Skip to main content

Protein Inclusion Bodies in Recombinant Bacteria

  • Chapter
Inclusions in Prokaryotes

Part of the book series: Microbiology Monographs ((MICROMONO,volume 1))

Abstract

Fast and high-level expression of heterologous proteins in bacterial hosts often results in the accumulation of almost pure aggregates (inclusion bodies, IBs) of the target protein. Although knowledge of the pathways and influential factors of protein folding in vivo has increased for many years, the complexity of the cellular networks does not allow easily the prediction of favourable conditions for production of correctly folded proteins. Therefore, IB-based production is still a potential and straightforward strategy for the production of complex recombinant proteins. IB-based processes combine the advantages of a high concentration of the target protein produced in well-characterized bacteria such as Escherichia coli, efficient protocols for IB isolation, purification and in vitro protein refolding without the need of elaborate coexpression systems and time-consuming trial-and-error expression optimization. Recent advances in understanding the molecular physiology of IB formation and in resolubilization enable a streamlined development of fermentation processes to obtain a high-quality product. In addition, simple strategies have been established to improve the purification and renaturation of disulfide bond containing proteins allowing for a fast transfer of those processes to industrial production scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed AK, Schaffer SW, Wetlaufer DB (1975) Nonenzymic reactivation of reduced bovine pancreatic ribonuclease by air oxidation and by glutathione oxidoreduction buffers. J Biol Chem 250:8477–8482

    PubMed  CAS  Google Scholar 

  • Allen SP, Polazzi JO, Gierse JK, Easton AM (1992) Two novel heat shock genes encoding proteins produced in response to heterologous protein expression in Escherichia coli. J Bacteriol 174:6938–6947

    PubMed  CAS  Google Scholar 

  • Ami D, Bonecchi L, Cali S, Orsini G, Tonon G, Doglia SM (2003) FT-IR study of heterologous protein expression in recombinant Escherichia coli strains. Biochim Biophys Acta 1624:6–10

    PubMed  CAS  Google Scholar 

  • Ami D, Natalello A, Gatti-Lafranconi P, Lotti M, Doglia SM (2005) Kinetics of inclusion body formation studied in intact cells by FT-IR spectroscopy. FEBS Lett 579:3433–3436

    Article  PubMed  CAS  Google Scholar 

  • Anfinsen CB, Haber E, Sela M, White FH Jr (1961) The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc Natl Acad Sci USA 47:1309–1314

    Article  PubMed  CAS  Google Scholar 

  • Arechaga I, Miroux B, Karrasch S, Huijbregts R, de Kruijff B, Runswick MJ, Walker JE (2000) Characterisation of new intracellular membranes in Escherichia coli accompanying large scale over-production of the b subunit of F(1)F(o) ATP synthase. FEBS Lett 482:215–219

    Article  PubMed  CAS  Google Scholar 

  • Arsene F, Tomoyasu T, Bukau B (2000) The heat shock response of Escherichia coli. Int J Food Microbiol 55:3–9

    Article  PubMed  CAS  Google Scholar 

  • Ayling A, Baneyx F (1996) Influence of the GroE molecular chaperone machine on the in vitro refolding of Escherichia coli beta-galactosidase. Protein Sci 5:478–487

    Article  PubMed  CAS  Google Scholar 

  • Bahl H, Echols H, Straus DB, Court D, Crowl R, Georgopoulos CP (1987) Induction of the heat shock response of E. coli through stabilization of s32 by the phage lambda cIII protein. Gene Dev 1:57–64

    Article  PubMed  CAS  Google Scholar 

  • Baneyx F, Mujacic M (2004) Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 22:1399–1408

    Article  PubMed  CAS  Google Scholar 

  • Baneyx F, Ayling A, Palumbo T, Thomas D, Georgiou G (1991) Optimization of growth conditions for the production of proteolytically-sensitive proteins in the periplasmic space of Escherichia coli. Appl Microbiol Biotechnol 36:14–20

    Article  PubMed  CAS  Google Scholar 

  • Baynes BM, Wang DI, Trout BL (2005) Role of arginine in the stabilization of proteins against aggregation. Biochemistry 44:4919–4925

    Article  PubMed  CAS  Google Scholar 

  • Beck R, Burtscher H (1994) Expression of human placental alkaline phosphatase in Escherichia coli. Protein Expr Purif 5:192–197

    Article  PubMed  CAS  Google Scholar 

  • Benito A, Viaplana E, Corchero JL, Carbonell X, Villaverde A (1995) A recombinant foot-and-mouth disease virus antigen inhibits DNA replication and triggers the SOS response in Escherichia coli. FEMS Microbiol Lett 129:157–162

    PubMed  CAS  Google Scholar 

  • Bessette PH, Aslund F, Beckwith J, Georgiou G (1999) Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc Natl Acad Sci USA 96:13703–13708

    Article  PubMed  CAS  Google Scholar 

  • Betts S, King J (1999) There’s a right way and a wrong way: in vivo and in vitro folding, misfolding and subunit assembly of the P22 tailspike. Struct Fold Des 7:R131–R139

    Article  CAS  Google Scholar 

  • Betts S, Haase-Pettingell C, Cook K, King J (2004) Buried hydrophobic side-chains essential for the folding of the parallel beta-helix domains of the P22 tailspike. Protein Sci 13:2291–2303

    Article  PubMed  CAS  Google Scholar 

  • Boos W, Lucht JM (1996) Periplasmic binding protein-dependent ABC transporters. In: Neidhardt FC et al (eds) Escherichia coli and Salmonella typhimurium cellular and molecular biology. American Society for Microbiology, Washington, DC, pp 1175–1209

    Google Scholar 

  • Bowden GA, Paredes AM, Georgiou G (1991) Structure and morphology of protein inclusion bodies in Escherichia coli. Biotechnology 9:725–730

    Article  PubMed  CAS  Google Scholar 

  • Braakman I, Helenius J, Helenius A (1992) Role of ATP and disulphide bonds during protein folding in the endoplasmic reticulum. Nature 356:260–262

    Article  PubMed  CAS  Google Scholar 

  • Brinkmann U, Mattes RE, Buckel P (1989) High-level expression of recombinant genes in Escherichia coli is dependent on the availability of the dnaY gene product. Gene 85:109–114

    Article  PubMed  CAS  Google Scholar 

  • Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, Taddei N, Ramponi G, Dobson CM, Stefani M (2002) Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416:507–511

    Article  PubMed  CAS  Google Scholar 

  • Buchner J, Rudolph R (1991a) Renaturation, purification and characterization of recombinant Fab fragments produced in Escherichia coli. Biotechnology 9:157–162

    Article  PubMed  CAS  Google Scholar 

  • Buchner J, Rudolph R (1991b) Routes to active proteins from transformed microorganisms. Curr Opin Biotechnol 2:532–538

    Article  PubMed  CAS  Google Scholar 

  • Buchner J, Pastan I, Brinkmann U (1992) A method for increasing the yield of properly folded recombinant fusion proteins: single-chain immunotoxins from renaturation of bacterial inclusion bodies. Anal Biochem 205:263–270

    Article  PubMed  CAS  Google Scholar 

  • Builder S, Hart R, Lester A, Reifsnyder D (1998) Refolding of polypeptides like recombinant insulin-like growth factor. US Patent 5,808,006

    Google Scholar 

  • Bukau B (1993) Regulation of the Escherichia coli heat-shock response. Mol Microbiol 9:671–680

    Article  PubMed  CAS  Google Scholar 

  • Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366

    Article  PubMed  CAS  Google Scholar 

  • Caldas T, Demont-Caulet N, Ghazi A, Richarme G (1999) Thermoprotection by glycine betaine and choline. Microbiology 145:2543–2548

    PubMed  CAS  Google Scholar 

  • Calderone TL, Stevens RD, Oas TG (1996) High-level misincorporation of lysine for arginine at AGA codons in a fusion protein expressed in Escherichia coli. J Mol Biol 262:407–412

    Article  PubMed  CAS  Google Scholar 

  • Carbonell X, Corchero JL, Cubarsi R, Vila P, Villaverde A (2002) Control of Escherichia coli growth rate through cell density. Microbiol Res 157:257–265

    Article  PubMed  Google Scholar 

  • Carrio MM, Villaverde A (2001) Protein aggregation as bacterial inclusion bodies is reversible. FEBS Lett 489:29–33

    Article  PubMed  CAS  Google Scholar 

  • Carrio MM, Villaverde A (2002) Construction and deconstruction of bacterial inclusion bodies. J Biotechnol 96:3–12

    Article  PubMed  CAS  Google Scholar 

  • Carrio MM, Villaverde A (2003) Role of molecular chaperones in inclusion body formation. FEBS Lett 537:215–221

    Article  PubMed  CAS  Google Scholar 

  • Carrio MM, Villaverde A (2005) Localization of chaperones DnaK and GroEL in bacterial inclusion bodies. J Bacteriol 187:3599–3601

    Article  PubMed  CAS  Google Scholar 

  • Carrio MM, Corchero JL, Villaverde A (1998) Dynamics of in vivo protein aggregation: building inclusion bodies in recombinant bacteria. FEMS Microbiol Lett 169:9–15

    Article  PubMed  CAS  Google Scholar 

  • Carrio MM, Corchero JL, Villaverde A (1999) Proteolytic digestion of bacterial inclusion body proteins during dynamic transition between soluble and insoluble forms. Biochim Biophys Acta 1434:170–176

    PubMed  CAS  Google Scholar 

  • Carrio MM, Cubarsi R, Villaverde A (2000) Fine architecture of bacterial inclusion bodies. FEBS Lett 471:7–11

    Article  PubMed  CAS  Google Scholar 

  • Carrio M, Gonzalez-Montalban N, Vera A, Villaverde A, Ventura S (2005) Amyloid-like properties of bacterial inclusion bodies. J Mol Biol 347:1025–1037

    Article  PubMed  CAS  Google Scholar 

  • Cassland P, Larsson S, Nilvebrant NO, Jonsson LJ (2004) Heterologous expression of barley and wheat oxalate oxidase in an E. coli trxB gor double mutant. J Biotechnol 109:53–62

    Article  PubMed  CAS  Google Scholar 

  • Chapot MP, Eshdat Y, Marullo S, Guillet JG, Charbit A, Strosberg AD, Delavier-Klutchko C (1990) Localization and characterization of three different beta-adrenergic receptors expressed in Escherichia coli. Eur J Biochem 187:137–144

    Article  PubMed  CAS  Google Scholar 

  • Charbonnier F, Kohler T, Pechere JC, Ducruix A (2001) Overexpression, refolding, and purification of the histidine-tagged outer membrane efflux protein OprM of Pseudomonas aeruginosa. Protein Expr Purif 23:121–127

    Article  PubMed  CAS  Google Scholar 

  • Chaudhuri TK, Gupta P (2005) Factors governing the substrate recognition by GroEL chaperone: a sequence correlation approach. Cell Stress Chaperones 10:24–36

    Article  PubMed  CAS  Google Scholar 

  • Chauhan M, Rajarathnam K, Yallampalli C (2005) Role of the N-terminal domain of the calcitonin receptor-like receptor in ligand binding. Biochemistry 44:782–789

    Article  PubMed  CAS  Google Scholar 

  • Choi JH, Jeong KJ, Kim SC, Lee SY (2000) Efficient secretory production of alkaline phosphatase by high cell density culture of recombinant Escherichia coli using the Bacillus sp. endoxylanase signal sequence. Appl Microbiol Biotechnol 53:640–645

    Article  PubMed  CAS  Google Scholar 

  • Chuang SE, Burland V, Plunkett G3, Daniels DL, Blattner FR (1993) Sequence analysis of four new heat-shock genes constituting the hslTS/ibpAB and hslVU operons in Escherichia coli. Gene 134:1–6

    Article  PubMed  CAS  Google Scholar 

  • Chung J, Chen T, Missiakas D (2000) Transfer of electrons across the cytoplasmic membrane by DsbD, a membrane protein involved in thiol-disulphide exchange and protein folding in the bacterial periplasm. Mol Microbiol 35:1099–1109

    Article  PubMed  CAS  Google Scholar 

  • Cleland JL, Hedgepeth C, Wang DI (1992) Polyethylene glycol enhanced refolding of bovine carbonic anhydrase B. Reaction stoichiometry and refolding model. J Biol Chem 267:13327–13334

    PubMed  CAS  Google Scholar 

  • Coates AR, Henderson B, Mascagni P (1999) The unfolding story of the chaperonins. Biotechnol Genet Eng Rev 16:393–405

    PubMed  CAS  Google Scholar 

  • Coburn GA, Mackie GA (1999) Degradation of mRNA in Escherichia coli: an old problem with some new twists. Prog Nucleic Acid Res Mol Biol 62:55–108

    Article  PubMed  CAS  Google Scholar 

  • Cooper A (1992) Effect of cyclodextrins on the thermal stability of globular proteins. J Am Chem Soc 114:9208–9209

    Article  CAS  Google Scholar 

  • Corchero JL, Viaplana E, Benito A, Villaverde A (1996) The position of the heterologous domain can influence the solubility and proteolysis of beta-galactosidase fusion proteins in E. coli. J Biotechnol 48:191–200

    Article  PubMed  CAS  Google Scholar 

  • Corchero JL, Cubarsi R, Enfors S, Villaverde A (1997) Limited in vivo proteolysis of aggregated proteins. Biochem Biophys Res Commun 237:325–330

    Article  PubMed  CAS  Google Scholar 

  • Cortazzo P, Cervenansky C, Marin M, Reiss C, Ehrlich R, Deana A (2002) Silent mutations affect in vivo protein folding in Escherichia coli. Biochem Biophys Res Commun 293:537–541

    Article  PubMed  CAS  Google Scholar 

  • Craig EA, Gross CA (1991) Is hsp70 the cellular thermometer? Trends Biochem Sci 16:135–140

    Article  PubMed  CAS  Google Scholar 

  • Cserjan-Puschmann M, Kramer W, Duerrschmid E, Striedner G, Bayer K (1999) Metabolic approaches for the optimisation of recombinant fermentation processes. Appl Microbiol Biotechnol 53:43–50

    Article  PubMed  CAS  Google Scholar 

  • Cubarsi R, Carrio MM, Villaverde A (2001) In situ proteolytic digestion of inclusion body polypeptides occurs as a cascade process. Biochem Biophys Res Commun 282:436–441

    Article  PubMed  CAS  Google Scholar 

  • Cubarsi R, Carrio MM, Villaverde A (2005) A mathematical approach to molecular organization and proteolytic disintegration of bacterial inclusion bodies. Math Med Biol 22:209–226

    Article  PubMed  CAS  Google Scholar 

  • Dasilva NA, Bailey JE (1986) Theoretical Growth-Yield Estimates for Recombinant Cells. Biotechnol Bioeng 28:741–746

    Article  CAS  Google Scholar 

  • Datar RV, Cartwright T, Rosen CG (1993) Process economics of animal-cell and bacterial fermentations—a case-study analysis of tissue plasminogen activator. Biotechnology 11:349–357

    Article  PubMed  CAS  Google Scholar 

  • De Bernardez CE (2001) Protein refolding for industrial processes. Curr Opin Biotechnol 12:202–207

    Article  Google Scholar 

  • De Bernardez CE, Schwarz E, Rudolph R (1999) Inhibition of aggregation side reactions during in vitro protein folding. Methods Enzymol 309:217–236

    Article  Google Scholar 

  • De Burman SK, Raymond GJ, Caughey B, Lindquist S (1997) Chaperone-supervised conversion of prion protein to its protease-resistant form. Proc Natl Acad Sci USA 94:13938–13943

    Article  Google Scholar 

  • De Marco A, Schroedel A (2005) Characterization of the aggregates formed during recombinant protein expression in bacteria. BMC Biochem 6:10

    Article  PubMed  CAS  Google Scholar 

  • Deana A, Ehrlich R, Reiss C (1996) Synonymous codon selection controls in vivo turnover and amount of mRNA in Escherichia coli bla and ompA genes. J Bacteriol 178:2718–2720

    PubMed  CAS  Google Scholar 

  • Debarbieux L, Beckwith J (1999) Electron avenue: pathways of disulfide bond formation and isomerization. Cell 99:117–119

    Article  PubMed  CAS  Google Scholar 

  • Derman AI, Prinz WA, Belin D, Beckwith J (1993) Mutations that allow disulfide bond formation in the cytoplasm of Escherichia coli. Science 262:1744–1747

    Article  PubMed  CAS  Google Scholar 

  • Deuerling E, Bukau B (2004) Chaperone-assisted folding of newly synthesized proteins in the cytosol. Crit Rev Biochem Mol Biol 39:261–277

    Article  PubMed  CAS  Google Scholar 

  • Diamant S, Ben Zvi AP, Bukau B, Goloubinoff P (2000) Size-dependent disaggregation of stable protein aggregates by the DnaK chaperone machinery. J Biol Chem 275:21107–21113

    Article  PubMed  CAS  Google Scholar 

  • Dobson CM (1999) Protein misfolding, evolution and disease. Trends Biochem Sci 24:329–332

    Article  PubMed  CAS  Google Scholar 

  • Dobson CM (2003) Protein folding and misfolding. Nature 426:884–890

    Article  PubMed  CAS  Google Scholar 

  • Dong H, Nilsson L, Kurland CG (1995) Gratuitous overexpression of genes in Escherichia coli leads to growth inhibition and ribosome destruction. J Bacteriol 177:1497–1504

    PubMed  CAS  Google Scholar 

  • Dong H, Nilsson L, Kurland CG (1996) Co-variation of tRNA abundance and codon usage in Escherichia coli at different growth rates. J Mol Biol 260:649–663

    Article  PubMed  CAS  Google Scholar 

  • Dougan DA, Mogk A, Bukau B (2002) Protein folding and degradation in bacteria: to degrade or not to degrade? That is the question. Cell Mol Life Sci 59:1607–1616

    Article  PubMed  CAS  Google Scholar 

  • Dutta S, Ware LA, Barbosa A, Ockenhouse CF, Lanar DE (2001) Purification, characterization, and immunogenicity of a disulfide cross-linked Plasmodium vivax vaccine candidate antigen, merozoite surface protein 1, expressed in Escherichia coli. Infect Immun 69:5464–5470

    Article  PubMed  CAS  Google Scholar 

  • Dutta S, Lalitha PV, Ware LA, Barbosa A, Moch JK, Vassell MA, Fileta BB, Kitov S, Kolodny N, Heppner DG, Haynes JD, Lanar DE (2002) Purification, characterization, and immunogenicity of the refolded ectodomain of the Plasmodium falciparum apical membrane antigen 1 expressed in Escherichia coli. Infect Immun 70:3101–3110

    Article  PubMed  CAS  Google Scholar 

  • Ehrnsperger M, Graber S, Gaestel M, Buchner J (1997) Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J 16:221–229

    Article  PubMed  CAS  Google Scholar 

  • Ellis RJ (1994) Molecular chaperones. Opening and closing the Anfinsen cage. Curr Biol 4:633–635

    Article  PubMed  CAS  Google Scholar 

  • Ellis RJ, Hartl FU (1999) Principles of protein folding in the cellular environment. Curr Opin Struct Biol 9:102–110

    Article  PubMed  CAS  Google Scholar 

  • Ewalt KL, Hendrick JP, Houry WA, Hartl FU (1997) In vivo observation of polypeptide flux through the bacterial chaperonin system. Cell 90(3):491–500

    Article  PubMed  CAS  Google Scholar 

  • Fahey EM, Chaudhuri JB, Binding P (2000a) Refolding and purification of a urokinase plasminogen activator fragment by chromatography. J Chromatogr B Biomed Sci Appl 737:225–235

    Article  PubMed  CAS  Google Scholar 

  • Fahey EM, Chaudhuri JB, Binding P (2000b) Refolding of low molecular weight urokinase plasminogen activator by dilution and size exclusion chromatography—a comparative study. Sep Sci Technol 35:1743–1760

    Article  CAS  Google Scholar 

  • Fahnert B (2001) Rekombinantes humanes BMP-2 aus Escherichia coli. Strategien zur Expression und Funktionalisierung. PhD thesis, Friedrich Schiller University of Jena

    Google Scholar 

  • Fahnert B (2004) Folding-promoting agents in recombinant protein production. Methods Mol Biol 267:53–74

    PubMed  CAS  Google Scholar 

  • Fahnert B, Lilie H, Neubauer P (2004) Inclusion bodies: formation and utilisation. Adv Biochem Eng Biotechnol 89:93–142

    PubMed  CAS  Google Scholar 

  • Fandrich M, Fletcher MA, Dobson CM (2001) Amyloid fibrils from muscle myoglobin. Nature 410:165–166

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Escamilla AM, Rousseau F, Schymkowitz J, Serrano L (2004) Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat Biotechnol 22:1302–1306

    Article  PubMed  CAS  Google Scholar 

  • Fischer B, Perry B, Sumner I, Goodenough P (1992) A novel sequential procedure to enhance the renaturation of recombinant protein from Escherichia coli inclusion bodies. Protein Eng 5:593–596

    Article  PubMed  CAS  Google Scholar 

  • Freistroffer DV, Pavlov MY, MacDougall J, Buckingham RH, Ehrenberg M (1997) Release factor RF3 in E. coli accelerates the dissociation of release factors RF1 and RF2 from the ribosome in a GTP-dependent manner. EMBO J 16:4126–4133

    Article  PubMed  CAS  Google Scholar 

  • Furukawa H, Haga T (2000) Expression of functional M2 muscarinic acetylcholine receptor in Escherichia coli. J Biochem (Tokyo) 127:151–161

    PubMed  CAS  Google Scholar 

  • Garcia-Fruitos E, Carrio MM, Aris A, Villaverde A (2005a) Folding of a misfolding-prone beta-galactosidase in absence of DnaK. Biotechnol Bioeng 90:869–875

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Fruitos E, Gonzalez-Montalban N, Morell M, Vera A, Ferraz RM, Aris A, Ventura S, Villaverde A (2005b) Aggregation as bacterial inclusion bodies does not imply inactivation of enzymes and fluorescent proteins. Microb Cell Fact 4:27

    Article  PubMed  CAS  Google Scholar 

  • Georgiou G, Valax P (1996) Expression of correctly folded proteins in Escherichia coli. Curr Opin Biotechnol 7:190–197

    Article  PubMed  CAS  Google Scholar 

  • Georgiou G, Valax P (1999) Isolating inclusion bodies from bacteria. Methods Enzymol 309:48–58

    Article  PubMed  CAS  Google Scholar 

  • Georgiou G, Valax P, Ostermeier M, Horowitz PM (1994) Folding and aggregation of TEM beta-lactamase: analogies with the formation of inclusion bodies in Escherichia coli. Protein Sci 3:1953–1960

    Article  PubMed  CAS  Google Scholar 

  • Ghosh R, Steiert M, Hardmeyer A, Wang YF, Rosenbusch JP (1998) Overexpression of outer membrane porins in E-coli using pBluescript-derived vectors. Gene Expr 7:149–161

    PubMed  CAS  Google Scholar 

  • Gill RT, DeLisa MP, Shiloach M, Holoman TR, Bentley WE (2000a) OmpT expression and activity increase in response to recombinant chloramphenicol acetyltransferase overexpression and heat shock in E. coli. J Mol Microbiol Biotechnol 2:283–289

    PubMed  CAS  Google Scholar 

  • Gill RT, Valdes JJ, Bentley WE (2000b) A comparative study of global stress gene regulation in response to overexpression of recombinant proteins in Escherichia coli. Metab Eng 2:178–189

    Article  PubMed  CAS  Google Scholar 

  • Gill RT, DeLisa MP, Valdes JJ, Bentley WE (2001) Genomic analysis of high-cell-density recombinant Escherichia coli fermentation and cell conditioning for improved recombinant protein yield. Biotechnol Bioeng 72:85–95

    Article  PubMed  CAS  Google Scholar 

  • Glover JR, Lindquist S (1998) Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94:73–82

    Article  PubMed  CAS  Google Scholar 

  • Goff SA, Goldberg AL (1985) Production of abnormal proteins in E. coli stimulates transcription of lon and other heat shock genes. Cell 41:587–595

    Article  PubMed  CAS  Google Scholar 

  • Goldenberg DP, Smith DH, King J (1983) Genetic analysis of the folding pathway for the tail spike protein of phage P22. Proc Natl Acad Sci USA 80:7060–7064

    Article  PubMed  CAS  Google Scholar 

  • Golomb M, Chamberlin M (1974) Characterization of T7-specific ribonucleic acid polymerase. IV. Resolution of the major in vitro transcripts by gel electrophoresis. J Biol Chem 249:2858–2863

    PubMed  CAS  Google Scholar 

  • Goloubinoff P, Mogk A, Zvi AP, Tomoyasu T, Bukau B (1999) Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc Natl Acad Sci USA 96:13732–13737

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Montalban N, Carrio MM, Cuatrecasas S, Aris A, Villaverde A (2005) Bacterial inclusion bodies are cytotoxic in vivo in absence of functional chaperones DnaK or GroEL. J Biotechnol 118:406–412

    Article  PubMed  CAS  Google Scholar 

  • Grauschopf U, Lilie H, Honold K, Wozny M, Reusch D, Esswein A, Schafer W, Rucknagel KP, Rudolph R (2000) The N-terminal fragment of human parathyroid hormone receptor 1 constitutes a hormone binding domain and reveals a distinct disulfide pattern. Biochemistry 39:8878–8887

    Article  PubMed  CAS  Google Scholar 

  • Grisshammer R, Duckworth R, Henderson R (1993) Expression of a rat neurotensin receptor in Escherichia coli. Biochem J 295:571–576

    PubMed  CAS  Google Scholar 

  • Guijarro JI, Sunde M, Jones JA, Campbell ID, Dobson CM (1998) Amyloid fibril formation by an SH3 domain. Proc Natl Acad Sci USA 95:4224–4228

    Article  PubMed  CAS  Google Scholar 

  • Hart RA, Rinas U, Bailey JE (1990) Protein composition of Vitreoscilla hemoglobin inclusion bodies produced in Escherichia-Coli. J Biol Chem 265:12728–12733

    PubMed  CAS  Google Scholar 

  • Haslbeck M, Buchner J (2002) Chaperone function of sHsps. Prog Mol Subcell Biol 28:37–59

    PubMed  CAS  Google Scholar 

  • Hayhurst A (2000) Improved expression characteristics of single-chain Fv fragments when fused downstream of the Escherichia coli maltose-binding protein or upstream of a single immunoglobulin-constant domain. Protein Expr Purif 18:1–10

    Article  PubMed  CAS  Google Scholar 

  • Hayhurst A, Georgiou G (2001) High-throughput antibody isolation. Curr Opin Chem Biol 5:683–689

    Article  PubMed  CAS  Google Scholar 

  • Hayhurst A, Harris WJ (1999) Escherichia coli skp chaperone coexpression improves solubility and phage display of single-chain antibody fragments. Protein Expr Purif 15:336–343

    Article  PubMed  CAS  Google Scholar 

  • He N, Fujii H, Kusakabe T, Aso Y, Banno Y, Yamamoto K (2004) Overexpression in Escherichia coli and purification of recombinant CI-b1, a Kunitz-type chymotrypsin inhibitor of silkworm. Protein Expr Purif 38:9–16

    Article  PubMed  CAS  Google Scholar 

  • Herbert DN, Foellmer B, Helenius A (1996) Calnexin and calreticulin promote folding, delay oligomerization and suppress degradation of influenza hemagglutinin in microsomes. EMBO J 15:2961–1968

    Google Scholar 

  • Hochuli E, Dobeli H, Schacher A (1987) New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. J Chromatogr 411:177–184

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann F, Rinas U (2000) Kinetics of heat-shock response and inclusion body formation during temperature-induced production of basic fibroblast growth factor in high-cell-density cultures of recombinant Escherichia coli. Biotechnol Prog 16:1000–1007

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann F, Rinas U (2004) Roles of heat-shock chaperones in the production of recombinant proteins in Escherichia coli. Adv Biochem Eng Biotechnol 89:143–161

    PubMed  CAS  Google Scholar 

  • Hoffmann F, Posten C, Rinas U (2001) Kinetic model of in vivo folding and inclusion body formation in recombinant Escherichia coli. Biotechnol Bioeng 72:315–322

    Article  PubMed  CAS  Google Scholar 

  • Horn U, Strittmatter W, Krebber A, Knupfer U, Kujau M, Wenderoth R, Muller K, Matzku S, Pluckthun A, Riesenberg D (1996) High volumetric yields of functional dimeric miniantibodies in Escherichia coli, using an optimized expression vector and high-cell-density fermentation under non-limited growth conditions. Appl Microbiol Biotechnol 46:524–532

    Article  PubMed  CAS  Google Scholar 

  • Hosoda A, Kimata Y, Tsuru A, Kohno K (2003) JPDI, a novel endoplasmic reticulumresident protein containing both a BiP-interacting J-domain and thioredoxin-like motifs. J Biol Chem 278:2669–2676

    Article  PubMed  CAS  Google Scholar 

  • Houry WA (2001) Mechanism of substrate recognition by the chaperonin GroEL. Biochem Cell Biol 79:569–577

    Article  PubMed  CAS  Google Scholar 

  • Houry WA, Frishman D, Eckerskorn C, Lottspeich F, Hartl FU (1999) Identification of in vivo substrates of the chaperonin GroEL. Nature 402:147–154

    Article  PubMed  CAS  Google Scholar 

  • Huang HC, Sherman MY, Kandror O, Goldberg AL (2001) The molecular chaperone DnaJ is required for the degradation of a soluble abnormal protein in Escherichia coli. J Biol Chem 276:3920–3928

    Article  PubMed  CAS  Google Scholar 

  • Humphreys DP, Weir N, Lawson A, Mountain A, Lund PA (1996) Co-expression of human protein disulphide isomerase (PDI) can increase the yield of an antibody Fab’ fragment expressed in Escherichia coli. FEBS Lett 380:194–197

    Article  PubMed  Google Scholar 

  • Humphreys DP, Chapman AP, Reeks DG, Lang V, Stephens PE (1997) Formation of dimeric Fabs in Escherichia coli: effect of hinge size and isotype, presence of interchain disulphide bond, Fab’ expression levels, tail piece sequences and growth conditions. J Immunol Methods 209:193–202

    Article  PubMed  CAS  Google Scholar 

  • Humphreys DP, Carrington B, Bowering LC, Ganesh R, Sehdev M, Smith BJ, King LM, Reeks DG, Lawson A, Popplewell AG (2002) A plasmid system for optimization of Fab’ production in Escherichia coli: importance of balance of heavy chain and light chain synthesis. Protein Expr Purif 26:309–320

    Article  PubMed  CAS  Google Scholar 

  • Humphreys DP, Heywood SP, King LM, Bowering LC, Turner JP, Lane SE (2004) Engineering of Escherichia coli to improve the purification of periplasmic Fab’ fragments: changing the pI of the chromosomally encoded PhoS/PstS protein. Protein Expr Purif 37:109–118

    Article  PubMed  CAS  Google Scholar 

  • Idicula-Thomas S, Balaji PV (2005) Understanding the relationship between the primary structure of proteins and its propensity to be soluble on overexpression in Escherichia coli. Protein Sci 14:582–592

    Article  PubMed  CAS  Google Scholar 

  • Iost I, Guillerez J, Dreyfus M (1992) Bacteriophage-T7 Rna-polymerase travels far ahead of ribosomes in vivo. J Bacteriol 174:619–622

    PubMed  CAS  Google Scholar 

  • Ito K, Akiyama Y, Yura T, Shiba K (1986) Diverse effects of the MalE-LacZ hybrid protein on Escherichia coli cell physiology. J Bacteriol 167:201–204

    PubMed  CAS  Google Scholar 

  • Jaenicke R (1998) Protein self-organization in vitro and in vivo: Partitioning between physical biochemistry and cell biology. Biol Chem 379:237–243

    Article  PubMed  CAS  Google Scholar 

  • Jansen C, Wiese A, Reubsaet L, Dekker N, de Cock H, Seydel U, Tommassen J (2000) Biochemical and biophysical characterization of in vitro folded outer membrane porin PorA of Neisseria meningitidis. Biochim Biophys Acta 1464:284–298

    Article  PubMed  CAS  Google Scholar 

  • Jensen KF (1997) The Escherichia coli K-12 Wild types W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE expression levels. J Bacteriol 175:3401–3407

    Google Scholar 

  • Jevsevar S, Gaberc-Porekar V, Fonda I, Podobnik B, Grdadolnik J, Menart V (2005) Production of nonclassical inclusion bodies from which correctly folded protein can be extracted. Biotechnol Prog 21:632–639

    Article  PubMed  CAS  Google Scholar 

  • Joly JC, Leung WS, Swartz JR (1998) Overexpression of Escherichia coli oxidoreductases increases recombinant insulin-like growth factor-I accumulation. Proc Natl Acad Sci USA 95:2773–2777

    Article  PubMed  CAS  Google Scholar 

  • Jurado P, Ritz D, Beckwith J, de Lorenzo V, Fernandez LA (2002) Production of functional single-chain Fv antibodies in the cytoplasm of Escherichia coli. J Mol Biol 320:1–10

    Article  PubMed  CAS  Google Scholar 

  • Jürgen B, Lin HY, Riemschneider S, Scharf C, Neubauer P, Schmid R, Hecker M, Schweder T (2000) Monitoring of genes that respond to overproduction of an insoluble recombinant protein in Escherichia coli glucose-limited fed-batch fermentations. Biotechnol Bioeng 70:217–224

    Article  PubMed  Google Scholar 

  • Jürgen B, Hanschke R, Sarvas M, Hecker M, Schweder T (2001) Proteome and transcriptome based analysis of Bacillus subtilis cells overproducing an insoluble heterologous protein. Appl Microbiol Biotechnol 55:326–332

    Article  PubMed  Google Scholar 

  • Kaderbhai N, Karim A, Hankey W, Jenkins G, Venning J, Kaderbhai MA (1997) Glycineinduced extracellular secretion of a recombinant cytochrome expressed in Escherichia coli. Biotechnol Appl Biochem 25:53–61

    PubMed  CAS  Google Scholar 

  • Kanemori M, Mori H, Yura T (1994) Induction of heat shock proteins by abnormal proteins results from stabilization and not increased synthesis of sigma 32 in Escherichia coli. J Bacteriol 176:5648–5653

    PubMed  CAS  Google Scholar 

  • Kapust RB, Waugh DS (1999) Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci 8:1668–1674

    Article  PubMed  CAS  Google Scholar 

  • Kersteen EA, Higgin JJ, Raines RT (2004) Production of human prolyl 4-hydroxylase in Escherichia coli. Protein Expr Purif 38:279–291

    Article  PubMed  CAS  Google Scholar 

  • Kim KI, Park SC, Kang SH, Cheong GW, Chung CH (1999) Selective degradation of unfolded proteins by the self-compartmentalizing HtrA protease, a periplasmic heat shock protein in Escherichia coli. J Mol Biol 294:1363–1374

    Article  PubMed  CAS  Google Scholar 

  • King J, Haase-Pettingell C, Robinson AS, Speed M, Mitraki A (1996) Thermolabile folding intermediates: inclusion body precursors and chaperonin substrates. FASEB J 10:57–66

    PubMed  CAS  Google Scholar 

  • Kitagawa M, Matsumura Y, Tsuchido T (2000) Small heat shock proteins, IbpA and IbpB, are involved in resistances to heat and superoxide stresses in Escherichia coli. FEMS Microbiol Lett 184:165–171

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa M, Miyakawa M, Matsumura Y, Tsuchido T (2002) Escherichia coli small heat shock proteins, IbpA and IbpB, protect enzymes from inactivation by heat and oxidants. Eur J Biochem 269:2907–2917

    Article  PubMed  CAS  Google Scholar 

  • Kleber-Janke T, Becker WM (2000) Use of modified BL21(DE3) Escherichia coli cells for high-level expression of recombinant peanut allergens affected by poor codon usage. Protein Expr Purif 19:419–424

    Article  PubMed  CAS  Google Scholar 

  • Knappik A, Krebber C, Pluckthun A (1993) The effect of folding catalysts on the in vivo folding process of different antibody fragments expressed in Escherichia coli. Biotechnology 11:77–83

    Article  PubMed  CAS  Google Scholar 

  • Kohnert U, Rudolph R, Verheijen JH, Weeningverhoeff EJD, Stern A, Opitz U, Martin U, Lill H, Prinz H, Lechner M, Kresse GB, Buckel P, Fischer S (1992) Biochemical properties of the Kringle 2 and protease domains are maintained in the refolded T-Pa deletion variant Bm 06.022. Protein Eng 5:93–100

    Article  PubMed  CAS  Google Scholar 

  • Kolb VA, Makeyev EV, Spirin AS (2000) Co-translational folding of an eukaryotic multidomain protein in a prokaryotic translation system. J Biol Chem 275:16597–16601

    Article  PubMed  CAS  Google Scholar 

  • Kopetzki E, Schumacher G, Buckel P (1989) Control of formation of active soluble or inactive insoluble bakers yeast alpha-glucosidase-pi in Escherichia coli by induction and growth conditions. Mol Gen Genet 216:149–155

    Article  PubMed  CAS  Google Scholar 

  • Kosinski MJ, Bailey JE (1991) Temperature and induction effects on the degradation rate of an abnormal beta-galactosidase in Escherichia coli. J Biotechnol 18:55–68

    Article  PubMed  CAS  Google Scholar 

  • Kosinski MJ, Bailey JE (1992) Structural characteristics of an abnormal protein influencing its proteolytic susceptibility. J Biotechnol 23:211–223

    Article  PubMed  CAS  Google Scholar 

  • Kosinski MJ, Rinas U, Bailey JE (1992) Proteolytic response to the expression of an abnormal beta-galactosidase in Escherichia coli. Appl Microbiol Biotechnol 37:335–341

    Article  PubMed  CAS  Google Scholar 

  • Krüger E, Witt E, Ohlmeier S, Hanschke R, Hecker M (2000) The clp proteases of Bacillus subtilis are directly involved in degradation of misfolded proteins. J Bacteriol 182:3259–3265

    Article  PubMed  Google Scholar 

  • Kuczynska-Wisnik D, Kedzierska S, Matuszewska E, Lund P, Taylor A, Lipinska B, Laskowska E (2002) The Escherichia coli small heat-shock proteins IbpA and IbpB prevent the aggregation of endogenous proteins denatured in vivo during extreme heat shock. Microbiology 148:1757–1765

    PubMed  CAS  Google Scholar 

  • Kuczynska-Wisnik D, Zurawa-Janicka D, Narkiewicz J, Kwiatkowska J, Lipinska B, Laskowska E (2004) Escherichia coli small heat shock proteins IbpA/B enhance activity of enzymes sequestered in inclusion bodies. Acta Biochim Pol 51:925–931

    PubMed  CAS  Google Scholar 

  • Kuivila R (2002) Fermentation process for overexpression of human lymphoma-derived antibody Fab fragments in E. coli. Diploma thesis, University of Oulu

    Google Scholar 

  • Kujau MJ, Riesenberg D (1999) Co-operative effects of protein engineering and vector optimization on high yield expression of functional bivalent miniantibodies in Escherichia coli. Microbiol Res 154:27–34

    PubMed  CAS  Google Scholar 

  • Kujau MJ, Hoischen C, Riesenberg D, Gumpert J (1998) Expression and secretion of functional miniantibodies McPC603scFvDhlx in cell-wall-less L-form strains of Proteus mirabilis and Escherichia coli: a comparison of the synthesis capacities of L-form strains with an E. coli producer strain. Appl Microbiol Biotechnol 49:51–58

    Article  PubMed  CAS  Google Scholar 

  • Kumar PD, Krishnaswamy S (2005) Overexpression, refolding, and purification of the major immunodominant outer membrane porin OmpC from Salmonella typhi: characterization of refolded OmpC. Protein Expr Purif 40:126–133

    Article  PubMed  CAS  Google Scholar 

  • Kurokawa Y, Yanagi H, Yura T (2000) Overexpression of protein disulfide isomerase DsbC stabilizes multiple-disulfide-bonded recombinant protein produced and transported to the periplasm in Escherichia coli. Appl Environ Microbiol 66:3960–3965

    Article  PubMed  CAS  Google Scholar 

  • Langley KE, Berg TF, Strickland TW, Fenton DM, Boone TC, Wypych J (1987) Recombinant Dna-derived bovine growth hormone from Escherichia coli. 1. Demonstration that the hormone is expressed in reduced form, and isolation of the hormone in oxidized, native form. Eur J Biochem 163:313–321

    Article  PubMed  CAS  Google Scholar 

  • Lauber T, Marx UC, Schulz A, Kreutzmann P, Rosch P, Hoffmann S (2001) Accurate disulfide formation in Escherichia coli: overexpression and characterization of the first domain (HF6478) of the multiple Kazal-type inhibitor LEKTI. Protein Expr Purif 22:108–112

    Article  PubMed  CAS  Google Scholar 

  • Lavallie ER, McCoy JM (1995) Gene fusion expression systems in Escherichia coli. Curr Opin Biotechnol 6:501–506

    Article  PubMed  CAS  Google Scholar 

  • Lee GJ, Vierling E (2000) A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol 122:189–198

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre-Legendre L, Salin B, Schaeffer J, Brethes D, Dautant A, Ackerman SH, di Rago JP (2005) Failure to assemble the alpha 3 beta 3 subcomplex of the ATP synthase leads to accumulation of the alpha and beta subunits within inclusion bodies and the loss of mitochondrial cristae in Saccharomyces cerevisiae. J Biol Chem 280:18386–18392

    Article  PubMed  CAS  Google Scholar 

  • Lehmann K, Hoffmann S, Neudecker P, Suhr M, Becker WM, Rosch P (2003) High-yield expression in Escherichia coli, purification, and characterization of properly folded major peanut allergen Ara h 2. Protein Expr Purif 31:250–259

    Article  PubMed  CAS  Google Scholar 

  • Le Thanh H, Hoffmann F (2005) Optimized production of active alpha-glucosidase by recombinant Escherichia coli. Evaluation of processes using in vivo reactivation from inclusion bodies. Biotechnol Prog 21:1053–1061

    Article  PubMed  CAS  Google Scholar 

  • Le Thanh H, Neubauer P, Hoffmann F (2005) The small heat-shock proteins IbpA and IbpB reduce the stress load of recombinant Escherichia coli and delay degradation of inclusion bodies. Microb Cell Fact 4:6

    Article  CAS  Google Scholar 

  • Levy R, Weiss R, Chen G, Iverson BL, Georgiou G (2001) Production of correctly folded Fab antibody fragment in the cytoplasm of Escherichia coli trxB gor mutants via the coexpression of molecular chaperones. Protein Expr Purif 23:338–347

    Article  PubMed  CAS  Google Scholar 

  • Li LW, Liu HB, Hu SY, Liang D, Cheng LS, Liu J (2005) Soluble expression and characterization of disulfide bond-rich subdomains of membrane protein p185 in Escherichia coli. Sheng Wu Gong Cheng Xue Bao 21:590–596

    PubMed  CAS  Google Scholar 

  • Li Y, Oelkuct M, Gentz R (1999) Method for purifying chemokines from inclusion bodies. US Patent 5,912,327

    Google Scholar 

  • Lilie H, McLaughlin S, Freedman R, Buchner J (1994) Influence of protein disulfide isomerase (PDI) on antibody folding in vitro. J Biol Chem 269:14290–14296

    PubMed  CAS  Google Scholar 

  • Lin HY, Hanschke R, Nicklisch S, Nietsche T, Jarchow R, Schwahn C, Riemschneider S, Meyer S, Gupta A, Hecker M, Neubauer P (2001) Cellular responses to strong overexpression of recombinant genes in Escherichia coli. DNA relaxation and cell death after induction of α-glucosidase. In: Merten OW et al (eds) Recombinant protein production with prokaryotic and eukaryotic cells. A comparative view on host physiology. Kluwer, Dortrecht, pp 5–73

    Google Scholar 

  • Lin TY, Timasheff SN (1996) On the role of surface tension in the stabilization of globular proteins. Protein Sci 5:372–381

    Article  PubMed  CAS  Google Scholar 

  • Lin WJ, Traugh JA (1993) Renaturation of casein kinase II from recombinant subunits produced in Escherichia coli: purification and characterization of the reconstituted holoenzyme. Protein Expr Purif 4:256–264

    Article  PubMed  CAS  Google Scholar 

  • Liu ZG, Lin JB, Yuan XD, Kang TJ, Yu WY (2002) The functional expression of humanized ScFv-urokinase fusion protein in Escherichia coli. Sheng Wu Gong Cheng Xue Bao 18:509–511

    PubMed  CAS  Google Scholar 

  • Lopez dlP, Serrano L (2004) Sequence determinants of amyloid fibril formation. Proc Natl Acad Sci USA 101:87–92

    Article  CAS  Google Scholar 

  • Lopez dlP, de Mori GM, Serrano L, Colombo G (2005) Sequence dependence of amyloid fibril formation: insights from molecular dynamics simulations. J Mol Biol 349:583–596

    Article  CAS  Google Scholar 

  • Lyakhov DL, He B, Zhang X, Studier FW, Dunn JJ, McAllister WT (1998) Pausing and termination by bacteriophage T7 RNA polymerase. J Mol Biol 280:201–213

    Article  PubMed  CAS  Google Scholar 

  • Machida S, Ogawa S, Xiaohua S, Takaha T, Fujii K, Hayashi K (2000) Cycloamylose as an efficient artificial chaperone for protein refolding. FEBS Lett 486:131–135

    Article  PubMed  CAS  Google Scholar 

  • Maier T, Ferbitz L, Deuerling E, Ban N (2005) A cradle for new proteins: trigger factor at the ribosome. Curr Opin Struct Biol 15:204–212

    Article  PubMed  CAS  Google Scholar 

  • Martin U, Fischer S, Kohnert U, Opitz U, Rudolph R, Sponer G, Stern A, Strein K (1992) Pharmacokinetic and thrombolytic properties of unglycosylated recombinant tissue-type plasminogen activator (BM 06.021) produced in Escherichia coli. Naunyn-Schmiedeberg’s Arch Pharmacol 346:108–113

    Article  CAS  Google Scholar 

  • Martineau P, Saurin W, Hofnung M, Spurlino JC, Quiocho FA (1990) Progress in the identification of interaction sites on the periplasmic maltose binding protein from E coli. Biochimie 72:397–402

    Article  PubMed  CAS  Google Scholar 

  • Mattes R (2001) The production of improved tissue-type plasminogen activator in Escherichia coli. Semin Thromb Hemost 27:325–336

    Article  PubMed  CAS  Google Scholar 

  • Matuszewska M, Kuczynska-Wisnik D, Laskowska E, Liberek K (2005) The small heat shock protein IbpA of Escherichia coli cooperates with IbpB in stabilization of thermally aggregated proteins in a disaggregation competent state. J Biol Chem 280:12292–12298

    Article  PubMed  CAS  Google Scholar 

  • Mayer M, Buchner J (2004) Refolding of inclusion body proteins. Methods Mol Med 94:239–254

    PubMed  CAS  Google Scholar 

  • Mayer M, Kies U, Kammermeier R, Buchner J (2000) BiP and PDI cooperate in the oxidative folding of antibodies in vitro. J Biol Chem 275:29421–29425

    Article  PubMed  CAS  Google Scholar 

  • Mburu DN, Roberts TK, Boettcher B (1999) Overexpression of human testis antigens in Escherichia coli host cells is influenced by site of expression and the induction temperature. Biochem Mol Biol Int 47:1009–1018

    PubMed  CAS  Google Scholar 

  • Miertzschke M, Greiner-Stoffele T (2003) The xthA gene product of Archaeoglobus fulgidus is an unspecific DNase. Eur J Biochem 270:1838–1849

    Article  PubMed  CAS  Google Scholar 

  • Mirazimi A, Svensson L (2000) ATP is required for correct folding and disulfide bond formation of rotavirus VP7. J Virol 74:8048–8052

    Article  PubMed  CAS  Google Scholar 

  • Miroux B, Walker JE (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260:289–298

    Article  PubMed  CAS  Google Scholar 

  • Misawa S, Aoshima M, Takaku H, Matsumoto M, Hayashi H (1994) High-level expression of Mycoplasma arginine deiminase in Escherichia coli and its efficient renaturation as an anti-tumor enzyme. J Biotechnol 36:145–155

    Article  PubMed  CAS  Google Scholar 

  • Missiakas D, Raina S (1997a) Protein folding in the bacterial periplasm. J Bacteriol 179:2465–2471

    PubMed  CAS  Google Scholar 

  • Missiakas D, Raina S (1997b) Protein misfolding in the cell envelope of Escherichia coli: new signaling pathways. Trends Biochem Sci 22:59–63

    Article  PubMed  CAS  Google Scholar 

  • Mogk A, Bukau B (2004) Molecular chaperones: structure of a protein disaggregase. Curr Biol 14:R78–R80

    Article  PubMed  CAS  Google Scholar 

  • Mogk A, Völker A, Engelmann S, Hecker M, Schumann W, Völker U (1998) Nonnative proteins induce expression of the Bacillus subtilis CIRCE regulon. J Bacteriol 180:2895–2900

    PubMed  CAS  Google Scholar 

  • Mogk A, Tomoyasu T, Goloubinoff P, Rudiger S, Roder D, Langen H, Bukau B (1999) Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J 18:6934–6949

    Article  PubMed  CAS  Google Scholar 

  • Mogk A, Deuerling E, Vorderwulbecke S, Vierling E, Bukau B (2003a) Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation. Mol Microbiol 50:585–595

    Article  PubMed  CAS  Google Scholar 

  • Mogk A, Schlieker C, Friedrich KL, Schonfeld HJ, Vierling E, Bukau B (2003b) Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK. J Biol Chem 278:31033–31042

    Article  PubMed  CAS  Google Scholar 

  • Moore JT, Uppal A, Maley F, Maley GF (1993) Overcoming inclusion body formation in a high level expression system. Protein Expr Purif 4:160–163

    Article  PubMed  CAS  Google Scholar 

  • Motohashi K, Watanabe Y, Yohda M, Yoshida M (1999) Heat-inactivated proteins are rescued by the DnaK.J-GrpE set and ClpB chaperones. Proc Natl Acad Sci USA 96:7184–7189

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay A (1997) Inclusion bodies and purification of proteins in biologically active forms. Adv Biochem Eng Biotechnol 56:61–109

    PubMed  CAS  Google Scholar 

  • Mulrooney SB, Waskell L (2000) High-level expression in Escherichia coli and purification of the membrane-bound form of cytochrome b(5). Protein Expr Purif 19:173–178

    Article  PubMed  CAS  Google Scholar 

  • Murby M, Uhlén M, Stahl S (1996) Upstream strategies to minimize proteolytic degradation upon recombinant production in Escherichia coli. Protein Expr Purif 7:129–136

    Article  PubMed  CAS  Google Scholar 

  • Netzer WJ, Hartl FU (1997) Recombination of protein domains facilitated by cotranslational folding in eukaryotes. Nature 388:343–349

    Article  PubMed  CAS  Google Scholar 

  • Neubauer A, Neubauer P, Myllyharju J (2005) High-level production of human collagen prolyl 4-hydroxylase in Escherichia coli. Matrix Biol 24:59–68

    PubMed  CAS  Google Scholar 

  • Niemitalo O, Neubauer A, Liebal U, Myllyharju J, Juffer AH, Neubauer P (2005) Modelling of translation of human protein disulfide isomerase in Escherichia coli — A case study of gene optimisation. J Biotechnol

    Google Scholar 

  • Nilsson J, Jonasson P, Samuelsson E, Stahl S, Uhlen M (1996) Integrated production of human insulin and its C-peptide. J Biotechnol 48:241–250

    Article  PubMed  CAS  Google Scholar 

  • Nilsson MR (2004) Techniques to study amyloid fibril formation in vitro. Methods 34:151–160

    Article  PubMed  CAS  Google Scholar 

  • Nishihara K, Kanemori M, Yanagi H, Yura T (2000) Overexpression of trigger factor prevents aggregation of recombinant proteins in Escherichia coli. Appl Environ Microbiol 66:884–889

    Article  PubMed  CAS  Google Scholar 

  • Noguchi Y, Satoh S, Yamaguchi M, Watanabe K, Hayashi M, Yamada H, Saito Y, Kobayashi M, Shimomura K (1996) An approach to high-level production of a mecasermin (somatomedin C) fused protein in Escherichia coli HB101. J Ferment Bioeng 82:128–133

    Article  CAS  Google Scholar 

  • Ny T, Elgh F, Lund B (1984) The structure of the human tissue-type plasminogen activator gene: correlation of intron and exon structures to functional and structural domains. Proc Natl Acad Sci USA 81:5355–5359

    Article  PubMed  CAS  Google Scholar 

  • Nyström T (2002) Translational fidelity, protein oxidation, and senescence: lessons from bacteria. Ageing Res Rev 1:693–703

    Article  PubMed  Google Scholar 

  • Oberg K, Chrunyk BA, Wetzel R, Fink AL (1994) Nativelike secondary structure in interleukin-1 beta inclusion bodies by attenuated total reflectance FTIR. Biochemistry 33:2628–2634

    Article  PubMed  CAS  Google Scholar 

  • Orsini G, Brandazza A, Sarmientos P, Molinari A, Lansen J, Cauet G (1991) Efficient renaturation and fibrinolytic properties of prourokinase and a deletion mutant expressed in Escherichia coli as inclusion bodies. Eur J Biochem 195:691–697

    Article  PubMed  CAS  Google Scholar 

  • Outeiro TF, Lindquist S (2003) Yeast cells provide insight into alpha-synuclein biology and pathobiology. Science 302:1772–1775

    Article  PubMed  CAS  Google Scholar 

  • Pallares I, Vendrell J, Aviles FX, Ventura S (2004) Amyloid fibril formation by a partially structured intermediate state of alpha-chymotrypsin. J Mol Biol 342:321–331

    Article  PubMed  CAS  Google Scholar 

  • Pallen MJ, Wren BW (1997) The HtrA family of serine proteases. Mol Microbiol 26:209–221

    Article  PubMed  CAS  Google Scholar 

  • Parker J (1989) Errors and alternatives in reading the universal genetic code. Microbiol Rev 53:273–298

    PubMed  CAS  Google Scholar 

  • Parsell DA, Sauer RT (1989) Induction of a heat shock-like response by unfolded protein in Escherichia coli: dependence on protein level not protein degradation. Genes Dev 3:1226–1232

    Article  PubMed  CAS  Google Scholar 

  • Patra AK, Mukhopadhyay A, Muhhija R, Krishnan A, Garg LC, Panda AK (1998) Optimization of inclusion body solubilization and renaturation of recombinant human growth hormone from Escherichia coli. Protein Expr Purif 18:182–192

    Article  CAS  Google Scholar 

  • Pines O, Inouye M (1999) Expression and secretion of proteins in E. coli. Mol Biotechnol 12:25–34

    Article  PubMed  CAS  Google Scholar 

  • Plückthun A, Krebber A, Krebber C, Horn U, Knüpfer U, Wenderoth R, Nieba L, Proba K, Riesenberg D (1996) Producing antibodies in Escherichia coli: from PCR to fermentation. In: McCafferty J, Hoogenboom HR, Chiswell DJ (eds) Antibody engineering, 1st edn. IRL, Oxford, pp 203–252

    Google Scholar 

  • Premkumar L, Bageshwar UK, Gokhman I, Zamir A, Sussman JL (2003) An unusual halotolerant alpha-type carbonic anhydrase from the alga Dunaliella salina functionally expressed in Escherichia coli. Protein Expr Purif 28:151–157

    Article  PubMed  CAS  Google Scholar 

  • Proba K, Ge L, Plückthun A (1995) Functional antibody single-chain fragments from the cytoplasm of Escherichia coli: influence of thioredoxin reductase (TrxB). Gene 159:203–207

    Article  PubMed  CAS  Google Scholar 

  • Przybycien TM, Dunn JP, Valax P, Georgiou G (1994) Secondary structure characterization of beta-lactamase inclusion bodies. Protein Eng 7:131–136

    Article  PubMed  CAS  Google Scholar 

  • Puri NK, Crivelli E, Cardamone M, Fiddes R, Bertolini J, Ninham B, Brandon MR (1992) Solubilization of growth hormone and other recombinant proteins from Escherichia coli inclusion bodies by using a cationic surfactant. Biochem J 285:871–879

    PubMed  CAS  Google Scholar 

  • Quick M, Wright EM (2002) Employing Escherichia coli to functionally express, purify, and characterize a human transporter. Proc Natl Acad Sci USA 99:8597–8601

    Article  PubMed  CAS  Google Scholar 

  • Raffai R, Vukmirica J, Weisgraber KH, Rassart E, Innerarity TL, Milne R (1999) Bacterial expression and purification of the Fab fragment of a monoclonal antibody specific for the low-density lipoprotein receptor-binding site of human apolipoprotein E. Protein Expr Purif 16:84–90

    Article  PubMed  CAS  Google Scholar 

  • Raina S, Missiakas D (1997) Making and breaking disulfide bonds. Annu Rev Microbiol 51:179–202

    Article  PubMed  CAS  Google Scholar 

  • Rajan RS, Illing ME, Bence NF, Kopito RR (2001) Specificity in intracellular protein aggregation and inclusion body formation. Proc Natl Acad Sci USA 98:13060–13065

    Article  PubMed  CAS  Google Scholar 

  • Rattenholl A, Lilie H, Grossmann A, Stern A, Schwarz E, Rudolph R (2001a) The prosequence facilitates folding of human nerve growth factor from Escherichia coli inclusion bodies. Eur J Biochem 268:3296–3303

    Article  PubMed  CAS  Google Scholar 

  • Rattenholl A, Ruoppolo M, Flagiello A, Monti M, Vinci F, Marino G, Lilie H, Schwarz E, Rudolph R (2001b) Pro-sequence assisted folding and disulfide bond formation of human nerve growth factor. J Mol Biol 305:523–533

    Article  PubMed  CAS  Google Scholar 

  • Reddy RC, Lilie H, Rudolph R, Lange C (2005) L-Arginine increases the solubility of unfolded species of hen egg white lysozyme. Protein Sci 14:929–935

    Article  CAS  Google Scholar 

  • Richarme G, Caldas TD (1997) Chaperone properties of the bacterial periplasmic substrate-binding proteins. J Biol Chem 272:15607–15612

    Article  PubMed  CAS  Google Scholar 

  • Rietsch A, Beckwith J (1998) The genetics of disulfide bond metabolism. Annu Rev Genet 32:163–184

    Article  PubMed  CAS  Google Scholar 

  • Rietsch A, Bessette P, Georgiou G, Beckwith J (1997) Reduction of the periplasmic disulfide bond isomerase, DsbC, occurs by passage of electrons from cytoplasmic thioredoxin. J Bacteriol 179:6602–6608

    PubMed  CAS  Google Scholar 

  • Rinas U (1996) Synthesis rates of cellular proteins involved in translation and protein folding are strongly altered in response to overproduction of basic fibroblast growth factor by recombinant Escherichia coli. Biotechnol Prog 12:196–200

    Article  PubMed  CAS  Google Scholar 

  • Rinas U, Bailey JE (1992) Protein compositional analysis of inclusion bodies produced in recombinant Escherichia coli. Appl Microbiol Biotechnol 37:609–614

    Article  PubMed  CAS  Google Scholar 

  • Rinas U, Bailey JE (1993) Overexpression of bacterial hemoglobin causes incorporation of pre-beta-lactamase into cytoplasmic inclusion bodies. Appl Environ Microbiol 59:561–566

    PubMed  CAS  Google Scholar 

  • Rinas U, Tsai LB, Lyons D, Fox GM, Stearns G, Fieschko J, Fenton D, Bailey JE (1992) Cysteine to serine substitutions in basic fibroblast growth factor: effect on inclusion body formation and proteolytic susceptibility during in vitro refolding. Biotechnology 10:435–440

    Article  PubMed  CAS  Google Scholar 

  • Rinas U, Boone TC, Bailey JE (1993) Characterization of inclusion bodies in recombinant Escherichia coli producing high levels of porcine somatotropin. J Biotechnol 28:313–320

    Article  PubMed  CAS  Google Scholar 

  • Rogl H, Kosemund K, Kuhlbrandt W, Collinson I (1998) Refolding of Escherichia coli produced membrane protein inclusion bodies immobilised by nickel chelating chromatography. FEBS Lett 432:21–26

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg AH, Goldman E, Dunn JJ, Studier FW, Zubay G (1993) Effects of consecutive AGG codons on translation in Escherichia coli, demonstrated with a versatile codon test system. J Bacteriol 175:716–722

    PubMed  CAS  Google Scholar 

  • Rosenbusch JP (1990) Structural and functional properties of porin channels in E. coli outer membranes. Experientia 46:167–173

    PubMed  CAS  Google Scholar 

  • Rozena D, Gellma S (1995) Artificial chaperones: Protein refolding via sequential use of detergent and cyclodextrin. J Am Chem Soc 117:2373–2374

    Article  Google Scholar 

  • Rudiger S, Buchberger A, Bukau B (1997a) Interaction of Hsp70 chaperones with substrates. Nat Struct Biol 4:342–349

    Article  PubMed  CAS  Google Scholar 

  • Rudiger S, Germeroth L, Schneider-Mergener J, Bukau B (1997b) Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J 16:1501–1507

    Article  PubMed  CAS  Google Scholar 

  • Rudolph R (1996) Successful protein folding on an industrial scale. In: Cleland JL, Craik CS (eds) Principles and practice of protein folding. Wiley, New York, pp 293–298

    Google Scholar 

  • Rudolph R, Fischer S (1990) Process for obtaining renatured proteins. US Patent 4, 933, 434

    Google Scholar 

  • Rudolph R, Buchner J, Lenz H (1994) Aktivierung von gentechnologisch hergestellten, in Prokaryonten hergestellten Antikörpern. EU Patent 0364926B1

    Google Scholar 

  • Rudolph R, Böhm G, Lilie H, Jaenicke R (1997) Folding proteins. In: Creighton TE (ed) Protein function, a practical approach. IRL, Oxford, pp 57–99

    Google Scholar 

  • Sachdev D, Chirgwin JM (1998a) Order of fusions between bacterial and mammalian proteins can determine solubility in Escherichia coli. Biochem Biophys Res Commun 244:933–937

    Article  PubMed  CAS  Google Scholar 

  • Sachdev D, Chirgwin JM (1998b) Solubility of proteins isolated from inclusion bodies is enhanced by fusion to maltose-binding protein or thioredoxin. Protein Expr Purif 12:122–132

    Article  PubMed  CAS  Google Scholar 

  • Sachdev D, Chirgwin JM (2000) Fusions to maltose-binding protein: control of folding and solubility in protein purification. Methods Enzymol 326:312–321

    Article  PubMed  CAS  Google Scholar 

  • Saribas AS, Gruenke L, Waskell L (2001) Overexpression and purification of the membrane-bound cytochrome P450 2B4. Protein Expr Purif 21:303–309

    Article  PubMed  CAS  Google Scholar 

  • Sarmientos P, Duchesne M, Denefle P, Boiziau J, Fromage N, Delporte N, Parker F, Lelievre Y, Mayaux JF, Cartwright T (1989) Synthesis and purification of active human tissue plasminogen activator from Escherichia coli. Biotechnology 7:495–501

    Article  CAS  Google Scholar 

  • Schaffitzel E, Rudiger S, Bukau B, Deuerling E (2001) Functional dissection of trigger factor and DnaK: interactions with nascent polypeptides and thermally denatured proteins. Biol Chem 382:1235–1243

    Article  PubMed  CAS  Google Scholar 

  • Schäffner J, Winter J, Rudolph R, Schwarz E (2001) Cosecretion of chaperones and lowmolecular-size medium additives increases the yield of recombinant disulfide-bridged proteins. Appl Environ Microbiol 67:3994–4000

    Article  PubMed  Google Scholar 

  • Scheich C, Niesen FH, Seckler R, Bussow K (2004) An automated in vitro protein folding screen applied to a human dynactin subunit. Protein Sci 13:370–380

    Article  PubMed  CAS  Google Scholar 

  • Schein CH (1989) Production of soluble recombinant proteins in bacteria. Biotechnology 7:1141–1147

    CAS  Google Scholar 

  • Schein CH (1993) Solubility and secretability. Curr Opin Biotechnol 4:456–461

    Article  PubMed  CAS  Google Scholar 

  • Schein CH, Noteborn MHM (1988) Formation of soluble recombinant proteins in Escherichia coli is favored by lower growth temperature. Biotechnology 6:291–294

    Article  CAS  Google Scholar 

  • Schlieker C, Bukau B, Mogk A (2002) Prevention and reversion of protein aggregation by molecular chaperones in the E. coli cytosol: implications for their applicability in biotechnology. J Biotechnol 96:13–21

    Article  PubMed  CAS  Google Scholar 

  • Schmid D, Baici A, Gehring H, Christen P (1994) Kinetics of molecular chaperone action. Science 263:971–973

    Article  PubMed  CAS  Google Scholar 

  • Schoemaker JM, Brasnett AH, Marston FA (1985) Examination of calf prochymosin accumulation in Escherichia coli: disulphide linkages are a structural component of prochymosin-containing inclusion bodies. EMBO J 4:775–780

    PubMed  CAS  Google Scholar 

  • Schuhmann B, Seitz V, Vilcinskas A, Podsiadlowski L (2003) Cloning and expression of gallerimycin, an antifungal peptide expressed in immune response of greater wax moth larvae, Galleria mellonella. Arch Insect Biochem Physiol 53:125–133

    Article  PubMed  CAS  Google Scholar 

  • Schulze AJ, Degryse E, Speck D, Huber R, Bischoff R (1994) Expression of alpha 1-proteinase inhibitor in Escherichia coli: effects of single amino acid substitutions in the active site loop on aggregate formation. J Biotechnol 32:231–238

    Article  PubMed  CAS  Google Scholar 

  • Shanklin J (2000) Overexpression and purification of the Escherichia coli inner membrane enzyme acyl-acyl carrier protein synthase in an active form. Protein Expr Purif 18:355–360

    Article  PubMed  CAS  Google Scholar 

  • Sharma L, Sharma A (2001) Influence of cyclodextrin ring substituents on folding-related aggregation of bovine carbonic anhydrase. Eur J Biochem 268:2456–2463

    Article  PubMed  CAS  Google Scholar 

  • Shearstone JR, Baneyx F (1999) Biochemical characterization of the small heat shock protein IbpB from Escherichia coli. J Biol Chem 274:9937–9945

    Article  PubMed  CAS  Google Scholar 

  • Shimizu T, Shibata H, Araya T, Nakatsu T, Miyairi K, Okuno T, Kato H (2005) Expression, purification, and crystallization of endopolygalacturonase from a pathogenic fungus, Stereum purpureum, in Escherichia coli. Protein Expr Purif

    Google Scholar 

  • Sirangelo I, Malmo C, Casillo M, Mezzogiorno A, Papa M, Irace G (2002) Tryptophanyl substitutions in apomyoglobin determine protein aggregation and amyloid-like fibril formation at physiological pH. J Biol Chem 277:45887–45891

    Article  PubMed  CAS  Google Scholar 

  • Slepenkov SV, Witt SN (2002) The unfolding story of the Escherichia coli Hsp70 DnaK: is DnaK a holdase or an unfoldase? Mol Microbiol 45:1197–1206

    Article  PubMed  CAS  Google Scholar 

  • Smith AT, Santama N, Dacey S, Edwards M, Bray RC, Thorneley RNF, Burke JF (1990) Expression of a synthetic gene for horseradish peroxidase-C in Escherichia coli and folding and activation of the recombinant enzyme with Ca2+ and heme. J Biol Chem 265:13335–13343

    PubMed  CAS  Google Scholar 

  • Smith MW, Neidhardt FC (1983) Proteins induced by anaerobiosis in Escherichia coli. J Bacteriol 154:336–343

    PubMed  CAS  Google Scholar 

  • Snow A, Hipkiss AR (1987) Stability of urogastone and some fusion derivatives and the induction of stress proteins in Escherichia coli. Biochem Soc Trans 15:965–966

    CAS  Google Scholar 

  • Solovicova A, Gasperik J, Hostinova E (1996) High-yield production of Saccharomycopsis fibuligera glucoamylase in Escherichia coli, refolding, and comparison of the nonglycosylated and glycosylated enzyme forms. Biochem Biophys Res Commun 224:790–795

    Article  PubMed  CAS  Google Scholar 

  • Sorensen HP, Mortensen KK (2005a) Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol 115:113–128

    Article  PubMed  CAS  Google Scholar 

  • Sorensen HP, Mortensen KK (2005b) Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microb Cell Fact 4:1

    Article  PubMed  CAS  Google Scholar 

  • Sorensen MA, Pedersen S (1991) Absolute in vivo translation rates of individual codons in Escherichia coli. The two glutamic acid codons GAA and GAG are translated with a threefold difference in rate. J Mol Biol 222:265–280

    Article  PubMed  CAS  Google Scholar 

  • Spanjaard RA, Chen K, Walker JR, van Duin J (1990) Frameshift suppression at tandem AGA and AGG codons by cloned tRNA genes: assigning a codon to argU tRNA and T4 tRNA(Arg). Nucleic Acids Res 18:5031–5036

    Article  PubMed  CAS  Google Scholar 

  • Speed MA, Wang DI, King J (1995) Multimeric intermediates in the pathway to the aggregated inclusion body state for P22 tailspike polypeptide chains. Protein Sci 4:900–908

    Article  PubMed  CAS  Google Scholar 

  • Speed MA, Wang DI, King J (1996) Specific aggregation of partially folded polypeptide chains: the molecular basis of inclusion body composition. Nat Biotechnol 14:1283–1287

    Article  PubMed  CAS  Google Scholar 

  • Speed MA, Morshead T, Wang DI, King J (1997) Conformation of P22 tailspike folding and aggregation intermediates probed by monoclonal antibodies. Protein Sci 6:99–108

    Article  PubMed  CAS  Google Scholar 

  • Srivastava R, Cha HJ, Peterson MS, Bentley WE (2000) Antisense downregulation of sigma(32) as a transient metabolic controller in Escherichia coli: effects on yield of active organophosphorus hydrolase. Appl Environ Microbiol 66:4366–4371

    Article  PubMed  CAS  Google Scholar 

  • Srivastava R, Peterson MS, Bentley WE (2001) Stochastic kinetic analysis of the Escherichia coli stress circuit using σ 32-targeted antisense. Biotechnol Bioeng 75:120–129

    Article  PubMed  CAS  Google Scholar 

  • Stevens FJ, Argon Y (1999) Protein folding in the ER. Semin Cell Dev Biol 10:443–454

    Article  PubMed  CAS  Google Scholar 

  • Stewart EJ, Aslund F, Beckwith J (1998) Disulfide bond formation in the Escherichia coli cytoplasm: an in vivo role reversal for the thioredoxins. EMBO J 17:5543–5550

    Article  PubMed  CAS  Google Scholar 

  • Stockel J, Hartl FU (2001) Chaperonin-mediated de novo generation of prion protein aggregates. J Mol Biol 313:861–872

    Article  PubMed  CAS  Google Scholar 

  • Strandberg L, Enfors SO (1991) Factors influencing inclusion body formation in the production of a fused protein in Escherichia coli. Appl Environ Microbiol 57:1669–1674

    PubMed  CAS  Google Scholar 

  • Straus DB, Walter WA, Gross CA (1987) The heat shock response of E. coli is regulated by changes in the concentration of sigma 32. Nature 329:348–351

    Article  PubMed  CAS  Google Scholar 

  • Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130

    Article  PubMed  CAS  Google Scholar 

  • Studier FW, Rosenberg AH, Dunn JJ, Dubendorf JW (1990) Use of T7 RNA polymerase to direct the expression of cloned genes. Methods Enzymol 185:60–89

    Article  PubMed  CAS  Google Scholar 

  • Surek B, Wilhelm M, Hillen W (1991) Optimizing the promoter and ribosome binding sequence for expression of human single chain urokinase-like plasminogen activator in Escherichia coli and stabilization of the product by avoiding the heat shock response. Appl Microbiol Biotechnol 34:488–494

    Article  PubMed  CAS  Google Scholar 

  • Taylor G, Hoare M, Gray DR, Marston FAO (1986) Size and density of protein inclusion bodies. Biotechnology 4:553–557

    Article  CAS  Google Scholar 

  • Teter SA, Houry WA, Ang D, Tradler T, Rockabrand D, Fischer G, Blum P, Georgopoulos C, Hartl FU (1999) Polypeptide flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains. Cell 97:755–765

    Article  PubMed  CAS  Google Scholar 

  • Thomas JG, Baneyx F (1996) Protein misfolding and inclusion body formation in recombinant Escherichia coli cells overexpressing Heat-shock proteins. J Biol Chem 271:11141–11147

    Article  PubMed  CAS  Google Scholar 

  • Thomas JG, Baneyx F (1997) Divergent effects of chaperone overexpression and ethanol supplementation on inclusion body formation in recombinant Escherichia coli. Protein Expr Purif 11:289–296

    Article  PubMed  CAS  Google Scholar 

  • Tokatlidis K, Dhurjati P, Millet J, Beguin P, Aubert JP (1991) High activity of inclusion bodies formed in Escherichia coli overproducing Clostridium thermocellum endoglucanase D. FEBS Lett 282:205–208

    Article  PubMed  CAS  Google Scholar 

  • Tsuji T, Nakagawa R, Sugimoto N, Fukuhara K (1987) Characterization of disulfide bonds in recombinant proteins—reduced human interleukin-2 in inclusion bodies and its oxidative refolding. Biochemistry 26:3129–3134

    Article  PubMed  CAS  Google Scholar 

  • Uhlén M, Forsberg G, Moks T, Hartmanis M, Nilsson B (1992) Fusion proteins in biotechnology. Curr Opin Biotechnol 3:363–369

    Article  PubMed  Google Scholar 

  • Umetsu M, Tsumoto K, Nitta S, Adschiri T, Ejima D, Arakawa T, Kumagai I (2005) Nondenaturing solubilization of beta2 microglobulin from inclusion bodies by L-arginine. Biochem Biophys Res Commun 328:189–197

    Article  PubMed  CAS  Google Scholar 

  • Valax P, Georgiou G (1993) Molecular characterization of beta-lactamase inclusion bodies produced in Escherichia coli. 1. Composition. Biotechnol Prog 9:539–547

    Article  PubMed  CAS  Google Scholar 

  • Vallejo LF, Rinas U (2004) Optimized procedure for renaturation of recombinant human bone morphogenetic protein-2 at high protein concentration. Biotechnol Bioeng 85:601–609

    Article  PubMed  CAS  Google Scholar 

  • van den Berg B, Ellis RJ, Dobson CM (1999) Effects of macromolecular crowding on protein folding and aggregation. EMBO J 18:6927–6933

    Article  PubMed  Google Scholar 

  • Vassilakos A, Cohen-Doyle MF, Peterson PA, Jackson MR, Williams DB (1996) The molecular chaperone calnexin facilitates folding and assembly of class I histocompatibility molecules. EMBO J 15:1495–1506

    PubMed  CAS  Google Scholar 

  • Veinger L, Diamant S, Buchner J, Goloubinoff P (1998) The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J Biol Chem 273:11032–11037

    Article  PubMed  CAS  Google Scholar 

  • Ventura S (2005) Sequence determinants of protein aggregation: tools to increase protein solubility. Microb Cell Fact 4:11

    Article  PubMed  CAS  Google Scholar 

  • Ventura S, Zurdo J, Narayanan S, Parreno M, Mangues R, Reif B, Chiti F, Giannoni E, Dobson CM, Aviles FX, Serrano L (2004) Short amino acid stretches can mediate amyloid formation in globular proteins: the Src homology 3 (SH3) case. Proc Natl Acad Sci USA 101:7258–7263

    Article  PubMed  CAS  Google Scholar 

  • Venturi M, Seifert C, Hunte C (2002) High level production of functional antibody Fab fragments in an oxidizing bacterial cytoplasm. J Mol Biol 315:1–8

    Article  PubMed  CAS  Google Scholar 

  • Vera A, Aris A, Carrio M, Gonzalez-Montalban N, Villaverde A (2005) Lon and ClpP proteases participate in the physiological disintegration of bacterial inclusion bodies. J Biotechnol

    Google Scholar 

  • Villaverde A, Carrio MM (2003) Protein aggregation in recombinant bacteria: biological role of inclusion bodies. Biotechnol Lett 25:1385–1395

    Article  PubMed  CAS  Google Scholar 

  • Vogel U, Sorensen M, Pedersen S, Jensen KF, Kilstrup M (1992) Decreasing transcription elongation rate in Escherichia coli exposed to amino-acid starvation. Mol Microbiol 6:2191–2200

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Castro AF, Wilkes DM, Altenberg GA (1999) Expression and purification of the first nucleotide-binding domain and linker region of human multidrug resistance gene product: comparison of fusions to glutathione S-transferase, thioredoxin and maltosebinding protein. Biochem J 338:77–81

    Article  PubMed  CAS  Google Scholar 

  • Wegele H, Muller L, Buchner J (2004) Hsp70 and Hsp90—a relay team for protein folding. Rev Physiol Biochem Pharmacol 151:1–44

    Article  PubMed  CAS  Google Scholar 

  • Wei Y, Lee JM, Richmond C, Blattner FR, Rafalski JA, LaRossa RA (2001) High-density microarray-mediated gene expression profiling of Escherichia coli. J Bacteriol 183:545–556

    Article  PubMed  CAS  Google Scholar 

  • Weibezahn J, Bukau B, Mogk A (2004) Unscrambling an egg: protein disaggregation by AAA+ proteins. Microb Cell Fact 3:1

    Article  PubMed  Google Scholar 

  • West MW, Wang W, Patterson J, Mancias JD, Beasley JR, Hecht MH (1999) De novo amyloid proteins from designed combinatorial libraries. Proc Natl Acad Sci USA 96:11211–11216

    Article  PubMed  CAS  Google Scholar 

  • Wickner S, Maurizi MR, Gottesman S (1999) Posttranslational quality control: folding, refolding, and degrading proteins. Science 286:1888–1893

    Article  PubMed  CAS  Google Scholar 

  • Wigley WC, Stidham RD, Smith NM, Hunt JF, Thomas PJ (2001) Protein solubility and folding monitored in vivo by structural complementation of a genetic marker protein. Nat Biotechnol 19:131–136

    Article  PubMed  CAS  Google Scholar 

  • Wild J, Walter WA, Gross CA, Altman E (1993) Accumulation of secretory protein precursors in Escherichia coli induces the heat shock response. J Bacteriol 175:3992–3997

    PubMed  CAS  Google Scholar 

  • Wilkinson DL, Harrison RG (1991) Predicting the solubility of recombinant proteins in Escherichia coli. Biotechnology 9:443–448

    Article  PubMed  CAS  Google Scholar 

  • Winter J, Neubauer P, Glockshuber R, Rudolph R (2000) Increased production of human proinsulin in the periplasmic space of Escherichia coli by fusion to DsbA. J Biotechnol 84:175–185

    Article  CAS  Google Scholar 

  • Winter J, Lilie H, Rudolph R (2002) Renaturation of human proinsulin—a study on refolding and conversion to insulin. Anal Biochem 310:148–155

    Article  PubMed  CAS  Google Scholar 

  • Worrall DM, Goss NH (1989) The formation of biologically active beta-galactosidase inclusion bodies in Escherichia coli. Aust J Biotechnol 3:28–32

    PubMed  CAS  Google Scholar 

  • Wunderlich M, Glockshuber R (1993) In vivo control of redox potential during protein folding catalyzed by bacterial protein disulfide-isomerase (DsbA). J Biol Chem 268:24547–24550

    PubMed  CAS  Google Scholar 

  • Xiong S, Wang YF, Ren XR, Li B, Zhang MY, Luo Y, Zhang L, Xie QL, Su KY (2005) Solubility of disulfide-bonded proteins in the cytoplasm of Escherichia coli and its oxidizing mutant. World J Gastroenterol 11:1077–1082

    PubMed  CAS  Google Scholar 

  • Ying BW, Taguchi H, Kondo M, Ueda T (2005) Co-translational involvement of the chaperonin GroEL in the folding of newly translated polypeptides. J Biol Chem 280:12035–12040

    Article  PubMed  CAS  Google Scholar 

  • Yura T, Nakahigashi K (1999) Regulation of the heat-shock response. Curr Opin Microbiol 2:153–158

    Article  PubMed  CAS  Google Scholar 

  • Zahn K (1996) Overexpression of an mRNA dependent on rare codons inhibits protein synthesis and cell growth. J Bacteriol 178:2926–2933

    PubMed  CAS  Google Scholar 

  • Zettlmeissl G, Rudolph R, Jaenicke R (1979) Reconstitution of lactic dehydrogenase. Noncovalent aggregation vs. reactivation. 1. Physical properties and kinetics of aggregation. Biochemistry 18:5567–5571

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Beuron F, Freemont PS (2002) Machinery of protein folding and unfolding. Curr Opin Struct Biol 12:231–238

    Article  PubMed  Google Scholar 

  • Zhang Y, Olsen DR, Nguyen KB, Olson PS, Rhodes ET, Mascarenhas D (1998) Expression of eukaryotic proteins in soluble form in Escherichia coli. Protein Expr Purif 12:159–165

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Sun ZW, Liu YF, Yu WY (2003) Construction, expression and functional characterization of disulfide-stabilized anti-hepatocarcinoma single chain Fv fused with truncated Pseudomonas exotoxin. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 19:585–587

    PubMed  CAS  Google Scholar 

  • Zolkiewski M (1999) ClpB cooperates with DnaK, DnaJ, and GrpE in suppressing protein aggregation. A novel multi-chaperone system from Escherichia coli. J Biol Chem 274:28083–28086

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Neubauer, P., Fahnert, B., Lilie, H., Villaverde, A. (2006). Protein Inclusion Bodies in Recombinant Bacteria. In: Shively, J.M. (eds) Inclusions in Prokaryotes. Microbiology Monographs, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33774-1_9

Download citation

Publish with us

Policies and ethics