Skip to main content

What Can Be Learned About Competing Acceleration Models from Multiwavelength Observations?

  • Chapter
Energy Conversion and Particle Acceleration in the Solar Corona

Part of the book series: Lecture Notes in Physics ((LNP,volume 612))

Abstract

We review the available evidence from various wavelength ranges, alone and in combination, bearing on solar particle acceleration. Radio, X-ray and γ-ray observations yield direct information on ion and electron acceleration at the Sun. We describe the main spectral features in the X/γ domain, outline the means by which they yield information on accelerated particles, and summarise results obtained using them on numbers and energies of flare fast ions and electrons. Relative numbers and energy content of electrons and ions may vary from flare to flare, and in the course of a single event. In general, both electronic and ionic species appear to embody significant fractions of the total flare energy and either can be dominant, although there is great uncertainty over accelerated particle minimum energies. Rapid fluctuations in X/γ- rays point to a fragmented accelerator, acting on timescales of 100 ms or less, even after particle transport effects have been considered. Millimeter wave observations also reveal spatial fragmentation. Together with distributions of overall event size, such fragmentation suggests a scale-invariant energy release process, such as would occur in a state of Self-Organised Criticality. There is good evidence from X/γ and cm/mm observations for hardening of the electron distribution towards the MeV energy range. Intercomparisons of X/γ rays and cm/mm wave observations emphasise the importance of MeV energy range electrons in the latter. ‘Electron-rich’ events, characterised by a hard electron population extending to relativistic energies, may occur during individual flares. Existing instrumental capabilities mean that the absence of γ-ray lines does not rule out significant, simultaneous ion acceleration. Radio observations indicate these spectral changes are associated with changes in spatial structure. Spatially resolved radio observations indicate that primary particle acceleration takes place moderately high in the corona (107 to 108 m), and have recently been made to yield information on accelerated electron pitch angle distribution. Throughout, we emphasise questions on which the unprecedented capabilities of the RHESSI mission will shed new light.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J.P. Raulin, A. Kerdraon, K.L. Klein, et al.: Astr. Ap. 251, 298 (1991)

    ADS  Google Scholar 

  2. N. Crosby, N. Vilmer, N. Lund, et al.: Solar Phys. 167, 333 (1996)

    Article  ADS  Google Scholar 

  3. R.D. Bentley, K.L. Klein, L. van Driel-Gesztelyi, et al.: Solar Phys. 193, 227 (2000)

    Article  ADS  Google Scholar 

  4. T. Bai, R. Ramaty: Solar Phys. 49, 343 (1976)

    Article  ADS  Google Scholar 

  5. V.V. Akimov, V.G. Afanasev, A.S. Belousov, et al.: Soviet Astronomy Letters 18, 69 (1992)

    ADS  Google Scholar 

  6. N.G. Leikov, V.V. Akimov, V.A. Volzhenskaia, et al.: Astr. Ap. Supp. 97, 345 (1993)

    ADS  Google Scholar 

  7. G. Kanbach, D.L. Bertsch, C.E. Fichtel, et al.: Astr. Ap. Supp. 97, 349 (1993)

    ADS  Google Scholar 

  8. R. Ramaty: “Nuclear processes in solar flares”, in Physics of the SunVol. 2 (1986), p. 291

    ADS  Google Scholar 

  9. R.J. Murphy, C.D. Dermer, R. Ramaty: Ap. J. Supp. 63, 721 (1987)

    Article  ADS  Google Scholar 

  10. E.L. Chupp: Solar Phys. 118, 137 (1988)

    Article  ADS  Google Scholar 

  11. L. Kocharov, H. Debrunner, G. Kovaltsov, et al.: Astr. Ap. 340, 257 (1998)

    ADS  Google Scholar 

  12. N. Vilmer, M. Maksimovic, R.P. Lin, et al.: “Ion acceleration in solar flares: low energy neutron measurements”, in Solar Encounter: Proc. First Solar Orbiter Workshop, ESA-SP 493 (2001), p. 405

    Google Scholar 

  13. T.S. Bastian: “Impulsive Flares: A Microwave Perspective”, in Proc. Nobeyama Symp., ed. by T.S. Bastian, N. Gopalswamy, K. Shibasaki (NRO Report 479, 1999), p. 211

    Google Scholar 

  14. D.E. Gary, G.J. Hurford: “OVRO Solar Array Upgrades in Preparation for MAX 2000”, in Proc. Nobeyama Symp., ed. by T.S. Bastian, N. Gopalswamy, K. Shibasaki (NRO Report 479, 1999), p. 429

    Google Scholar 

  15. M. Nishio, H. Nakajima, S. Enome, et al.: “The Nobeyama Radioheliograph—Hardware System”, in Proc. Kofu Symp. (NRO Report 360, 1994), p. 19

    Google Scholar 

  16. T. Takano, H. Nakajima, S. Enome, et al.: “An Upgrade of Nobeyama Radioheliograph to a Dual-Frequency (17 and 34 GHz) System”, in Coronal Physics from Radio and Space Observations, ed. by G. Trottet (Springer, 1997), Vol. 483 of LNP, p. 183

    Google Scholar 

  17. S.M. White: “Millimeter Interferometer Observations of Flares”, in Proc. Nobeyama Symp., ed. by T.S. Bastian, N. Gopalswamy, K. Shibasaki (NRO Report 479, 1999), p. 223

    Google Scholar 

  18. R. Herrmann, A. Magun, J.E.R. Costa, et al.: Solar Phys. 142, 157 (1992)

    Article  ADS  Google Scholar 

  19. J.E.R. Costa, E. Correia, P. Kaufmann, et al.: Solar Phys. 159, 157 (1995)

    Article  ADS  Google Scholar 

  20. C.G. Giménez de Castro, J.P. Raulin, V.S. Makhmutov, et al.: Astr. Ap. Supp. 140, 373 (1999)

    ADS  Google Scholar 

  21. P. Kaufmann, A. Magun, H. Levato, et al.: “Solar Observations at Submm-Waves”, in Recent Insights into the Physics of the Sun and Heliosphere: Highlights from SOHO and other Space Missions (2000), IAU Symp. no. 203.

    Google Scholar 

  22. A. Kerdraon, J. Delouis: “The Nançay Radioheliograph”, in Coronal Physics from Radio and Space Observations, ed. by G. Trottet (Springer, 1997), Vol. 483 of LNP, p. 192

    Google Scholar 

  23. G. Paesold, A.O. Benz, K.L. Klein, N. Vilmer: Astr. Ap. 371, 333 (2001)

    Article  ADS  Google Scholar 

  24. K.L. Klein, G. Trottet, P. Lantos, J.P. Delaboudinière: Astr. Ap. 373, 1073 (2001)

    Article  ADS  Google Scholar 

  25. J.C. Hénoux: “Optical View of Particle Acceleration and Complementarity with HESSI”, in High Energy Solar Physics Workshop—Anticipating HESSI, ed. by R. Ramaty, N. Mandzhavidze (2000), Vol. 206 of ASP Conf. Ser., p. 27

    Google Scholar 

  26. G. Trottet, E. Rolli, A. Magun, et al.: Astr. Ap. 356, 1067 (2000)

    ADS  Google Scholar 

  27. L. McDonald, L.K. Harra-Murnion, J.L. Culhane: Solar Phys. 185, 323 (1999)

    Article  ADS  Google Scholar 

  28. A.G. Emslie, J.A. Miller, E. Vogt, et al.: Ap. J. 542, 513 (2000)

    Article  ADS  Google Scholar 

  29. R.C. Canfield, C.R. Chang: Ap. J. 295, 275 (1985)

    Article  ADS  Google Scholar 

  30. B.E. Woodgate, R.D. Robinson, K.G. Carpenter, et al.: Ap. J. 397, L95 (1992)

    Article  ADS  Google Scholar 

  31. C. de Jager, G. de Jonge: Solar Phys. 58, 127 (1978)

    Article  ADS  Google Scholar 

  32. N.B. Crosby, M.J. Aschwanden, B.R. Dennis: Solar Phys. 143, 275 (1993)

    Article  ADS  Google Scholar 

  33. E.T. Lu, R.J. Hamilton: Ap. J. 380, L89 (1991)

    Article  ADS  Google Scholar 

  34. P. Bak, C. Tang, K. Wiesenfeld: PhRevA 38, 364 (1988)

    ADS  MathSciNet  Google Scholar 

  35. H.J. Jensen: Self Organized Criticality (Cambridge University Press, Cambridge, 1998)

    MATH  Google Scholar 

  36. K. Galsgaard, Å. Nordlund: Journ. Geophys. Res. 101, 13 445 (1996)

    Article  ADS  Google Scholar 

  37. K.P. MacPherson, A.L. MacKinnon: Astr. Ap. 350, 1040 (1999)

    ADS  Google Scholar 

  38. S. Chapman, N. Watkins: Space Science Reviews 95, 293 (2001)

    Article  ADS  Google Scholar 

  39. H.S. Hudson: Solar Phys. 133, 357 (1991)

    Article  ADS  Google Scholar 

  40. M.J. Aschwanden, B. Kliem, U. Schwarz, et al.: Ap. J. 505, 941 (1998)

    Article  ADS  Google Scholar 

  41. P. Kaufmann, E. Correia, J.E.R. Costa, et al.: Solar Phys. 95, 155 (1985)

    Article  ADS  Google Scholar 

  42. A. Pacini, J.P. Raulin, P. Kaufmann, et al.: “Statistical study of simple and impulsive solar microwave flares”, in RAS discussion meeting on Self Organized Criticality and Turbulence in the Solar System (2000)

    Google Scholar 

  43. P. Kaufmann, E. Correia, J.E.R. Costa, et al.: Solar Phys. 91, 359 (1984)

    Article  ADS  Google Scholar 

  44. T. Bai, R. Ramaty: Ap. J. 227, 1072 (1979)

    Article  ADS  Google Scholar 

  45. N. Vilmer, G. Trottet, S.R. Kane: Astr. Ap. 108, 306 (1982)

    ADS  Google Scholar 

  46. G. Bruggmann, N. Vilmer, K.L. Klein, S.R. Kane: Solar Phys. 149, 171 (1994)

    Article  ADS  Google Scholar 

  47. A.G. Emslie: Ap. J. 271, 367 (1983)

    Article  ADS  Google Scholar 

  48. M.J. Aschwanden, R.A. Schwartz, D.M. Alt: Ap. J. 447, 923 (1995)

    Article  ADS  Google Scholar 

  49. T.N. Larosa, S.N. Shore: Ap. J. 503, 429 (1998)

    Article  ADS  Google Scholar 

  50. M.J. Aschwanden, R.A. Schwartz, B.R. Dennis: Ap. J. 502, 468 (1998)

    Article  ADS  Google Scholar 

  51. M.J. Aschwanden, L. Fletcher, T. Sakao, et al.: Ap. J. 517, 977 (1999)

    Article  ADS  Google Scholar 

  52. D.B. Melrose, G.A. Dulk: Ap. J. 259, L41 (1982)

    Article  ADS  Google Scholar 

  53. E.L. Chupp: “Evolution of our Understanding of Solar Flare Particle Acceleration: (1942-1995)”, in High Energy Solar Physics, ed. by R. Ramaty, N. Mandzhavidze, X.M. Hua (1996), Vol. 374 of AIP Conf. Proc., p. 3

    Google Scholar 

  54. G. Trottet, N. Vilmer: “The Production of Flare-Accelerated Particles at the Sun”, in Solar and Heliospheric Plasma Physics, ed. by G. Simnett, C. Alissandrakis, L. Vlahos (Springer, 1997), Vol. 489 of LNP, p. 219

    Google Scholar 

  55. N. Vilmer, G.. Trottet: “Solar Flare Radio and Hard X-Ray Observations and the Avalanche Model”, in Coronal Physics from Radio and Space Observations, ed. by G. Trottet (Springer, 1997), Vol. 483 of LNP, p. 28

    Google Scholar 

  56. N. Vilmer, G. Trottet, C. Verhagen, et al.: “Subsecond Time Variations in Solar Flares around 100 keV: Diagnostics of Electron Acceleration”, in High Energy Solar Physics, ed. by R. Ramaty, N. Mandzhavidze, X.M. Hua (1996), Vol. 374 of AIP Conf. Proc., p. 311

    Google Scholar 

  57. E. Rieger: Ap. J. Supp. 90, 645 (1994)

    Article  ADS  Google Scholar 

  58. F. Pelaez, P. Mandrou, M. Niel, et al.: Solar Phys. 140, 121 (1992)

    Article  ADS  Google Scholar 

  59. S.R. Kane, E.L. Chupp, D.J. Forrest, et al.: Ap. J. 300, L95 (1986)

    Article  ADS  Google Scholar 

  60. P. Kaufmann, G. Trottet, C.G. Giménez de Castro, et al.: Solar Phys. 197, 361 (2000)

    Article  ADS  Google Scholar 

  61. R.P. Lin, the HESSI Team: “The High Energy Solar Spectroscopic Imager (HESSI) Mission”, in High Energy Solar Physics Workshop—Anticipating HESSI, ed. by R. Ramaty, N. Mandzhavidze (2000), Vol. 206 of ASP Conf. Ser., p. 1

    Google Scholar 

  62. C.M. Johns, R.P. Lin: Solar Phys. 137, 121 (1992)

    Article  ADS  Google Scholar 

  63. J.C. Brown: Solar Phys. 18, 489 (1971)

    Article  ADS  Google Scholar 

  64. R.P. Lin, R.A. Schwartz, R.M. Pelling, et al.: Ap. J. 251, L109 (1981)

    Article  ADS  Google Scholar 

  65. S.G. Benka, G.D. Holman: Ap. J. 435, 469 (1994)

    Article  ADS  Google Scholar 

  66. G.D. Holman: “Particle Acceleration in Large-Scale DC Electric Fields”, in High Energy Solar Physics Workshop— Anticipating HESSI, ed. by R. Ramaty, N. Mandzhavidze (2000), Vol. 206 of ASP Conf. Ser., p. 135

    Google Scholar 

  67. D.A. Bryant: “Rocket studies of particle structure associated with auroral arcs”, in Physics of auroral arc formation; Proc. Chapman Conference on Formation of Auroral Arcs (AGU, 1981), p. 103

    Google Scholar 

  68. G. Trottet, N. Vilmer, C. Barat, et al.: Astr. Ap. 334, 1099 (1998)

    ADS  Google Scholar 

  69. B.R. Dennis: Solar Phys. 118, 49 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  70. H. Marschhäuser, E. Rieger, G. Kanbach: “Temporal Evolution of Bremsstrahlung-Dominated Gamma-Ray Spectra of Solar Flares”, in High-Energy Solar Phenomena—a N ew Era of Spacecraft Measurements, ed. by J. Ryan, T. Vestrand (1994), Vol. 294 of AIP Conf. Proc., p. 171

    Google Scholar 

  71. M. Yoshimori: Space Science Reviews 51, 85 (1989)

    Article  ADS  Google Scholar 

  72. C. Barat, G. Trottet, N. Vilmer, et al.: Ap. J. 425, L109 (1994)

    Article  ADS  Google Scholar 

  73. N. Vilmer, G.. Trottet, C. Barat, et al.: Astr. Ap. 342, 575 (1999)

    ADS  Google Scholar 

  74. G.H. Share, R.J. Murphy: “Gamma Ray Spectroscopy in the Pre-HESSI Era”, in High Energy Solar Physics Workshop—Anticipating HESSI, ed. by R. Ramaty, N. Mandzhavidze (2000), Vol. 206 of ASP Conf. Ser., p. 377

    Google Scholar 

  75. A.L. MacKinnon: Astr. Ap. 226, 284 (1989)

    ADS  Google Scholar 

  76. G.H. Share, R.J. Murphy: Ap. J. 452, 933 (1995)

    Article  ADS  Google Scholar 

  77. R. Ramaty, N. Mandzhavidze, B. Kozlovsky, et al.: Ap. J. 455, L193 (1995)

    Article  ADS  Google Scholar 

  78. R.J. Murphy, G.H. Share, J.E. Grove, et al.: Ap. J. 490, 883 (1997)

    Article  ADS  Google Scholar 

  79. G.H. Share, R.J. Murphy: Ap. J. 508, 876 (1998)

    Article  ADS  Google Scholar 

  80. N. Mandzhavidze, R. Ramaty, B. Kozlovsky: Ap. J. 518, 918 (1999)

    Article  ADS  Google Scholar 

  81. R.J. Murphy, G.H. Share, J.R. Letaw, et al.: Ap. J. 358, 298 (1990)

    Article  ADS  Google Scholar 

  82. R.J. Murphy, R. Ramaty, D.V. Reames, et al.: Ap. J. 371, 793 (1991)

    Article  ADS  Google Scholar 

  83. D.V. Reames, J.P. Meyer, T.T. von Rosenvinge: Ap. J. Supp. 90, 649 (1994)

    Article  ADS  Google Scholar 

  84. G. Trottet, C. Barat, R. Ramaty, et al.: “Thin Target γ-ray Line Production During the 1991 June 1 Flare”, in High Energy Solar Physics, ed. by R. Ramaty, N. Mandzhavidze, X.M. Hua (1996), Vol. 374 of AIP Conf. Proc., p. 153

    Google Scholar 

  85. R. Ramaty, N. Mandzhavidze, C. Barat, et al.: Ap. J. 479, 458 (1997)

    Article  ADS  Google Scholar 

  86. R.J. Murphy, G.H. Share, K.W. Delsignore, et al.: Ap. J. 510, 1011 (1999)

    Article  ADS  Google Scholar 

  87. K.R. Bromund, J.M. McTiernan, S.R. Kane: Ap. J. 455, 733 (1995)

    Article  ADS  Google Scholar 

  88. R.P. Lin, R.A. Schwartz, S.R. Kane, et al.: Ap. J. 283, 421 (1984)

    Article  ADS  Google Scholar 

  89. S.R. Kane, K. Hurley, J.M. McTiernan, et al.: Ap. J. 446, L47 (1995)

    Article  ADS  Google Scholar 

  90. N. Mandzhavidze, R. Ramaty: American Astronomical Society Meeting 28, 858 (1996)

    Google Scholar 

  91. D.V. Reames, H.V. Cane, T.T. von Rosenvinge: Ap. J. 357, 259 (1990)

    Article  ADS  Google Scholar 

  92. A.G. Emslie, J.C. Brown, A.L. MacKinnon: Ap. J. 485, 430 (1997)

    Article  ADS  Google Scholar 

  93. A.M. Hernandez, M.E. Machado, N. Vilmer, et al.: Astr. Ap. 167, 77 (1986)

    ADS  Google Scholar 

  94. S.R. Kane, J. McTiernan, J. Loran, et al.: Ap. J. 390, 687 (1992)

    Article  ADS  Google Scholar 

  95. E. Rieger, H. Marschhäuser: “Electron Dominated Events during Solar Flares”, in Max’ 91/SMM Solar Flares: Observations and Theory, ed. by R. Winglee, A. Kiplinger (Univ. Colorado, 1990), p. 68

    Google Scholar 

  96. N. Vilmer, G. Trottet, C. Barat, et al.: Space Science Reviews 68, 233 (1994)

    Article  ADS  Google Scholar 

  97. B.L. Dingus, P. Sreekumar, D.L. Bertsch, et al.: “EGRET Observation of the June 30 and July 2, 1991 Energetic Solar Flares”, in High-Energy Solar Phenomena—a New Era of Spacecraft Measurements, ed. by J. Ryan, T. Vestrand (1994), Vol. 294 of AIP Conf. Proc., p. 177

    Google Scholar 

  98. M. Yoshimori, A. Shiozawa, K. Suga: “Two Types of Gamma-Ray Flares”, in Proc. Nobeyama Symp., ed. by T.S. Bastian, N. Gopalswamy, K. Shibasaki (NRO Report 479, 1999), p. 353

    Google Scholar 

  99. E. Rieger, W.Q. Gan, H. Marschhäuser: Solar Phys. 183, 123 (1998)

    Article  ADS  Google Scholar 

  100. E.L. Chupp, G. Trottet, H. Marschhäuser, et al.: Astr. Ap. 275, 602 (1993)

    ADS  Google Scholar 

  101. G. Trottet, E.L. Chupp, H. Marschhäuser, et al.: Astr. Ap. 288, 647 (1994)

    ADS  Google Scholar 

  102. Y.E. Litvinenko: Solar Phys. 194, 327 (2000)

    Article  ADS  Google Scholar 

  103. M. Nishio, K. Yaji, T. Kosugi, et al.: Ap. J. 489, 976 (1997)

    Article  ADS  Google Scholar 

  104. M. Nishio, T. Kosugi, K. Yaji, et al.: “Nobeyama/HXT Observations of Impulsive Flares”, in Proc. Nobeyama Symp., ed. by T.S. Bastian, N. Gopalswamy, K. Shibasaki (NRO Report 479, 1999), p. 235

    Google Scholar 

  105. J. Wülser, R. Canfield, E. Rieger: “Chromospheric Response During the Gamma Ray Flare on March 10, 1989”, in Max’ 91/SMM Solar Flares: Observations and Theory, ed. by R. Winglee, A. Kiplinger (Univ. Colorado, 1990), p. 149

    Google Scholar 

  106. M.E. Machado, C.V. Sneibrun, M.G. Rovira: Solar Phys. 99, 189 (1985)

    Article  ADS  Google Scholar 

  107. J.P. Raulin, N. Vilmer, G. Trottet, et al.: Astr. Ap. 355, 355 (2000)

    ADS  Google Scholar 

  108. R. Herrmann, E. Rolli, E. Correia, et al.: Solar Phys. 149, 155 (1994)

    Article  ADS  Google Scholar 

  109. J. Lee, D.E. Gary, K. Shibasaki: Ap. J. 531, 1109 (2000)

    Article  ADS  Google Scholar 

  110. L.E. Peterson, J.R. Winckler: Journ. Geophys. Res. 64, 697 (1959)

    Article  ADS  Google Scholar 

  111. K. Kai: Solar Phys. 104, 235 (1986)

    Article  ADS  Google Scholar 

  112. D.E. Gary: Ap. J. 297, 799 (1985)

    Article  ADS  Google Scholar 

  113. K.L. Klein, G. Trottet, A. Magun: Solar Phys. 104, 243 (1986)

    Article  ADS  Google Scholar 

  114. J. Lee, D.E. Gary: Ap. J. 543, 457 (2000)

    Article  ADS  Google Scholar 

  115. A.V.R. Silva, H. Wang, D.E. Gary: “Comparison of Microwave and HXR Spectra from Solar Flares”, in Proc. Nobeyama Symp., ed. by T.S. Bastian, N. Gopalswamy, K. Shibasaki (NRO Report 479, 1999), p. 255

    Google Scholar 

  116. V.F. Melnikov, A.V.R. Silva: “Dynamics of solar are microwave and hard X-ray spectra”, in Ninth European Meeting on Solar Physics: Magnetic Fields and Solar Processes. ESA SP-448, ed. A. Wilson. (1999), p. 1053

    Google Scholar 

  117. S.M. White, M.R. Kundu: Solar Phys. 141, 347 (1992)

    Article  ADS  Google Scholar 

  118. M.R. Kundu, S.M. White, N. Gopalswamy, et al.: Ap. J. Supp. 90, 599 (1994)

    Article  ADS  Google Scholar 

  119. G. Trottet, J.P. Raulin, P. Kaufmann, et al.: Astr. Ap. 381, 694 (2002)

    Article  ADS  Google Scholar 

  120. J. Hildebrandt, A. Krüger, I.M. Chertok, et al.: Solar Phys. 181, 337 (1998)

    Article  ADS  Google Scholar 

  121. A. Benz, M. Aschwanden: in Eruptive Solar Flares, ed. by Z. Švestka, B.V. Jackson, M.E. Machado (Springer, 1991), Vol. 399 of LNP, p. 106

    Google Scholar 

  122. M.J. Aschwanden, A.O. Benz, B.R. Dennis, et al.: Ap. J. 455, 347 (1995)

    Article  ADS  Google Scholar 

  123. T. Takakura, M. Inda, K. Makishima, et al.: Pub. Astron. Soc. Jap. 45, 737 (1993)

    ADS  Google Scholar 

  124. M.J. Aschwanden: “What did YOHKOH and Compton Change in Our Perception of Particle Acceleration in Solar Flares?”, in Observational Plasma Astrophysics: Five Years of YOHKOH and Beyond, ed. by T. Watanabe, K. Kosugi, A.C. Sterling. (Kluwer, 1998), Vol. 229 of ASSL, p. 285

    Google Scholar 

  125. Y. Hanaoka: “Radio and X-ray Observations of the Flares Caused by Interacting Loops”, in Proc. Nobeyama Symp., ed. by T.S. Bastian, N. Gopalswamy, K. Shibasaki (NRO Report 479, 1999), p. 229

    Google Scholar 

  126. E. Hulot, N. Vilmer, E.L. Chupp, et al.: Astr. Ap. 256, 273 (1992)

    ADS  Google Scholar 

  127. K.L. Klein, H. Aurass, I. Soru-Escaut, B. Kálmán: Astr. Ap. 320, 612 (1997)

    ADS  Google Scholar 

  128. M.R. Kundu, A. Nindos, N. Vilmer, et al.: Ap. J. 559, 443 (2001)

    Article  ADS  Google Scholar 

  129. V.V. Akimov, P. Ambrož, A.V. Belov, et al.: Solar Phys. 166, 107 (1996)

    Article  ADS  Google Scholar 

  130. J.A. Miller, P.J. Cargill, A.G. Emslie, et al.: Journ. Geophys. Res. 102, 14 631 (1997)

    ADS  Google Scholar 

  131. A. Anastasiadis: Journal of Atmospheric and Solar-Terrestrial Physics 64, 481 (2002)

    Article  ADS  Google Scholar 

  132. A. Anastasiadis, L. Vlahos, M.K. Georgoulis: Ap. J. 489, 367 (1997)

    Article  ADS  Google Scholar 

  133. Y.E. Litvinenko: Ap. J. 462, 997 (1996)

    Article  ADS  Google Scholar 

  134. B. Park, V. Petrosian, R. Schwartz: Ap. J. 489, 358 (1997)

    Article  ADS  Google Scholar 

  135. J.A. Miller, T.N. Larosa, R.L. Moore: Ap. J. 461, 445 (1996)

    Article  ADS  Google Scholar 

  136. J.A. Miller: “Stochastic Particle Acceleration in Solar Flares”, in High Energy Solar Physics Workshop—Anticipating HESSI, ed. by R. Ramaty, N. Mandzhavidze (2000), Vol. 206 of ASP Conf. Ser., p. 145

    Google Scholar 

  137. J.A. Miller, D.V. Reames: “Heavy Ion Acceleration by Cascading Alfven Waves in Impulsive Solar Flares”, in High Energy Solar Physics, ed. by R. Ramaty, N. Mandzhavidze, X.M. Hua (1996), Vol. 374 of AIP Conf. Proc., p. 450

    Google Scholar 

  138. P.C.H. Martens, A. Young: Ap. J.Supp. 73, 333 (1990)

    Article  ADS  Google Scholar 

  139. L.O. Drury: Reports on Progress in Physics 46, 973 (1983)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vilmer, N., MacKinnon, A.L. (2003). What Can Be Learned About Competing Acceleration Models from Multiwavelength Observations?. In: Klein, KL. (eds) Energy Conversion and Particle Acceleration in the Solar Corona. Lecture Notes in Physics, vol 612. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36242-8_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-36242-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00275-8

  • Online ISBN: 978-3-540-36242-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics