Skip to main content

Mid-Infrared 2—5 μm Heterojunction Laser Diodes

  • Chapter
  • First Online:
Solid-State Mid-Infrared Laser Sources

Part of the book series: Topics in Applied Physics ((TAP,volume 89))

Abstract

High performance mid-infrared (2–5 μm) laser diodes are needed for applications such as high resolution and high sensitivity chemical gas analysis and atmospheric pollution monitoring. The goal is to obtain continuous wave laser emission at room temperature, with output power > 1 mW. Different technologies are under investigation to reach this objective. The GaInAsSb/AlGaAsSb strained multi-quantum-well laser showed striking results in CW operation at and above room temperature and appears as a well established technology for laser emission in the 2.0–2.7 μm wavelength range. Beyond 2.7 μm, the IV–VI lasers based on the PbSe/PbSrSe system, type-II “W” quantum well lasers based on the InAs/GaInSb system, and type-II interband and intersubband III–V cascade lasers, are competitive technologies. They could all operate at room temperature or near room temperature, but only in the pulsed regime. This paper presents an overview of the state of the art of these different mid-infrared systems emitting in the 2–5 μm wavelength range. Two heterojunction laser technologies are detailed: the 2–3 μm GaInAsSb multi-quantum-well laser, and the 3–5 μm type-II and type-II “W” laser diodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.A. Gebbie, W.R. Harding, C. Hilsum, A.W. Pryce, V. Roberts: Atmospheric transmission in the 1 to 14μ region, Proc. Soc. A 206, 87 (1951)

    Article  ADS  Google Scholar 

  2. L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D.C. Benner, V.M. Devi, J.M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L.R. Brown, R.A. Toth: The HITRAN molecular data base: editions of 1991 and 1992, J. Quantum Spectrosc. Radiat. Transfer 48, 469 (1992)

    Article  ADS  Google Scholar 

  3. H. I. Schiff, G. I. Mackay, J. Bechara: The use of tunable diode laser absorption spectroscopy for atmospheric measurements, in Air Monitoring by Spec-troscopy Techniques, M. W. Sigrist (Ed.) (Wiley, New York 1994)

    Google Scholar 

  4. D.Z. Garbuzov, H. Lee, V. Khalfin, R. Martinelli, J.C. Connolly, G.L. Belenky: 2.3-2.7 μm room temperature CW operation of InGaAsSb-AlGaAsSb broad waveguide SCH-QW diode lasers, IEEE Photon. Technol. Lett. 11, 794–796 (1999)

    Article  ADS  Google Scholar 

  5. I. Melngailis: Maser action in InAs diodes, Appl. Phys. Lett. 2, 176–178 (1963)

    Article  ADS  Google Scholar 

  6. J. Phelan, A.R. Calawa, R.H. Rediker, R. J. Keyes, B. Lax: Infrared InSb laser diodes in high magnetic fields, Appl. Phys. Lett. 3, 143–145 (1963)

    Article  ADS  Google Scholar 

  7. C. B. Guillaume, P. Lavallard: Laser effect in indium antimonide, Solid State Commun. 1, 148–151 (1963)

    Article  ADS  Google Scholar 

  8. J. F. Butler, A.R. Calawa, R.J. Phelan, T. C. Harman, A. J. Strauss, R. H. Rediker: PbTe diode laser, Appl. Phys. Lett. 5, 75–77 (1964)

    Article  ADS  Google Scholar 

  9. Y. Horikoshi: Semiconductor lasers with wavelengths > 2 μm, in Semiconductors and Semimetals 22, W. T. Tsang (Ed.) (Academic Press, London 1985) pp. 93–151

    Google Scholar 

  10. D. L. Partin, C. M. Trush: Wavelength coverage of lead-europium-selenide-telluride diode lasers, Appl. Phys. Lett. 45, 193–195 (1984)

    Article  ADS  Google Scholar 

  11. H. Preir: Physics and applications of IV-VI compound semiconductor lasers, Semicond. Sci. Technol. 5, S12–S20 (1990)

    Article  ADS  Google Scholar 

  12. C. Caneau, A. K. Srivastava, A. G. Dentai, J. L. Zyskind, M. A. Pollack: Room temperature GaInAsSb/AlGaAsSb DH injection lasers at 2.2 μm, Electron. Lett. 21, 815–817 (1985)

    Article  ADS  Google Scholar 

  13. A. N. Baranov, T. N. Danilova, B. E. Dzhurtanov, A. N. Imenkov, S. G. Konnikov, A. M. Litvak, V. E. Umanskii, Yu. P. Yakovlev: CW lasing in GaInAsSb/GaSb buried channel laser (T = 20°, λ = 2.0 μm), Sov. Techn. Phys. Lett. 14, 727–730 (1988)

    Google Scholar 

  14. A. E. Bochkarev, L. M. Dolginov, A. E. Drakin, P. G. Eliseev, B. N. Sverdlov: Continuous-wave lasing at room temperature in InGaSbAs/GaAlAsSb injection heterostructures emitting in the spectral rang 2.2-2.4 μm, Sov. Techn. Phys. Lett. 14, 727–730 (1988)

    Google Scholar 

  15. A. N. Baranov, E. A. Grebenschikova, B. E. Dzurthanov, T. N. Danilova, A. N. Imenkov, Yu. P. Yakovlev: Long wavelength lasers based on GaInAsSb solid solutions near the immiscibility boundary (λ ≈ 2.5 μm; T = 300 K), Sov. Tech. Phys. Lett. 14, 798–800 (1988)

    Google Scholar 

  16. A. N. Baranov, C. Fouillant, P. Grunberg, J. L. Lazzari, S. Gaillard, A. Joullié: High temperature operation of GaInAsSb/AlGaAsSb double heterostructure lasers emitting near 2.1 μm, Appl. Phys. Lett. 65, 616–617 (1994)

    Article  ADS  Google Scholar 

  17. H. Mani, A. Joullié, G. Boissier, E. Tourniè, F. Pitard, A.M. Joullié, C. Alibert: New III-V double heterojunction laser emitting near 3.2 μm, Electron. Lett. 24, 1542–1543 (1988)

    Article  Google Scholar 

  18. A.N. Baranov, A.N. Imenkov, V.V. Sherstnev, Yu.P. Yakovlev: 2.7-3ÿ.9 μm InAsSb(P)/InAsSbP low threshold diode lasers, Appl. Phys. Lett. 64, 2480–2482 (1994)

    Article  ADS  Google Scholar 

  19. A.N. Baranov, B.E. Dzhurtanov, A.N. Imenkov, A.A. Rogachev, Yu.M. Shernyakov, Yu. P. Yakovlev: Generation of coherent radiation in a quantum-well structure with one heterojunction, Sov. Phys. Semicond. 20, 1385–1389 (1986)

    Google Scholar 

  20. K.D. Moiseev, M. P. Mikhailova, O.G. Ershov, Yu.P. Yakovlev: Long-wavelength laser (3.26 μm) with a single isolated p-GaInAsSb/p-InAs type-II heterojunction in the active region, Tech. Phys. Lett. 21, 482–483 (1995)

    ADS  Google Scholar 

  21. G. Bauer, M. Kriechbaum, Z. Shi, M. Tacke: IV-VI quantum wells for infrared lasers, J. Nonlinear Opt. Phys. Mater. 4, 283–312 (1995)

    Article  ADS  Google Scholar 

  22. Z. Shi, M. Tacke, A. Lambrecht, H. Böttner: Midinfrared lead salt multi-quantum-well diode lasers with 282 K operation, Appl. Phys. Lett. 66, 2537–2539 (1995)

    Article  ADS  Google Scholar 

  23. M. Tacke: Lead salt lasers, Philos. Trans. R. Soc. London A 359, 547–566 (2001)

    Article  ADS  Google Scholar 

  24. M. Zandian, J.M. Arias, R. Zucca, R.V. Gil, S.H. Shin: HgCdTe double heterostructure injection laser grown by molecular beam epitaxy, Appl. Phys. Lett. 59, 1022–1024 (1991)

    Article  ADS  Google Scholar 

  25. J. M. Arias, M. Zandian, R. Zucca, J. Singh: HgCdTe infrared diode lasers grown by MBE, Semicond. Sci. Technol. 8, S255–S260 (1993)

    Article  ADS  Google Scholar 

  26. E. P. O’Reilly, A. R. Adams: Band structure engineering in strained semiconductor lasers, IEEE J. Quantum Electron. 30, 366–379 (1994)

    Article  ADS  Google Scholar 

  27. C. R. Ram-Mohan, J. R. Meyer: Multiband finite element modeling of wave-function engineered electro-optical devices, J. Nonlinear Opt. Phys. Mater. 4, 191–243 (1995)

    Article  ADS  Google Scholar 

  28. J. R. Meyer, C. A. Hoffman, F. J. Bartoli, L. R. Ram-Mohan: Type-II quantum well lasers for the mid-wavelength infrared, Appl. Phys. Lett. 67, 757–759 (1995)

    Article  ADS  Google Scholar 

  29. H. Lee, L.J. Olafsen, R.J. Menna, W.W. Bewley, R.U. Martinelli, I. Vurgaftman, D. Z. Garbuzov, C. L. Felix, M. Maiorov, J. R. Meyer, J. C. Connolly, A. R. Stugg, G. H. Olsen: Room-temperature type-II quantum well diode laser with broadened waveguide emitting at λ = 3.30 μm, Electron. Lett. 35, 1743–1745 (1999)

    Article  Google Scholar 

  30. W.W. Bewley, H. Lee, I. Vurgaftman, R. J. Menna, C.L. Felix, R.U. Martinelli, D.W. Stokes, D.Z. Garbuzov, J. R. Meyer, M. Maiorov, J.C. Connolly, A. R. Stugg, G. H. Olsen: Continuous-wave operation of λ = 3.25 μm broadened-waveguide W quantum-well diode lasers up to T = 195 K, Appl. Phys. Lett. 76, 256–258 (2000)

    Article  ADS  Google Scholar 

  31. B.I. Vurgaftman, C.L. Felix, W.W. Bewley, D.W. Stokes, R.E. Bartolo, J. R. Meyer: Mid-infrared “W” lasers, Philos. Trans. R. Soc. London A 359, 489–503 (2001)

    Article  ADS  Google Scholar 

  32. R. Q. Yang: Infrared lasers based on intersubband transitions in quantum wells, Superlattice Microstr. 17, 77–83 (1995)

    Article  ADS  Google Scholar 

  33. R. Q. Yang, J. D. Bruno, J. L. Bradshaw, J. T. Pham, D. E. Wortman: High-power interband cascade lasers with quantum efficiency > 450%, Electron. Lett. 35, 1254–1255 (1999)

    Article  Google Scholar 

  34. R.Q. Yang, J.D. Bruno, J.L. Bradshaw, J.T. Pham, D.E. Wortman: Interband cascade lasers: progress and challenges, Physica E 7, 69–75 (2000)

    Article  ADS  Google Scholar 

  35. J.D. Bruno, J.L. Bradshaw, R. Q. Yang, J.T. Pham, D.E. Wortman: Low-threshold interband cascade lasers with power efficiency exceeding 9%, Appl. Phys. Lett. 76, 3167–3169 (2000)

    Article  ADS  Google Scholar 

  36. J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A. L. Hutchinson, A.Y. Cho: Quantum cascade laser, Science 264, 553–556 (1994)

    Article  ADS  Google Scholar 

  37. C. Gmachl, A. Tredicucci, F. Capasso, A.L. Hutchinson, D.L. Sivco, J. N. Baillargeon, A. Y. Cho: High power λ ≈ 8 μm quantum cascade lasers with near optimum performance, Apl. Phys. Lett. 72, 3130–3132 (1998)

    Article  ADS  Google Scholar 

  38. J. Faist, F. Capasso, D.L. Sivco, A.L. Hutchinson, S.-N. G. Chu, A.Y. Cho: Short wavelength (λ ≈ 3.4 μm) quantum cascade laser based on strain-compensated InGaAs/AlInAs, Appl. Phys. Lett. 72, 680–682 (1998)

    Article  ADS  Google Scholar 

  39. F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A.L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, H. C. Liu: New frontiers in quantum cascade lasers and applications, IEEE J. Sel. Topics Quantum Electron. 6, 931–947 (2000)

    Article  Google Scholar 

  40. F. Q. Liu, Y. Z. Zhang, Q. S. Zhang, D. Ding, Bo Xu, Z. G. Wang, D. S. Jiang, B. Q. Sun: High-performance strain-compensated InGaAs/InAlAs quantum cascade lasers, Semicond. Sci. Technol. 15, L44–L46 (2000)

    Article  ADS  Google Scholar 

  41. A.Y. Cho, D.L. Sivco, H.M. Gmachl, A. Tredicucci, A.L. Hutchinson, S. N. G. Chu, F. Capasso: Quantum devices, MBE technology for the 21st century, J. Crystal Growth 227/228, 1–7 (2001)

    Article  Google Scholar 

  42. B. Ishaug, W. Y. Hwang, J. Um, B. Guo, H. Lee, C. H. Lin: Continuous-wave operation of a 5.2 μm quantum-cascade laser up to 210 K, Appl. Phys. Lett. 79, 1745–1747 (2001)

    Article  ADS  Google Scholar 

  43. H. K. Choi, S.J. Eglash: High power multiple quantum well GaInAsSb/AlGaAsSb diode lasers emitting at 2.1 μm with low threshold current density, Appl. Phys. Lett. 61, 1154–1156 (1992)

    Article  ADS  Google Scholar 

  44. H. K. Choi, G. W. Turner, S. J. Eglash: High-power GaInAsSb-AlGaAsSb multiple quantum well diode lasers emitting at 1.9 μm, IEEE Photon. Technol. Lett. 6, 7–9 (1994)

    Article  ADS  Google Scholar 

  45. H. Lee, P.K. York, R. J. Menna, R.U. Martinelli, D.Z. Garbuzov, S.Y. Narayan, J. C. Connolly: Room temperature 2.78 μm AlGaAsSb/InGaAsSb quantum well lasers, Appl. Phys. Lett. 66, 1942–1944 (1995)

    Article  ADS  Google Scholar 

  46. A. N. Baranov, N. Bertru, Y. Cuminal, G. Boissier, Y. Rouillard, J. C. Nicolas, P. Grech, A. Joullié, C. Alibert: Mid-infrared GaSb-InAs based multiple quantum well lasers, Proc. SPIE 3284, 247–257 (1998)

    Article  ADS  Google Scholar 

  47. A. Joullié: New developments in mid-infrared Sb-based lasers, J. Phys. IV (Paris) 9, Pr2.79–Pr2.96 (1999)

    Google Scholar 

  48. D. A. Yarekha, G. Glastre, A. Perona, Y. Rouillard, F. Genty, E. M. Skouri, G. Boissier, P. Grech, A. Joullié, C. Alibert, A. N. Baranov: High temperature GaInAsSb/GaAlAsSb quantum well singlemode continuous wave lasers emitting near 2.3 μm, Electron. Lett. 36, 537–539 (2000)

    Article  Google Scholar 

  49. D.A. Yarekha, A. Vicet, A. Perona, G. Glastre, B. Fraisse, Y. Rouillard, E.M. Skouri, G. Boissier, P. Grech, A. Joullié, C. Alibert, A.N. Baranov: High efficiency GaInAsSb/GaSb type-II quantum well continuous wave lasers, Semicond. Sci. Technol. 15, 390–394 (2000)

    Article  ADS  Google Scholar 

  50. J. Bhan, A. Joullié, H. Mani, A.M. Joullié, C. Alibert: III-V heterostructures for laser emission in 2.55 wavelength region, Materials and Technologies for Optical Communications Proc. SPIE 866, 126–134 (1987)

    Google Scholar 

  51. Y. Tsou, A. Ichii, E. M. Garmire: Improving InAs double heterostructure lasers with better confinement, IEEE J. Quantum Electron. 28, 1261–1268 (1992)

    Article  ADS  Google Scholar 

  52. G. P. Agrawal, N. K. Dutta: Long wavelength semiconductor lasers, Sanjit Mitra (Ed.) (Van Nostrand Reinhold, New York 1986)

    Google Scholar 

  53. A. Haug: Auger recombination in quantum well semiconductors: calculation with realistic energy bands, Semicond. Sci. Technol. 7, 1337–1340 (1992)

    Article  ADS  Google Scholar 

  54. B. K. Ridley: Quantum Processes in Semiconductors (Clarendon, Oxford 1988)

    Google Scholar 

  55. E. Rosencher, B. Vinter: Optoélectronique (Masson, Paris 1998) pp. 265–271

    Google Scholar 

  56. H. Y. Fan: Semiconductors and Semimetals, R. K. Willardson, A C. Beer (Eds.) (Academic, New York 1967) Vol. 3, Chap. 9

    Google Scholar 

  57. J. R. Meyer, C.L. Felix, W.W. Bewley, I. Vurgaftman, E.H. Aifer, L. J. Olafsen, J. R. Lindle, C. A. Hoffman, M. J. Yang, B. R. Bennett, B. V. Shanabrook, H. Lee, C. H. Lin, S.S. Pei, R.H. Miles: Auger coefficients in type-II InAs/ Ga1-x InxSb quantum wells, Appl. Phys. Lett. 73, 2857–2859 (1998)

    Article  ADS  Google Scholar 

  58. A. Joullié, P. Christol, A. Wilk, P. Grech, M. El Gazouli, F. Chevrier, A. N. Baranov: Recent developments and prospect in mid-infrared (3-5m) Sb-based laser diodes, Quantum Electronics and Photonics 15, mid-IR Workshop, Glasgow (2001)

    Google Scholar 

  59. J. L. Pautrat: private communication, reported in: Optoélectronique, E. Rosencher, B. Vinter (Eds.) (Masson, Paris 1998) p. 234

    Google Scholar 

  60. C. H. Grein, P. M. Young, H. Ehrenreich: Theoretical performance of InAs/InxGa1-x Sb superlattice-based midwave infrared lasers, J. Appl. Phys. 76, 1940–1942 (1994)

    Article  ADS  Google Scholar 

  61. G. G. Zegrya, A. D. Andreev: Mechanism of suppression of Auger recombination proocesses in type-II heterostructures, Appl. Phys. Lett. 67, 2681–2683 (1995)

    Article  ADS  Google Scholar 

  62. S. Forouhar, A. Ksendzov, A. Larsson, H. Temkin: InGaAs/InGaAsP/InP strained-layer quantum well lasers at ≈ 2 μm, Electron. Lett. 28, 945–947 (1992)

    Article  ADS  Google Scholar 

  63. U. Martinelli, R. J. Menna, A. Triano, M. G. Harvey, G. H. Olsen: Temperature dependence of 2 μm strained-quantum-well InGaAs/InGaAsP/InP diode lasers, Electron. Lett. 30, 324–326 (1994)

    Article  Google Scholar 

  64. M. Ochiai, H. Temkin, S. Forouhar, R. A. Logan: InGaAs-InGaAsP buried heterostructure lasers operating at 2.0 μm, IEEE Photonics Techn. Lett. 7, 825–827 (1995)

    Article  ADS  Google Scholar 

  65. M. Oishi, M. Yamamoto, K. Kasaya: 2.0-μm single-mode operation of InGaAs-InGaAsP distributed-feedback buried-heterostructure quantum-well lasers, IEEE Photonics Techn. Lett. 9, 431–433 (1997)

    Article  ADS  Google Scholar 

  66. M. Mitsuhara, M. Ogasawara, M. Oishi, H. Sugiura: Metalorganic molecular beam epitaxy-grown In0.77Ga0.23As/InGaAs multiple quantum well lasers emitting at 2.07 μm wavelength, Appl. Phys. Lett. 72, 3106–3108 (1998)

    Article  ADS  Google Scholar 

  67. M. Mitsuhara, M. Ogasawara, M. Oishi, H. Sugiura, K. Kasaya: 2.05-μm wavelength InGaAs-InGaAs distrubuted-feedback multiquantum-well lasers with 10 mW output power, IEEE Photonics Techn. Lett. 11, 33–35 (1999)

    Article  ADS  Google Scholar 

  68. J. Dong, A. Ubukata, K. Matsumoto: Characteristics dependence on confinement structure and single-mode operation in 2-μm compressively strained InGaAs-InGaAsP quantum-well lasers, IEEE Photonics Techn. Lett. 10, 513–515 (1998)

    Article  ADS  Google Scholar 

  69. J. S. Major, J.S. Osinski, D.F. Welch: High-power 2.0-μm InGaAsP laser diodes, IEEE Photonics Techn. Lett. 5, 594–596 (1993)

    Article  ADS  Google Scholar 

  70. E. Tournié, P. Grunberg, C. Fouillant, A.N. Baranov, A. Joullié, K.H. Ploog: Strained InAs/Ga0.47/In0.53As quantum-well heterostructures grown by molecular-beam epitaxy for long-wavelength applications, Solid-State Electron. 37, 1311–1314 (1994)

    Article  ADS  Google Scholar 

  71. J.-S. Wang, H.-H. Lin, L.-W. Sung: Room-temperature 2.2 μm InAs-InGaAs-InP highly strained multiquantum-well lasers grown by gas-source molecular beam epitaxy, IEEE J. Quantum Electron. 34, 1959–1962 (1998)

    Article  ADS  Google Scholar 

  72. A. N. Baranov, Y. Cuminal, N. Bertru, C. Alibert, A. Joullié: Strained multiple quantum well lasers grown on GaSb emitting between 2 and 2.4 μm: Proc. SPIE 2997, 2–13 (1997)

    Article  ADS  Google Scholar 

  73. C. G. Van de Walle: Band lineups and deformation potentials in the model-solid theory, Phys. Rev. B 39, 1871–1879 (1989)

    Article  ADS  Google Scholar 

  74. S.L. Wong, R.T. Warburton, R. J. Nicholas, N.J. Mason, P. J. Walker: A magneto-optical study of coupled quantum wells in strained GaInSb/GaSb, Physica B 184, 106–110 (1993)

    Article  ADS  Google Scholar 

  75. L. Q. Qian, B.W. Wessels: Optical properties of strained-layer InxGa1-xSb/GaSb heterostructures with x ≤ 0.4, J. Vac. Sci. Technol. B 11, 1652–1659 (1993)

    Article  Google Scholar 

  76. A. N. Baranov, Y. Cuminal, G. Boissier, J. C. Nicolas, J. L. Lazzari, C. Alibert, A. Joullié: Electroluminescence of GaInSb/GaSb strained single quantum well structures grown by molecular beam epitaxy, Semicond. Sci. Technol. 11, 1185–1191 (1996)

    Article  ADS  Google Scholar 

  77. A. Haug: Band-to-band Auger recombination in semiconductors, J. Phys. Chem. Solids 49, 599–605 (1988)

    Article  ADS  Google Scholar 

  78. N.A. Gun’ko, G.G. Zegrya, N.V. Zotova, Z.N. Sokolova, N.M. Stus’, V. B. Khalfin: Influence of valence band absorption on the threshold characteristics of long-wavelength InAs lasers, Semicond. 31, 1204–1208 (1997)

    Article  ADS  Google Scholar 

  79. P. Christol, P. Bigenwald, A. Joullié, Y. Cuminal, A.N. Baranov, N. Bertru, Y. Rouillard: Improvement of Sb-based multiquantum well lasers by Coulomb enhancement, IEEE Proc. Optoelectron. 146, 3–8 (1999)

    Article  Google Scholar 

  80. G. G. Zegrya, A. D. Andreev: Mechanism of suppression of Auger recombination processes in type-II heterostructures, Appl. Phys. Lett. 67, 2681–2683 (1995)

    Article  ADS  Google Scholar 

  81. N. Bertru, A.N. Baranov, Y. Cuminal, G. Almuneau, F. Genty, A. Joullié, O. Brandt, A. Mazuelas, K.H. Ploog: Long-wavelength (Ga,In)Sb/GaSb strained quantum well lasers grown by molecular beam epitaxy, Semicond. Sci. Technol. 13, 936–939 (1998)

    Article  ADS  Google Scholar 

  82. A. N. Baranov, Y. Cuminal, G. Boissier, C. Alibert, A. Joullié: Low-threshold laser diodes based on type-II GaInAsSb/GaSb quantum-wells operating at 2.36 μm at room temperature, Electron. Lett. 32, 2279–2280 (1996)

    Article  Google Scholar 

  83. G. A. Sai-Halasz, R. Tsu, L. Esaki: A new semiconductor superlattice, Appl. Phys. Lett. 30, 651–653 (1977)

    Article  ADS  Google Scholar 

  84. A.N. Baranov, N. Bertru, Y. Cuminal, G. Boissier, C. Alibert, A. Joullié: Observation of room-temperature laser emission from type-III InAs/GaSb multiple quantum well structures, Appl. Phys. Lett. 71, 735–736 (1997)

    Article  ADS  Google Scholar 

  85. P. S. Kop’ev, N. N. Ledentsov, A. M. Monakhov, A. A. Rogachev: Noninjection light-emitting diode, RU patent no. 2019895 (1991)

    Google Scholar 

  86. S.V. Ivanov, B.K. Kurinkiev, N.N. Ledentsov, B.Ya. Meltser, A.A. Monakhov, A.A. Rogachev, S.V. Shaposhnikov, P.S. Kop’ev: Middle infrared (λ = 2-5.5 μm) high quantum efficiency luminescence in GaSb/InAs II-type multi-quantum well structures, in Workbook of 6th International Conference on Modulated Semiconductor Structures, Garmisch-Partenkirchen, (1993) p. 1047

    Google Scholar 

  87. P. S. Kop’ev, B. Ya. Meltser, S.V. Ivanov, A. A. Rogachev, S. V. Shaposhnikov: Photo-and electroluminescence study of type-II InAs/GaSb quantum well heterostructures grown by molecular beam epitaxy, in Proceedings of the VIII International Conference on Molecular Beam Epitaxy, Osaka (1994) p. 542

    Google Scholar 

  88. J. Schmitz, J. Wagner, F. Fuchs, N. Herres, P. Koidl, J.D. Ralston: Optical and structural investigations of intermixing reactions at the interfaces of InAs/AlSb and InAs/GaSb quantum wells grown by molecular-beam epitaxy, J. Crystal Growth 150, 858–863 (1995)

    Article  ADS  Google Scholar 

  89. A. Mujica, A. Muñioz: Self consitent tight binding calculations of band offsets in GaAs/AlxGa1-x As (110) and GaSb/AlxGa1-x Sb (110) heterojunctions. Theoretical evidence for a new common-anion rule, Solid State Commun. 81, 961–968 (1992)

    ADS  Google Scholar 

  90. J.-L. Lazzari: Etude des hétérostructures GaInAsSb/GaSb et GaAlAsSb/ GaSb et de composants lasers et détecteurs à base de GaSb opérant entre 2 et 2.5 μm, Dissertation, Université Montpellier II, Montpellier (1993)

    Google Scholar 

  91. D.Z. Garbuzov, R.U. Martinelly, H. Lee, P.K. York, R. J. Menna, J. C. Connolly, S. Y. Narayan: Ultralow-loss broadened-waveguide high-power 2 μm Al-GaAsSb/InGaAsSb/GaSb separate-confinement quantum-well lasers, Appl. Phys. Lett. 69, 2006–2008 (1996)

    Article  ADS  Google Scholar 

  92. N. Bertru, A. N. Baranov, Y. Cuminal, G. Almuneau, F. Genty, A. Joullié, O. Brandt, A. Mazuelas, K.H. Ploog: Long-wavelength (Ga,In)Sb/GaSb strained quantum well lasers grown by molecular beam epitaxy, Semicond. Sci. Technol. 13, 936–940 (1998)

    Article  ADS  Google Scholar 

  93. Y. Cuminal, A. N. Baranov, D. Bec, P. Grech, M. Garcia, G. Boissier, A. Joullié, G. Glastre, R. Blondeau: Room-temperature 2.63 μm GaInAsSb/GaSb strained quantum-well laser diodes, Semicond. Sci. Technol. 14, 283–288 (1999)

    Article  ADS  Google Scholar 

  94. A. Joullié, G. Glastre, R. Blondeau, J.-C. Nicolas, Y. Cuminal, A.N. Baranov, A. Wilk, M. Garcia, P. Grech, C. Alibert: Continuous-wave operation of GaInAsSb-GaSb type-II quantum-well ridge lasers, IEEE J. of Select. Topics in Quant. Electron. 5, 711–715 (1999)

    Article  Google Scholar 

  95. D. A. Yarekha, A. Vicet, A. Perona, G. Glastre, B. Fraisse, Y.Rouillard, E. M. Skouri, G. Boissier, P. Grech, A. Joullié, C. Alibert, A. N. Baranov: High efficiency GaInAsSb/GaSb type-II quantum well continuous wave lasers, Semicond. Sci. Technol. 15, 283–288 (2000)

    Article  Google Scholar 

  96. K. Onabe: Unstable region in quaternary In1-x GaxAs1-y Sby calculated using strictly regular solution approximation, Jpn. J. Appl. Phys. 21, 964 (1982)

    Article  ADS  Google Scholar 

  97. G. B. Stringfellow: Thermodynamics of semiconductor alloys for optoelectronics, in Materials for Optoelectronics, M. Quillec (Ed.) (Kluwer Academic, Dordrecht 1996) pp. 23–61 G. B. Stringfellow: Immiscibility and spinodal decomposition in III/V alloys, J. Cryst. Growth 65, 454-462 (1983)

    Google Scholar 

  98. A. N. Baranov, S. G. Konnikov, T. B. Popova, V. E. Umanskii, Yu. P. Yakovlev: Liquid phase epitaxy of GaAlAsSb/GaSb and the effect of strain on phase equilibria, J. Cryst. Growth 66, 547–552 (1984)

    Article  ADS  Google Scholar 

  99. H.K. Choi, S.J. Eglash, M. K. Connors: Single-frequency GaInAsSb/ AlGaAsSb quantum-well ridge-waveguide lasers emitting at 2.1 μm, Appl. Phys. Lett. 63, 3271–3272 (1993)

    Article  ADS  Google Scholar 

  100. D. Garbuzov, R.U. Martinelli, H. Lee, R. J. Menna, P.K. York, L.A. Di-Marko, M. G. Harvey, R. J. Matarese, S.Y. Narayan, J. C. Connolly: 4-W quasi-continuous-wave output power from 2 μm AlGaAsSb/InGaAsSb single-quantum-well broadened waveguide laser diodes, Appl. Phys. Lett. 70, 2931–2933 (1997)

    Article  ADS  Google Scholar 

  101. R. J. Menna, D.Z. Garbuzov, H. Lee, R.U. Martinelli, S.Y. Narayan, J. C. Connolly: High power broadened-waveguide InGaAsSb/AlGaAsSb quantum-well diode lasers emitting at 2 μm, Proc. SPIE 3284, 238–246 (1998)

    Article  ADS  Google Scholar 

  102. W. Turner, H.K. Choi, M. J. Manfra: Ultralow-threshold (50 A/cm2) strained single-quantum-well GaInAsSb/AlGaAsSb lasers emitting at 2.05 μm, Appl. Phys. Lett. 72, 876–878 (1998)

    Article  ADS  Google Scholar 

  103. H. K. Choi, G. W. Turner, J. N. Walpole, M. J. Manfra, M. K. Connors, L. J. Missaggia: Low-threshold, high power, high brightness GaInAsSb/AlGaAsSb quantum-well lasers emitting at 2.05 μm, Proc. SPIE 3284, 268–273 (1998)

    Article  ADS  Google Scholar 

  104. J. N. Walpole, H. K. Choi, L. J. Missagia, Z. L. Liau, M. K. Connors, G. W. Turner, M. J. Manfra, C. C. Cook: High-power high-brightness GaInAsSb-AlGaAsSb tapered laser arrays with anamorphic collimating lenses emitting at 2.05 μm, IEEE Photonics Techn. Lett. 11, 1223–1225 (1999)

    Article  ADS  Google Scholar 

  105. T. C. Newell, L.F. Lester, X. Wu, Y. Zhang, A.L. Gray: Gain and threshold current density characteristics of 2 micron GaInAsSb/AlGaAsSb MQW lasers with increased valence band offset, Proc. SPIE 3284, 258–267 (1998)

    Article  ADS  Google Scholar 

  106. T. C. Newell, X. Wu, A.L. Gray, S. Dorato, H. Lee, L.F. Lester: The effect of increased valence band offset on the operation of 2 μm GaInAsSb-AlGaAsSb lasers, IEEE Photonics Techn. Lett. 11, 30–32 (1999)

    Article  ADS  Google Scholar 

  107. G. Mermelstein, S. Simanowski, M. Mayer, R. Kiefer, J. Schmitz, M. Walther, J. Wagner: Room-temperature low-threshold low-loss continuous-wave operation of 2.26 μm GaInAsSb/AlGaAsSb quantum-well laser diodes, Appl. Phys. Lett. 77, 1581–1583 (2000)

    Article  ADS  Google Scholar 

  108. S. Simanowski, N. Herres, C. Mermelstein, R. Kiefer, J. Schmitz, M. Walther, J. Wagner, G. Weimann: Strain adjustment in (GaIn)(AsSb)/(AlGa)(AsSb) QWs for 2.3-2.7 μm laser structures, J. Cryst. Growth 209, 15–20 (2000)

    Article  ADS  Google Scholar 

  109. S. Simanowski, C. Mermelstein, M. Walther, N. Herres, R. Kiefer, M. Rattunde, J. Schmitz, J. Wagner, G. Weimann: Growth and layer structure optimization of 2.26 μm (AlGaIn) (AsSb) diode lasers for room temperature operation, J. Cryst. Growth 227–228, 595–599 (2001)

    Article  Google Scholar 

  110. T. Bleubel, M. Muller, A. Forchel: 2-μm GaInSb-AlGaAsSb distributed-feedback lasers, IEEE Photonics Techn. Lett. 13, 553–555 (2001)

    Article  ADS  Google Scholar 

  111. A.N. Baranov, Y. Rouillard, G. Boissier, P. Grech, S. Gaillard, C. Alibert: Sb-based monolithic vertical cavity surface emitting laser operating near 2.2 μm at room temperature, Electron. Lett. 34, 281–282 (1998)

    Article  Google Scholar 

  112. D. Yarekha: Etude et réalisation de diodes lasers émettant entre 2.2 et 2.4 μm pour application à l’analyse de gaz, Dissertation, Université Montpellier II, Montpellier (2001)

    Google Scholar 

  113. A. Baraldi, C. Ghezzi, A. Parisini, R. Magnanini, L. Tarricone, S. Franchi: Occupancy level of the DX center in Te-doped AlxGa1-x Sb, J. Appl. Phys. 85, 256–263 (1999)

    Article  ADS  Google Scholar 

  114. D.Z. Garbuzov, R.U. Martinelli, R. J. Menna, P.K. York, H. Lee, S.Y. Narayan, J. C. Connolly: 2.7 μm InGaAsSb/AlGaAsSb laser diodes with continuous-wave operation up to-39 °C, Appl. Phys. Lett. 67, 1346–1348 (1995)

    Article  ADS  Google Scholar 

  115. D. Garbuzov, R. Menna, M. Maiorov, H. Lee, V. Khalfin, L. DiMarco, D. Capewell, R. Martinelli, G. Belenky, J. Connolly: 2.3-2.7 μm room temperature CW-operation of InGaAsSb/AlGaAsSb broad-contact and single-mode ridge-waveguide SCH-QW diode lasers, Proc. SPIE 3628, 124–129 (1999)

    Article  ADS  Google Scholar 

  116. A.D. Andreev, D.V. Donetsky: Analysis of temperature dependence of the threshold current in 2.3-2.6 μm InGaAsSb/AlGaAsSb quantum-well lasers, Appl. Phys. Lett. 74, 2743–2745 (1999)

    Article  ADS  Google Scholar 

  117. D. Garbuzov, M. Maiorov, H. Lee, V. Khalfin, R. Martinelli, J. Connolly: Temperature dependence of continuous wave threshold current for 2.3-2.6 μm In-GaAsSb/AlGaAsSb separate confinement heterostructure quantum well semiconductor diode lasers, Appl. Phys. Lett. 74, 2990–2992 (1999)

    Article  ADS  Google Scholar 

  118. M. Maiorov, J. Wang, D. Baer, H. Lee, G. Belenky, R. Hanson, J. Connolly, D. Garbuzov: New room temperature CW InGaAsSb/AlGaAsSb QW ridge diode lasers and their application to CO measurements near 2.3 μm, Proc. SPIE 3855, 62–71 (1999)

    Article  ADS  Google Scholar 

  119. L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R. L. Poynter, J. M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, A. H. Smith, The HITR AN database: 1986 edition, Appl. Opt. 26, 4058–4097 (1987)

    ADS  Google Scholar 

  120. A. Vicet, J.C. Nicolas, F. Genty, E.M. Skouri A.N. Baranov, C. Alibert: Room temperature GaInAsSb/GaSb quantum well laser for tunable diode laser absorption spectroscopy around 2.35 μm, IEE Proc. Optoelectron. 147, 172–176 (2000)

    Article  Google Scholar 

  121. R. Mucke, P. Werle, F. D’Amato, A. Lancia: Precise measurement of CO2 concentration using room temperature diode lasers, 5th International Symposium on Gas Analysis by Tunable Diode Lasers, (1998) pp. 83–92

    Google Scholar 

  122. A. Vicet, D.A. Yarekha, A. Perona, Y. Rouillard, S. Gaillard, A.N. Baranov: Trace gas detection with antimonide-based quantum-well diode lasers, Spectrochim. Acta Part A 58 2405–2412 (2002)

    Article  ADS  Google Scholar 

  123. B. Botteldooren, R. Baets: Influence of band-gap shrinkage on the carrier-induced refractive index change in InGaAsP, Appl. Phys. Lett. 54, 1989–1991 (1989)

    Article  ADS  Google Scholar 

  124. A.N. Baranov, V. Sherstnev, C. Alibert, A. Krier, New III-V semiconductor lasers emitting near 2.6 μm, J. Appl. Phys. 79, 3354–3356 (1996)

    Article  ADS  Google Scholar 

  125. B.K. Ghosh, L.K. Samanta, G.C. Bhar: The temperature and pressure dependence of refractive index of some III-V semiconductors, Infrared Phys. 26, 111 (1986)

    Article  ADS  Google Scholar 

  126. J. B. McManus, P. L. Kebabian, M.S. Zahniser: Astigmatic mirror multipass absorption for long-pathlength spectroscopy, Appl. Opt. 34, 3336–3348 (1995)

    Article  ADS  Google Scholar 

  127. A. Popov, V. Sherstnev, Y. Yakovlev, R. Mücke, P. Werle: High power InAsSb/InAsSbP double heterostructure laser for continuous wave operation at 3.6 μm, Appl. Phys. Lett. 68, 2790–2792 (1996)

    Article  ADS  Google Scholar 

  128. H. K. Choi, S.J. Eglash, G.W. Turner: Double-heterostructure diode laser emitting at 3 μm with a metastable GaInAsSb active layer and AlGaAsSb cladding layers, Appl. Phys. Lett. 64, 2474–2476 (1994)

    Article  ADS  Google Scholar 

  129. Y. H. Zhang: Continuous wave operation of InAs/InAsxSb1-x mid-infrared lasers, Appl. Phys. Lett. 66, 118–120 (1995)

    Article  ADS  Google Scholar 

  130. S.R. Kurtz, R.M. Biefeld, A.A. Allerman, A. J. Howard, M.H. Crawford: Pseudomorphic InAsSb multiquantum well injection laser emitting at 3.5 μm, Appl. Phys. Lett. 68, 1332–1334 (1996)

    Article  ADS  Google Scholar 

  131. B. Lane, D. Wu, A. Rybaltowski, J. Diaz, M. Razeghi: Compressively strained multiple quantum well InAsSb lasers emitting at 3.6 μm grown by metal-organic chemical vapor deposition, Appl. Phys. Lett. 70, 443–445 (1997)

    Article  ADS  Google Scholar 

  132. G.W. Turner, M.J. Manfra, H.K. Choi, M.K. Connors: MBE growth of high power InAsSb/InAlAsSb quantum well diode lasers emitting at 3.5 μm, J. Crystal Growth 175/176, 825–832 (1997)

    Article  Google Scholar 

  133. H.K. Choi, G.W. Turner, M.J. Manfra, M.K. Connors: 175 K continuous wave operation of InAsSb/InAlAsSb quantum well diode lasers emitting at 3.5 μm, Appl. Phys. Lett. 68, 2936–2938 (1996)

    Article  ADS  Google Scholar 

  134. R. M. Biefeld, S. R. Kurtz, A. A. Allerman: The metal-organic chemical vapor deposition growth and properties of InAsSb mid-infrared (3-6 μm) lasers and LEDs, IEEE J. Select. Topics Quantum Electron. 3, 739–748 (1997)

    Article  Google Scholar 

  135. B. Lane, Z. Wu, A. Stein, J. Diaz, M. Razeghi: InAsSb/InAsP strained-layer superlattice injection lasers operating at 4.0 μm grown by metal-organic chemical vapor deposition, Appl. Phys. Lett. 74, 3438–3440 (1999)

    Article  ADS  Google Scholar 

  136. T. Ashley, C. T. Elliott, R. Jefferies, A. D. Johnson, G. J. Pryce, A. M. White, M. Carroll: Mid-infrared In1-x AlxSb/InSb heterostructure diode lasers, Appl. Phys. Lett. 70, 931–933 (1997)

    Article  ADS  Google Scholar 

  137. W.W. Bewley, I. Vurgaftman, C. L. Felix, J.R. Meyer, C.H. Lin, D. Zhang, S. J. Murry, S.S. Pei, L. R. Ram-Mohan: Role of internal loss in limiting type-II mid-IR laser performance, J. Appl. Phys. 83, 2384–2391 (1998)

    Article  ADS  Google Scholar 

  138. Y. B. Li, D. J. Bain, L. Hart, M. Livingstone, C. M. Ciesla, M. J. Pullin, P. J. Tang, W. T. Yuen, I. Galbraith, C. C. Phillips, C. R. Pidgeon, R. A. Stradling: Band alignment in In(As,Sb)/InAs superlattices, Phys. Rev. B 55, 4589–4595 (1997)

    Article  ADS  Google Scholar 

  139. P. Christol, P. Bigenwald, A. Wilk, A. Joullié, O. Gilard, H. Carrère, F. Lozes-Dupuy, A. Behres, A. Stein, J. Kluth, K. Heime, E. M. Skouri: InAs/InAs(PSb) quantum-well laser structure for the midwavelength infrared region, IEE Proc. Optoelectron. 147, 181–187 (2000)

    Article  Google Scholar 

  140. D. Ahn, S. L. Chuang: Optical gain and gain suppression of quantum-well lasers with valence band mixing, IEEE J. Quantum. Electron. 28, 13–24 (1990)

    Article  ADS  Google Scholar 

  141. P. Christol, M. El Gazouli, P. Bigenwald, A. Joullié: Performance simulation of 3.3 μm interband laser diodes grown on InAs substrate, Physica E 14, 375–384 (2002)

    Article  Google Scholar 

  142. A. Wilk, F. Genty, B. Fraisse, G. Boissier, P. Grech, M. El Gazouli, A. Joullié, P. Christol, J. Oswald, T. Simecek, E. Hulicius: MBE growth of InAs/InAsSb/AlAsSb laser structures for mid-infrared lasers, J. Cryst. Growth 223, 341–348 (2001)

    Article  ADS  Google Scholar 

  143. A. Wilk, M. El Gazouli, M. El Skouri, P. Christol, P. Grech, A.N. Baranov, A. Joullié: Type-II InAsSb/InAs strained quantum-well laser diodes emitting at 3.5 μm, Appl. Phys. Lett. 77, 2298–2300 (2000)

    Article  ADS  Google Scholar 

  144. A. Wilk, B. Fraisse, P. Christol, G. Boissier, P. Grech, M. El Gazouli, Y. Rouillard, A.N. Baranov, A. Joullié: MBE growth of InAs/InAsSb/InAlAsSb “W” quantum well laser diodes emitting near 3 μm, J. Crystal Growth 227/228, 586–590 (2001)

    Article  Google Scholar 

  145. A. Joullié, E.M. Skouri, M. Garcia, P. Grech, A. Wilk, P. Christol, A.N. Baranov, A. Behres, J. Kluth, A. Stein, K. Heime, M. Heuken, S. Rushworth, E. Hulicius, T. Simecek: InAs(PSb)-based “W” quantum well laser diodes emitting near 3.3 μm, Appl. Phys. Lett. 76, 2499–2501 (2000)

    Article  ADS  Google Scholar 

  146. M. Beck, D. Hofstetter, T. Aellen, S. Blaser, J. Faist, U. Oesterle, E. Gini: Continuous-wave operation of quantum cascade lasers, J. Crystal Growth 251, 697–700 (2003)

    Article  ADS  Google Scholar 

  147. C. Becker, I. Prevot, X. Marcadet, B. Vinter, C. Sirtori: InAs/AlSb quantum-cascade light-emitting devices in the 3-5 μm wavelength region, Appl. Phys. Lett. 76, 1029–1031 (2001)

    Article  ADS  Google Scholar 

  148. C. Becker, H. Page, M. Calligaro, V. Ortiz, M. Garcia, X. Marcadet, C. Sirtori: GaAs-and GaSb-based quantum cascade lasers: the challenge of the new materials, 5th Int. Conf. Mid-infrared Optoelectronic Materials and Devices (MIOMD-5), Annapolis, MD (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Joullié, A., Christol, P., Baranov, A.N., Vicet, A. (2003). Mid-Infrared 2—5 μm Heterojunction Laser Diodes. In: Sorokina, I.T., Vodopyanov, K.L. (eds) Solid-State Mid-Infrared Laser Sources. Topics in Applied Physics, vol 89. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36491-9_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-36491-9_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00621-3

  • Online ISBN: 978-3-540-36491-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics