Skip to main content

Mid-IR Laser Applications in Medicine

  • Chapter
  • First Online:
Solid-State Mid-Infrared Laser Sources

Part of the book series: Topics in Applied Physics ((TAP,volume 89))

Abstract

This chapter reviews medical applications of a variety of mid-infrared lasers. These applications are based on strong absorption of laser light in human tissue due to the presence of naturally occurring chromophores, specific and unspecific absorbers. Medically relevant laser-tissue interactions are described. Experimental data, obtained with free electron lasers describe photoablation quantitatively in the mid-IR as well as collateral adverse effects. Feedback technologies for online therapy control are presented; they enhance the selectivity of the laser—tissue interaction. Typical medical and surgical applications in gynecology, otorhinolaryngology, neurosurgery, dermatology, urology, dental surgery, ophthalmology and cardiovascular surgery are briefly summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Winckler, B. Golz, W. Laskowski, T. Bende: Production of photoreactiveable lesion in the yeast s. cerevisiae by irradiation with 193 nm excimer laser light, Photochem. Photobiol. 47, 225 (1988)

    Article  Google Scholar 

  2. O. Kermani, H. Lubatschowski, T. Ossaner et al.: Q-switched CTE:YAG (2, 69 μm) laser ablation: basic investigations on soft (cornea) and hard (dental) tissues. Lasers Surg. Med. 13, 537 (1993)

    Article  Google Scholar 

  3. T. Seiler, J. Marshall, S. Rothery: The potential of an infrared hydrogen fluoride (HF) laser (3 μm) for corneal surgery, Lasers Ophthalmol. 1, 49 (1986)

    Article  Google Scholar 

  4. H. Loertscher, S. Mandelbaum, R.K. Parrish et al.: Preliminary report on corneal incisions created by hydrogen fluoride laser, Am. J. Ophthalmol. 102, 217 (1986)

    Article  Google Scholar 

  5. G. Kahle, X. Daqun, T. Seiler et al.: Wundheilung der Kornea von Neuweltaffen nach.ächiger Keratektomie: Er:YAG-Eximerlaser, Fortschr. Ophthalmol. 88, 380 (1991)

    Google Scholar 

  6. B. Jean, T. Bende, M. Matallana: Corneal photoablation in vivo with the Er:YAG laser-first report, Ophthalmic Technologies V, Proc. SPIE 2393, 69–77 (1995)

    Google Scholar 

  7. B. Jean, M. Kriegerowski, M. Matallana et al.: Correction of myopia with Er:YAG laser fundamental mode. Photorefractive keratectomy, J. Refract. Surg. 11, 392 (1995)

    Google Scholar 

  8. T. Seiler, H. Schmidt-Petersen, R. Leiacker et al.: Er:YAG laser photoablation of human cornea. Brief Report, Am. J. Ophthalmol. 120, 668 (1995)

    Google Scholar 

  9. T. Bende, B. Jean, T. Oltrup: Laser thermokeratoplasty (LTK) using a CW diode laser, J. Refract. Surg. 15, 154–158 (1999)

    Google Scholar 

  10. R. Brinkmann, N. Koop, G. Geerling et al.: Diode laser thermokeratoplasty: application strategy and dosimetry J. Cataract Refract. Surg. 24, 1195–1207 (1998)

    Google Scholar 

  11. R. Brinkmann, B. Radt, C. Flammet al.: Influence of temperature and time an thermally induced forces in corneal collagen and the effect on laser thermokeratoplasty, J. Cataract Refract. Surg. 26, 744–754 (2000)

    Article  Google Scholar 

  12. F. Soergel, B. Jean, T. Seiler, T. Bende, S. Mücke, W. Pechhold, L. Pels: Dynamic mechanical spectroscopy of the cornea for measurement of its viscoelastic properties in vitro, German J. Ophthalmol. 4, 151–156 (1995)

    Google Scholar 

  13. E. Spoerl, U. Gent, K. Schmalfuß, T. Seiler: Thermo-mechanisches Verhalten der Hornhaut, Klin. Monatsbl. Augenheilkd. 208, 215 (1996)

    Google Scholar 

  14. T. Bende, T. Oltrup, B. Jean: Dielectric spectroscopy for in vivo measurements on corneal tissue, Proc. SPIE 3591, 39–44 (1999)

    Article  ADS  Google Scholar 

  15. T. Oltrup, T. Bende, K.D. Kramer, B. Jean: Dielektrische Spektroskopie zur nichtinvasiven Untersuchung von Hornhautgewebe, Biomed. Tech. 44, 78–82 (1999)

    Article  Google Scholar 

  16. J.M. Paral, Q. Ren, G. Simon: Noncontact laser photothermal keratoplasty. I: Biophysical principles and laser beam delivery system, J. Refract. Corneal Surg. 10, 511–518 (1994)

    Google Scholar 

  17. V.K. Pustovalov, B. Jean: Application of infrared lasers for transscleral cyclophotocoagulation in ophthalmology for the treatment of glaucoma and simulation of the regimes of laser action. Laser Phys. 10, 785–795 (2000)

    Google Scholar 

  18. Q. Ren, V. Venugopalan et al.: Mid-infrared laser ablation of the cornea: A comparative study, Lasers Surg. Med. 12, 274–281 (1992)

    Article  Google Scholar 

  19. M. J. Auerhammer, R. Walker, A. F.G. Van der Meer, B. Jean: Dynamic behavior of photoablation products of corneal tissue in the mid-IR: A study with FELIX, Appl. Phys. B 68, 111–117 (1999)

    Article  ADS  Google Scholar 

  20. J. Auerhammer, B. Jean, R. Walker, A. Van der Meer: Dynamic behavior of the ablation products of biological soft tissue measured with FELIX, Laser Tissue Interaction VII, Proc. SPIE 2971, 74–79 (1997)

    Google Scholar 

  21. T. Bende, B. Jean, M. Matallana, T. Seiler, R. Steiner: Feuchte Hornhaut.ächenablation mit dem Er:YAG-Laser, Ophthalmol. 91, 651–654 (1994)

    Google Scholar 

  22. T. Bende, B. Jean, M. Matallana: Wet areal ablation with the Er:YAG laser (2.94 μm): First results, Lasers Light Ophthalmol. 5, 39 (1992)

    Google Scholar 

  23. T. Bende, M. Kriegerowski, T. Seiler: Photoablation in different ocular tissues performed with an Er:YAG laser. Lasers Light Ophthalmol. 2, 263 (1989)

    Google Scholar 

  24. T. Bende, T. Seiler, J. Wollensak: Photoablation mit dem Er:YAG-Laser an okulären Geweben. Fortschr. Ophthalmol. 88, 12–16 (1991)

    Google Scholar 

  25. O. Kermani, H. Lubatschowski, T. Asshauer: Q-switched CTE:YAG (2.69 μm) laser ablation: Basic investigations on soft (corneal) and hard (dental) tissues. Laser Surg. Med. 13, 537 (1993)

    Article  Google Scholar 

  26. T. Bende, B. Jean, M. Matallana et al.: Einfluß der Pulslänge des Er:YAG Lasers auf die Photoablation in okulärem Gewebe (Kornea und Sklera). Klin. Monatsbl. Augenheilkd. 202, 52 (1993)

    Article  Google Scholar 

  27. W. B. Telfair, H. J. Hoffman: Evaluation of corneal ablation by an optical parametric oscillator (OPO) at 2.94 micron and an Er:YAG laser and comparison to ablation by a 193 nm excimer laser, Proc. SPIE 3246 (1998)

    Google Scholar 

  28. S. L. Jacques: Laser-tissue interactions: photochemical, photothermal and photomechanical, Lasers Gener. Surg. 72, 531–558 (1992)

    Google Scholar 

  29. R. S. Dingus, R. J. Scammon: Gruneisen-stress induced ablation of biological tissue, Proc. SPIE 1427, 45–54 (1991)

    Article  ADS  Google Scholar 

  30. D. Stern, C. A. Puliafito, E.T. Dobi: Infrared laser surgery of the cornea: studies with a Raman-shifted neodymium:YAG laser at 2.80 and 2.92 micron. Ophthalmol. 95, 1434–1441 (1988)

    Google Scholar 

  31. T. Bende, R. Walker, B. Jean: Thermal collateral damage in porcine corneas after photoablation with free electron laser, Refract. Corneal Surg. 11, 129 (1995)

    Google Scholar 

  32. B. Jean, T. Bende: Photoablation of gelatin with the free-electron laser between 2.7-6.7 μm. Refract. Corneal Surg. 10, 433 (1994)

    Google Scholar 

  33. R. Walker: Infrarot Photoablation am Freien Elektronen Laser, Dissertation, Univ. Tübingen (1998)

    Google Scholar 

  34. R. Walker: Photoablation in biologischen Geweben als Funktion der Wellenl änge am Elektronenstrahllaser. Thesis, MSc, Univ. Tübingen (1994)

    Google Scholar 

  35. B. Jean: Medical and surgical applications of FELS. IEEE Proc. 1995 Particle Accelerator Conference, Vol. 1, 75–79 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  36. M. Ostertag, R. Walker, H. Weber, L. Van der Meer, J. McKinley, N. Tolk, B. Jean: Photoablation in teeth with the free electron laser around the absorption peak of hydroxyapatit (9.5 μm) and between 6 and 7.5 μm, Lasers in Dentistry II, Proc. SPIE 2672, 181–192 (1996)

    Google Scholar 

  37. M. Ostertag, R. Walker, T. Bende, B. Jean: Optimizing photoablation parameters in the mid IR — a predictive model for the description of experimental data, Laser—Tissue Interaction VI, Proc. SPIE 2391, 138–149 (1995)

    Google Scholar 

  38. S. Jacques: Laser—tissue interactions — photochemical, photothermal, and photomechanical, Lasers Gener. Surg. 75, 531 (1992)

    Google Scholar 

  39. K. Nordwald, A. Holschbach, S. Lohmann et al.: Determination of acoustic shock waves generated by an (fundamental mode) Er:YAG laser in corneal photoablation, Invest. Ophthalmol. Vis. Sci. 37, S571 (1996)

    Google Scholar 

  40. B. Jean, T. Bende, M. Matallana: Noncontact photoacoustic spectroscopy during photoablation with a 193 nm excimer laser, German J. Ophthalmol. 2, 404–408 (1993)

    Google Scholar 

  41. K. Nahen, A. Vogel: Investigations on acoustic on-line monitoring of IR laser ablation of burned skin, Lasers Surg. Med. 25, 69–78 (1988)

    Article  Google Scholar 

  42. G. Edwards, R. Logan, M. Copeland: Tissue ablation by a free-electron laser tuned to the amide II band, Nature 371, 416 (1994)

    Article  ADS  Google Scholar 

  43. H. Specht, T. Bende, B. Jean, W. Fruehauf: Non contact photoacoustic spectroscopy (NCPAS) for photoablation control-data acquisition and analysis using cluster analysis, Proc. SPIE 3591, 33–38 (1999)

    Article  ADS  Google Scholar 

  44. BMBF Projekt 13N 6035 Final Report, Photablative Verfahren zur Keratorefraktions-Chirurgie mit gepulsten Lasern, Tübingen (1995)

    Google Scholar 

  45. J. E. Adducci: Gynecologic surgery using the CO2 laser, Int. Surg. 63, 72–74 (1978)

    Google Scholar 

  46. J. Fanning: Laser vaporization conisation, J. Reprod. Med. 37, 534–536 (1992)

    Google Scholar 

  47. G. T. Absten: Physics of light and lasers, Obstet. Gynecol. Clin. North Am. 18, 407–427 (1991)

    Google Scholar 

  48. D. E. Townsend, E. J. Marks: Cryosurgery and the CO2 laser, Cancer 48, Suppl. 2, 632–637 (1981)

    Article  Google Scholar 

  49. D.E. Brenner: Carcinoma of the cervix-a review, Am. J. Med. Sci. 284, 31–48 (1982)

    Article  Google Scholar 

  50. M. S. Baggish, J.H. Dorsey, M. Adelson: A ten-year experience treating cervical intraepithelial neoplasia with the CO2 laser, Am. J. Obstet. Gynecol. 161, 60–68 (1989)

    Google Scholar 

  51. G. A. McIndoe, M. S. Robson, J.A. Tidy, W.P. Mason, M.C. Anderson: Laser excision rather than vaporization: the treatment of choice for cervical intraepithelial neoplasia, Obstet. Gynecol. 74, 1965–1968 (1989)

    Google Scholar 

  52. L. Kjellberg, G. Wadell, F. Bergman, M. Isaksson, T. Angström, J. Dillner: Regular disappearance of the human papillomavirus genome after conization of cervical dysplasia by carbon dioxide laser, Am. J. Obstet. Gynecol. 183, 1238–1242 (2000)

    Article  Google Scholar 

  53. B. Blümel, J. Nieder, O. Stefanovic, W. Weise: Lasereinsatz an der Cervix uteri, CO2-oder KTP-Laser; Laser use in the uterine cervix, CO2 or KTP laser, Z. Gyn. 118, 458–461 (1996)

    Google Scholar 

  54. A. Bar-Am, Y. Daniel, I.G. Ron, J. Niv, M. J. Kupferminc, J. Bornstein, J. B. Lessing: Combined spectroscopy, loop conization, and laser vaporization reduces recurrent abnormal cytology and residual disease in cervical dysplasia, Gynecol. Oncol. 78, 47–51 (2000)

    Article  Google Scholar 

  55. D. E. Townsend, R.U. Levine, C.P. Crum, R. M. Richart: Treatment of vaginal carcinoma in situ with the carbon dioxide laser, Am. J. Obstet. Gynecol. 143, 565–568 (1982)

    Google Scholar 

  56. T. M. McGee, E.A. Diaz-Ordaz, J.M. Kartush: The role of KTP laser in revision stapedectomy, Otolaryngol. Head Neck Surg. 109, 839–843 (1993)

    Google Scholar 

  57. C. L. Strunk, Jr, F.B. Quinn, Jr: Stapedectomy surgery in residency: KTP-532 laser versus argon laser, Am. J. Otol. 14, 113–117 (1993)

    Google Scholar 

  58. S. Kodali, S.A. Harvey, T.E. Prieto: Thermal effects of laser stapedectomy in an animal model: CO2 versus KTP, Laryngoscop. 107, 1445–1450 (1997)

    Article  Google Scholar 

  59. S. G. Lesinski, A. Palmer: Lasers for otosclerosis: CO2 vs. argon and KTP-532, Laryngoscope 99, Suppl. 45, 1–8 (1989)

    Google Scholar 

  60. M. Barbara, A. Caggiati, F. Attanasio, R. Filipo: Effect of mechanical trauma on the stapedial footplate after stapedectomy. A scanning electron microscopic study, ORL J. Otorhinolaryngol. Relat. Spec. 52, 286–291 (1990)

    Google Scholar 

  61. B. Kotecha, S. Paun, P. Leong, C. B. Croft: Laser assisted uvulopalatoplasty: An objective evaluation of the technique and results, Clin. Otolaryngol. All. Sci. 23, 354–359 (1998)

    Article  Google Scholar 

  62. C. Nueruntarat: Laser-assisted uvulopalatoplasty: Short-term and long-term results, Otolaryngol. Head Neck Surg. 124, 90–93 (2001)

    Article  Google Scholar 

  63. M. Littner, C.A. Kushida, K. Hartse, W.M. Anderson, D. Davila, S. F. Johnson, M. S. Wise, M. Hirshkowitz, B.T. Woodson: Practice parameters for the use of laser-assisted uvulopalatoplasty: an update for 2000, LARYA8

    Google Scholar 

  64. S. G. Lesinski: Lasers for otosclerosis-which one if any and why, Lasers Surg. Med. 10, 448–457 (1990)

    Article  Google Scholar 

  65. M. Kautzky, A Trödhan, M. Susani, P. Schenk: Infrared laser stapedotomy, Eur. Arch. Otorhinolaryngol. 248, 449–451 (1991)

    Article  Google Scholar 

  66. G.D. Casper, L. L. Mullins, V. Hartmann: Laser-assisted disc decompression: A clinical trial of the holmium:YAG laser side-firing fiber, J. Clin. Laser Med. Sur. 13, 27–31 (1995)

    Google Scholar 

  67. R. Kaufmann, A. Hartmann, R. Hibst: Cutting and skin-ablative properties of pulsed mid-infrared laser surgery, J. Dermatol. Surg. Oncol. 20, 112–118 (1994)

    Google Scholar 

  68. S. B. Jian, V. J. Levine, K. S. Nehal, M. Baldassano, H. Kamino, R.A. Ashino.: Er:YAG laser for the treatment of actinic keratoses, Dermatol. Surg. 26, 437–440 (2000)

    Article  Google Scholar 

  69. J.B. Newman, J. L. Lord, K. Ash, D. H. McDaniel: Variable pulse erbium:YAG laser skin resurfacing of perioral rhytides and side-by-side comparison with carbon dioxide laser, Lasers Surg. Med. 26, 208–214 (2000)

    Article  Google Scholar 

  70. B. S. Biesman: Cutaneous facial resurfacing with the carbon dioxide laser, Ophthalmol. Laser. 27, 685–698 (1996)

    Google Scholar 

  71. R. E. Fritzpatrick: Depth of vaporation and residual thermal damage using multiple passes of ultrapulse CO2 laser, Lasers Surg. Med. 21, Suppl. 9, 31 (1997)

    Google Scholar 

  72. C. Weinstein, M. Scheflan: Simultaneously combined Er:YAG and carbon dioxide laser (derma K) for skin resurfacing, Clin. Plast. Surg. 27, 273–285 (2000)

    Google Scholar 

  73. B. Majaron, W. Verkruysse, K.M. Kelly, J. S. Nelson: Er:YAG laser skin resurfacing using repetitive long-pulse exposure and cryogen spray cooling: II. Theretical analysis, Lasers Surg. Med. 28, 131–137 (2001)

    Article  Google Scholar 

  74. B. Majaron, K. M. Kelly, H.B. Park, W. Verkruysse, J. S. Nelson: Er:YAG laser skin resurfacing using repetitive long-pulse exposure and cryogen spray cooling: I. Histological study, Lasers Surg. Med. 28, 121–130 (2001)

    Article  Google Scholar 

  75. J. E. Kopelman: Aesthetic facial skin resurfacing, the Er:YAG Laser versus the ultrapulsed carbon dioxide laser, Ophthalmic Clin. North Am. 11, 257–266 (1998)

    Article  Google Scholar 

  76. K. M. Bhatta: Lasers in urology, Lasers Surg. Med. 16, 312–330 (1995)

    Article  Google Scholar 

  77. M. Kitagawa, H. Furuse, K. Fukuta, Y. Aso: HO:YAG laser resection of the prostate versus visual laser ablation of the prostate and transurethral ultrasound-guided laser induced prostatectomy: A retrospective comparative study, Int. J. Urol. 5, 152–156 (1998)

    Article  Google Scholar 

  78. H. Schulze: TULIP, Transurethral ultrasound-guided laser-induced prostatectomy, World J. Urol. 13, 94–97 (1995)

    Article  Google Scholar 

  79. W. Hochreiter, C. Hugonnet, U.E. Studer: Transurethrale Resektion der Prostata mit dem Holmium-Kontaktlaser. Ein Fortschritt in der Behandlung der BPH? Transurethral resection of the prostate with the Holmium contact laser. Progress in treatment of benign prostatic hypertrophy, Urologe A 38, 156–161 (1999)

    Article  Google Scholar 

  80. R. Hibst: Untersuchungen zur Klinischen Anwendbarkeit der Gewebeablation, in Angewandte Lasermedizin II, H.P. Berlien, G. Müller (Eds.) (Econ, Munich 1989)

    Google Scholar 

  81. G. I. D’yakonow, V. I. Konov, V. A. Mikhailov, S. K. Pak, I. A. Shcherbakov, Cr, Er:YSGG lasers as an instrument for dental surgery, in S.I. O’Brien, D. N. Dederich, H. Wigdor, A.M. Trent (Eds.), Lasers in orthopedic, dental and veterinary medicine. Proc. SPIE 1424, 81–86 (1991)

    Google Scholar 

  82. M. Kautzky, M. Susani, P. Schenk: Ho:YAG infrarot Laser und UV-Excimer, Laser Effekte auf orale Schleimhautgewebe, Laryngorhinootol. 71, 347–352 (1992)

    Article  Google Scholar 

  83. K. K.-F. Roth: Die Bearbeitung von Zahnhartgeweben mit Lasern der infraroten Spectralbereiches. Habilitationschrift, FB Medizin, Univ. Hamburg (1991)

    Google Scholar 

  84. E. Tasev, L. Delacretaz, L. Wöste: Drilling in human enamel and dentin with lasers: A comparative study. in: S. N. Joffe, K. Atsumi (Eds.), Laser Surgery: Advanced Characterization, Therapeutics and Systems II, Proc. SPIE 1200, 437–445 (1990)

    Google Scholar 

  85. M. H. Niemz, L. Eisenmann, T. Pioch: Vergleich von drei Lasersystemen zur Abtragung von Zahnschmelz, Schweiz. Monatsschr. Zahnmed. 103, 1252–1256 (1993)

    Google Scholar 

  86. K. U. Koster: Photoablation mit dem FEL an Zahnhartsubstanzen (Dentin, Schmelz)-Untersuchung der Ablationsrate als Funktion der Wellenlänge. Dissertation, Univ. Tübingen (1998)

    Google Scholar 

  87. M. Ostertag, R. Walker, H. Weber, L. Van der Meer, J.Mc Kinley, N. Tolk, B. Jean: Ablation in teeth with the free electron laser around the absorption peak of hydroxyapatit (9.5 μm) and between 6.0 and 7.5 μm, Laser in Dentistry II, Proc. SPIE 2672, 61–67 (1996)

    Google Scholar 

  88. K. Schwenzer: Zahnhartsubstanz Ablation mit dem Freien Elektronenlaser im Infrarot. Dissertation, Univ. Tübingen (1996)

    Google Scholar 

  89. Q. Ren, V. Venugopalan, K. Schomacker, T. F. Deutsch, T. J. Flotte, C.A. Puliafito, R. Birngruber: Mid-infrared laser ablation of the cornea: A comparative study, Lasers Surg. Med. 12, 274–281 (1992)

    Article  Google Scholar 

  90. T. S. Dietlein, P.C. Jacobi, G.K. Krieglstein: Ab interno infrared laser trabecular ablation: Preliminary shortterm results in patients with open-angle glaucoma, Graefes Arch. Clin. Exp. Ophthalmol. 235, 349–353 (1997)

    Article  Google Scholar 

  91. S.A. Ozler, R.A. Hill, J. J. Andrews, G. Baerveldt, M.W. Berns: Infrared laser sclerostomies, Invest. Ophthalmol. Vis. Sci. 31, 2498–2502 (1991)

    Google Scholar 

  92. T. S. Dietlein, P.C. Jacobi, G.K. Krieglstein: Er:YAG laser ablation on human trabecular meshwork by contract delivery endoprobes, Ophthalmol. Surg. Laser. 27, 939–945 (1996)

    Google Scholar 

  93. T. S. Dietlein, P.C. Jacobi, R. Schröder, G.K. Krieglstein: Experimental Er:YAG laser photoablation of trabecular meshwork in rabbits: An in vivo study, Exp. Eye Res. 64, 701–706 (1997)

    Article  Google Scholar 

  94. J. Kampmeier, M. Klafke, R. Hibst, S.Wierschin, E. Schütte, R. Steiner: Modi fizierte Strahlungsapplikation bei der Er:YAG-Laser-abexterno-Sklerostomie, Klin. Monatsbl. Augenheilkd. 211, 48–52 (1997)

    Article  Google Scholar 

  95. P. C. Jacobi, T. S. Dietlein, T. Colling, G.K. Krieglstein: Photoablative lasergrid trabeculectomy in glaucoma filtering surgery: Histology and outflow facility measurements in porcine cadaver eyes, Ophthalmol. Surg. Lasers 31, 49–54 (2000)

    Google Scholar 

  96. H. Loertscher, S. Mandelbaum, J. M. Parel, R.K. Parrish 2nd: Noncontact trepination of the cornea using a pulsed hydrogen fluoride laser, Am. J. Ophthalmol. 104, 471–475 (1987)

    Google Scholar 

  97. K.P. Thompson, E. Barraquer, J.M. Parel, H. Loertscher, S. Pflugfelder, T. Roussel, S. Holland, K. Hanna: Potential use of lasers for penetrating keratoplasty, J. Cat. Refract. Surg. 15, 397–403 (1989)

    Google Scholar 

  98. L. T. Sperber, J. M. Dodick: Laser therapy in cataract surgery, Curr. Opin. Ophthalmol. 5, 105–109 (1994)

    Google Scholar 

  99. B. S. Ross, C.A. Puliafito: Erbium YAG and holmium YAG laser ablation of the lens, Lasers Surg. Med. 15, 74 (1994)

    Article  Google Scholar 

  100. W. Wetzel, R. Brinkmann, N. Koop et al.: Photofragmentation of lens nuclei using the Er:YAG laser: Preliminary report of an in vitro study, J. Ophthalmol. 5, 281 (1996)

    Google Scholar 

  101. H. J. Geschwind, J. I. Dubois-Rande, D. Murphy-Chutorian, T. Tomaru, R. Zelinsky, D. Loisance: Percutaneous coronary angioplasty with mid-infrared laser and a new multifibre catheter, Lancet 336, 245–246 (1990)

    Article  Google Scholar 

  102. R.R. Heuser, S. S. Mehta: Holmium laser angioplasty after failed coronary balloon dilation: Use of a new solid-state, infrared laser system, Cathet. Cardiovasc. Diagn. 23, 187–189 (1991)

    Article  Google Scholar 

  103. H. J. Geschwind, T. Tomaru, F. Nakamura, J. Kvasnicka: Holmium YAG laser coronary angioplasty with multifiber catheters, J. Intervent. Cardiol. 4, 171–179 (1991)

    Article  Google Scholar 

  104. O. Topaz, M. Mclvor, G.W. Stone, M.W. Kruco., E. C. Perin, A. E. Foschi, J. Sutton, R. Nair, E. deMarchena: Acute results, complications, and effect of lesion characteristics on outcome with the solid-state, pulsed-wave, midinfrared laser angioplasty system: Final multicenter registry report. HO:YAG Laser Multicenter Investigators, Lasers Surg. Med. 22, 228–239 (1998)

    Article  Google Scholar 

  105. L. van Erven, T.G. van Leeuwen, M. J. Post, M. J. van der Veen, E. Velema, C. Borst: Mid-infrared pulsed laser ablation of the arterial wall. Mechanical origin of “acoustic” wall damage and its effect on wall healing, J. Thorac. Cardiovasc. Surg. 104, 1053–1059 (1992)

    Google Scholar 

  106. B. Jean, R. Walker, M. Ostertag, T. Bende, M. Wehrmann, L. Van der Meer, K. Karsch: Photoablation in atherosclerotic plaque at 9.5 μm with the free electron laser FELIX, Proc. SPIE 2681, 245–251 (1996)

    Article  ADS  Google Scholar 

  107. R.A. Hartman, P. Whittaker: The physics of transmyocardial laser revascularization, J. Clin. Laser Med. Surg. 15, 255–259 (1997)

    Google Scholar 

  108. B. Jean, G. Valet: unpublished data

    Google Scholar 

  109. D. C. Lamb, L. Reinisch, J. Tribble, R.H. Orso., T. J. Flotte, A.G. Doukas: The FEL as the ideal stress-wave generator, SPIE Intern. Symp. Biomed. Optics, (suppl), 2391, 192–301 (1995)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jean, B., Bende, T. (2003). Mid-IR Laser Applications in Medicine. In: Sorokina, I.T., Vodopyanov, K.L. (eds) Solid-State Mid-Infrared Laser Sources. Topics in Applied Physics, vol 89. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36491-9_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-36491-9_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00621-3

  • Online ISBN: 978-3-540-36491-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics