, B. Brügmann: Phys. Rev. D63, 104006 (2001)

    ADS  Google Scholar 

  48. B. Schmidt: ‘Numerical Evolution of the Kruskal Spacetime Usingthe Conformal Field Equations’. In: Proceedings of the 20th Texas Symposium on Relativistic Astrophysics. ed. by J. Craig Wheeler, H. Martel (American Institute of Physics, 2001), pp. 729–733

    Google Scholar 

  49. F. Siebel: Simultanes Numerisches Lösen von Zeitentwicklungsgleichungen und Zwangsbedingungen der Einsteinschen Feldgleichungen. Diploma thesis, LMU, Munich (1999)

    Google Scholar 

  50. P. Hübner, F. Siebel: Phys. Rev. D64, 024021 (2001)

    ADS  Google Scholar 

  51. O. Brodbeck, S. Frittelli, P. Hübner, O. Reula: J. Math. Phys. 40, 909 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. K. E. Atkinson: An introduction to numerical analysis, 2nd edn. (Wiley, New York, 1989)

    MATH  Google Scholar 

  53. M. Campanelli, R. Gomez, S. Husa, J. Winicour, Y. Zlochower: Phys. Rev. D63, 124013 (2001)

    ADS  MathSciNet  Google Scholar 

  54. S. Husa, Y. Zlochower, R. Gomez, J. Winicour: Phys. Rev. D (to be published)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Husa, S. (2003). Numerical Relativity with the Conformal Field Equations. In: Fernández-Jambrina, L., González-Romero, L.M. (eds) Current Trends in Relativistic Astrophysics. Lecture Notes in Physics, vol 617. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36973-2_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-36973-2_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-01983-1

  • Online ISBN: 978-3-540-36973-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics