Skip to main content

Demonstrating Lambda Calculus Reduction

  • Chapter
  • First Online:
The Essence of Computation

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2566))

Abstract

We describe lambda calculus reduction strategies, such as call-by-value, call-by-name, normal order, and applicative order, using big-step operational semantics. We show how to simply and efficiently trace such reductions, and use this in a web-based lambda calculus reducer available at <http://www.dina.kvl.dk/~sestoft/lamreduce/>.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramsky, S., Ong, C.-H.L.: Full Abstraction in the Lazy λ-Calculus. Information and Computation 105, 2 (1993) 159–268.

    Article  MATH  MathSciNet  Google Scholar 

  2. Ariola, Z.M., Felleisen, M.: The Call-by-Need Lambda Calculus. Journal of Functional Programming 7, 3 (1997) 265–301.

    Article  MATH  MathSciNet  Google Scholar 

  3. Augustsson, L.: A Compiler for Lazy ML. In: 1984 ACM Symposium on Lisp and Functional Programming, Austin, Texas. ACM Press (1984) 218–227.

    Google Scholar 

  4. Barendregt, H.P.: The Lambda Calculus. Its Syntax and Semantics. North-Holland (1984).

    Google Scholar 

  5. Barendregt, H.P. et al.: Needed Reduction and Spine Strategies for the Lambda Calculus. Information and Computation 75 (1987) 191–231.

    Article  MATH  MathSciNet  Google Scholar 

  6. Church, A.: A Note on the Entscheidungsproblem. Journal of Symbolic Logic 1 (1936) 40–41, 101-102.

    Article  MATH  Google Scholar 

  7. Engelfriet, J., Schmidt, E.M.: IO and OI. Journal of Computer and System Sciences 15 (1977) 328–353 and 16 (1978) 67-99.

    Article  MATH  MathSciNet  Google Scholar 

  8. Felleisen, M., Hieb, R.: The Revised Report on the Syntactic Theories of Sequential Control and State. Theoretical Computer Science 103, 2 (1992) 235–271.

    Article  MATH  MathSciNet  Google Scholar 

  9. Kahn, G.: Natural Semantics. In: STACS 87. 4th Annual Symposium on Theoretical Aspects of Computer Science, Passau, Germany. Lecture Notes in Computer Science, Vol. 247. Springer-Verlag (1987) 22–39.

    Google Scholar 

  10. Landin, P.J.: The Mechanical Evaluation of Expressions. Computer Journal 6, 4 (1964) 308–320.

    MATH  Google Scholar 

  11. Landin, P.J.: A Correspondence Between ALGOL 60 and Church’s Lambda-Notation: Part I. Communications of the ACM 8, 2 (1965) 89–101.

    Article  MathSciNet  Google Scholar 

  12. Landin, P.J.: The Next 700 Programming Languages. Communications of the ACM 9, 3 (1966) 157–166.

    Article  MATH  Google Scholar 

  13. Launchbury, J.: A Natural Semantics for Lazy Evaluation. In: Twentieth ACM Symposium on Principles of Programming Languages, Charleston, South Carolina, January 1993. ACM Press (1993) 144–154.

    Google Scholar 

  14. Milner, R., Tofte, M., Harper, R., MacQueen, D.B.: The Definition of Standard ML (Revised). The MIT Press (1997).

    Google Scholar 

  15. Paulson, L.C.: ML for the Working Programmer. Second edition. Cambridge University Press (1996).

    Google Scholar 

  16. Peyton Jones, S.L.: The Implementation of Functional Programming Languages. Prentice-Hall (1987).

    Google Scholar 

  17. Peyton Jones, S.L., Hughes, J. (eds.): Haskell 98: A Non-Strict, Purely Functional Language. At <http://www.haskell.org/onlinereport/>.

    Google Scholar 

  18. Plotkin, G.: Call-by-Name, Call-by-Value and the λ-Calculus. Theoretical Computer Science 1 (1975) 125–159.

    Article  MATH  MathSciNet  Google Scholar 

  19. Sestoft, P.: Deriving a Lazy Abstract Machine. Journal of Functional Programming 7,3 (1997) 231–264.

    Article  MATH  MathSciNet  Google Scholar 

  20. Stoy, J.E.: The Scott-Strachey Approach to Programming Language Theory. The MIT Press (1977).

    Google Scholar 

  21. Turner, D.A.: A New Implementation Technique for Applicative Languages. Software-Practice and Experience 9 (1979) 31–49.

    Article  MATH  Google Scholar 

  22. Wadsworth, C.P.: Semantics and Pragmatics of the Lambda Calculus. D.Phil. thesis, Oxford University, September 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sestoft, P. (2002). Demonstrating Lambda Calculus Reduction. In: Mogensen, T.Æ., Schmidt, D.A., Sudborough, I.H. (eds) The Essence of Computation. Lecture Notes in Computer Science, vol 2566. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36377-7_19

Download citation

  • DOI: https://doi.org/10.1007/3-540-36377-7_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00326-7

  • Online ISBN: 978-3-540-36377-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics