Skip to main content

Derivation of Elastic Theories for Thin Sheets and the Constraint of Incompressibility

  • Conference paper
Analysis, Modeling and Simulation of Multiscale Problems

Summary

We discuss the derivation of two-dimensional models for thin elastic sheets as Γ-limits of three-dimensional nonlinear elasticity. We briefly review recent results and present an extension of the derivation of a membrane theory, first obtained by LeDret and Raoult in 1993, to the case of incompressible materials. The main difficulty is the construction of a recovery sequence which satisfies pointwise the nonlinear constraint of incompressibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Adams, S. Conti, and A. DeSimone. Soft elasticity and microstructure in smectic C elastomers. Preprint, 2006.

    Google Scholar 

  2. E. Acerbi and N. Fusco. Semicontinuity problems in the calculus of variations. Arch. Rat. Mech. Anal., 86, 125–145, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  3. H. Ben Belgacem, S. Conti, A. DeSimone, and S. Müller. Rigorous bounds for the Föppl-von Kármán theory of isotropically compressed plates. J. Nonlinear Sci., 10, 661–683, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  4. H. Ben Belgacem, S. Conti, A. DeSimone, and S. Müller. Energy scaling of compressed elastic films. Arch. Rat. Mech. Anal., 164, 1–37, 2002.

    Article  MATH  Google Scholar 

  5. H. B. Belgacem. Modélisation de structures minces en élasticité non linéaire. PhD thesis, Univ. Paris 6, 1996.

    Google Scholar 

  6. H. B. Belgacem. Une méthode de Γ-convergence pour un modèle de membrane non linéaire. C. R. Acad. Sci. Paris, 323, 845–849, 1996.

    Google Scholar 

  7. J. M. Ball and F. Murat. W 1,p-quasiconvexity and variational problems for multiple integrals. J. Funct. Anal., 58, 225–253, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Braides. Γ-convergence for beginners. Oxford University Press, Oxford, 2002.

    MATH  Google Scholar 

  9. S. Conti and G. Dolzmann. Derivation of a plate theory for incompressible materials. Preprint, 2005.

    Google Scholar 

  10. S. Conti, A. DeSimone, and G. Dolzmann. Semi-soft elasticity and director reorientation in stretched sheets of nematic elastomers. Phys. Rev. E, 66, 061710, 2002.

    Article  Google Scholar 

  11. P. G. Ciarlet. Theory of plates, volume II of Mathematical elasticity. Elsevier, Amsterdam, 1997.

    Google Scholar 

  12. S. Conti and F. Maggi. Confining thin elastic sheets and folding paper. Preprint, 2005.

    Google Scholar 

  13. S. Conti, F. Maggi, and S. Müller. Rigorous derivation of Föppl’s theory for clamped elastic membranes leads to relaxation. Preprint, to appear in SIAM J. Math. Anal..

    Google Scholar 

  14. S. Conti. Low-energy deformations of thin elastic sheets: isometric embeddings and branching patterns. Habilitation thesis, Universität Leipzig, 2003.

    Google Scholar 

  15. B. Dacorogna. Direct methods in the calculus of variations. Springer-Verlag, New York, 1989.

    MATH  Google Scholar 

  16. G. Dal Maso. An introduction to Γ-convergence. Birkhäuser, Boston, 1993.

    Google Scholar 

  17. A. DeSimone and G. Dolzmann. Macroscopic response of nematic elastomers via relaxation of a class of SO(3)-invariant energies. Arch. Rat. Mech. Anal., 161, 181–204, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  18. G. Friesecke, R. James, and S. Müller. A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity. Comm. Pure Appl. Math, 55, 1461–1506, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  19. I. Fonseca. The lower quasiconvex envelope of the stored energy function for an elastic crystal. J. Math. pures et appl., 67, 175–195, 1988.

    MATH  MathSciNet  Google Scholar 

  20. E. De Giorgi and T. Franzoni. Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Mat. (8), 58, 842–850, 1975.

    MATH  Google Scholar 

  21. W. Jin and P. Sternberg. Energy estimates of the von Kármán model of thin-film blistering. J. Math. Phys., 42, 192–199, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  22. W. Jin and P. Sternberg. In-plane displacements in thin-film blistering. Proc. R. Soc. Edin. A, 132A, 911–930, 2002.

    Article  MathSciNet  Google Scholar 

  23. N. Kuiper. On C 1 isometric imbeddings I and II. Proc. Kon. Acad. Wet. Amsterdam A, 58, 545–556 and 683–689, 1955.

    MATH  MathSciNet  Google Scholar 

  24. H. LeDret and A. Raoult. Le modèle de membrane nonlinéaire comme limite variationelle de l’élasticité non linéaire tridimensionelle. C. R. Acad. Sci. Paris, 317, 221–226, 1993.

    MathSciNet  Google Scholar 

  25. H. LeDret and A. Raoult. The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl., 73, 549–578, 1995.

    MathSciNet  Google Scholar 

  26. S. Müller. Variational models for microstructure and phase transitions. In F. Bethuel et al., editors, in: Calculus of variations and geometric evolution problems, Springer Lecture Notes in Math. 1713, pages 85–210. Springer-Verlag, 1999.

    Google Scholar 

  27. J. Nash. C 1 isometric imbeddings. Ann. Math., 60, 383–396, 1954.

    Article  MATH  MathSciNet  Google Scholar 

  28. O. Pantz. On the justification of the nonlinear inextensional plate model. Arch. Rat. Mech. Anal., 167, 179–209, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  29. K. Trabelsi. Incompressible nonlinearly elastic thin membranes. C. R. Acad. Sci. Paris, Ser. I, 340, 75–80, 2005.

    MATH  MathSciNet  Google Scholar 

  30. K. Trabelsi. Modeling of a nonlinear membrane plate for incompressible materials via Gamma-convergence. To appear in Anal. Appl. (Singap.).

    Google Scholar 

  31. H. Whitney. The general type of singularity of a set of 2n-1 smooth functions of n variables. Duke Math. J., 10, 161–172, 1943.

    Article  MATH  MathSciNet  Google Scholar 

  32. H. Whitney. The self-intersections of a smooth n-manifold in 2n-space. Ann. Math., 45, 220–246, 1944.

    Article  MATH  MathSciNet  Google Scholar 

  33. H. Whitney. The singularities of a smooth n-manifold in 2n-1-space. Ann. Math., 45, 247–293, 1944.

    Article  MATH  MathSciNet  Google Scholar 

  34. M. Warner and E. M. Terentjev. Nematic elastomers — a new state of matter? Prog. Polym. Sci., 21, 853–891, 1996.

    Article  Google Scholar 

  35. M. Warner and E. M. Terentjev. Liquid Crystal Elastomers. Oxford Univ. Press, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Conti, S., Dolzmann, G. (2006). Derivation of Elastic Theories for Thin Sheets and the Constraint of Incompressibility. In: Mielke, A. (eds) Analysis, Modeling and Simulation of Multiscale Problems. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-35657-6_9

Download citation

Publish with us

Policies and ethics