Skip to main content

Impacts and the Early Evolution of Life

  • Chapter
Comets and the Origin and Evolution of Life

Abstract

The K/T event shows that, even today, biospheric cratering is an important process. Impacts were much larger and more frequent on the early Earth. In all likelihood impacts posed the greatest challenge to the survival of early life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, Y. (1988), Conditions required for sustaining a surface magma ocean, Proc. 21st ISAS Lun. Planet. Symp., 225–231.

    Google Scholar 

  • Abe, Y. and Matsui, T. (1988), Evolution of an impact-generated H2O- CO2 atmosphere and formation of a hot proto-ocean on Earth, J. Atm. Sci., 45, 3081–3101.

    ADS  Google Scholar 

  • Anders, E. (1989), Prebiotic organic matter from comets and asteroids, Nature, 342, 255–257 (1989).

    ADS  Google Scholar 

  • Alvarez, L.W., Alvarez, W., Asaro, F., and Michel, H.V. (1980), Extraterrestrial cause for the Cretaceous–Tertiary extinction, Science, 208, 1095–1108.

    ADS  Google Scholar 

  • Armstrong, J.C., Wells, L.E., and Gonzalez, G.V. (2002), Rummaging in Earth’s Attic for Remains of Ancient Life, Icarus, 160, 183–196.

    ADS  Google Scholar 

  • Baldwin, R.B. (1981), On the origin of the planetesimals that produced the miltiringed basins. In, Multi-ring Basins, Proc. Lun. Planet. Sci. 12A, (Schultz, P. and Merrill, R.B. eds), Pergamon Press, New York, pp. 19–28.

    Google Scholar 

  • Baldwin, R.B. (1987), On the relative and absolute ages of seven lunar front face basins I, Icarus, 71, 1–18.

    MathSciNet  ADS  Google Scholar 

  • Baldwin, R.B. (1987), On the relative and absolute ages of seven lunar front face basins II, Icarus, 71, 19–29.

    ADS  Google Scholar 

  • Belton, M.J.S., Head, J.W., Pieters, C.M., Greeley, R., McEwen, A.S., Neukem, G., Klaasen, K.P., Anger, C.D., Carr, M. H., Chapman, C.R., Davies, M.E., Fanale, F.P., Gierasch, P.J. Greenberg, R., Ingersoll, A.P., Johnson, T., Paczkowski, B., Pilcher, C.B., and Veverka, J. (1992), Lunar impact basins and crustal heterogeneity: New western limb and far side data from Galileo, Science, 255, 570–576.

    ADS  Google Scholar 

  • Bogard, D.D. (1995), Impact ages of meteorites: A synthesis, Meteoritics, 30, 244–268.

    ADS  Google Scholar 

  • Bratt, S.R., Solomon, S.C. and Head, J.W. (1985a), The evolution of impact basins: Cooling, subsidence, and thermal stress, J. Geophys. Res, 90, 12415–12433.

    ADS  Google Scholar 

  • Bratt, S.R., Solomon, S.C., Head, J.W. and Thuber, C.H. (1985b), The deep structure of lunar basins: Implications for basin formation and modification, J. Geophys. Res, 90, 3049–3064.

    Article  ADS  Google Scholar 

  • Brinkman, H. and Philippe, H. (1999), Archaea sister group of Bacteria? Indications from tree reconstruction artifacts in ancient phylogenies, Mol. Bio. Evol., 16, 817–825.

    Google Scholar 

  • Byerly, G.R., Lowe, D.R., Wooden, J.L., and Xie, X. (2002), An Archean impact layer from the Pilbara and Kaapvaal cratons. Science, 297, 1325–1327.

    ADS  Google Scholar 

  • Carlson, R.W. and Lugmair, G.W. (1979), Sm-Nd constraints on early lunar differentiation and the evolution of KREEP, Earth Planet Sci. Lett., 45, 123–132.

    ADS  Google Scholar 

  • Carlson, R.W. and Lugmair, G.W. (1988), The age of ferroan anorthosite 60025 -Oldest crust on a young moon?, Earth Planet Sci. Lett., 90, 119–130.

    ADS  Google Scholar 

  • Chapman, C.R., Williams, J.G., and Hartmann, W.K. (1978), The Asteroids, Ann Rev. Astron. Astrophys., 16, 33–75.

    ADS  Google Scholar 

  • Chyba, C. (1991), Terrestrial mantle siderophiles and the lunar impact record, Icarus, 92, 217–233.

    ADS  Google Scholar 

  • Connan, J. (1984), Biodegradation of crude oils in reservoirs, Adv. Petroleum Geochem., 1, 299–335.

    Google Scholar 

  • Duaphas, M., and Marty, B. (2002), Inference on the nature and the mass of Earth’s late veneer from noble metals and gases, J. Geophys. Res., 107(E12), 5129.

    Google Scholar 

  • Davis, P.A. and Spudis, P. (1987), Global petrologic variations on the moon - A ternary-diagram approach, J. Geophys. Res., 92, E387–E395.

    ADS  Google Scholar 

  • Di Giulio, M. (2003), The universal ancestor was a thermophile or a hyperthermophile: Tests and Evidence, J. Theor. Biol., 221, 425–436.

    MathSciNet  Google Scholar 

  • Drake, M.J.(1987), Is lunar bulk material similar to Earth’s mantle? In Origin of the Moon, (Hartmann, W.K., Phillips, R. J. and Taylor, G.J., eds.), Lunar and Planetary Institute, Houston, pp. 105–143.

    Google Scholar 

  • Donnison, J.R. and Sugden, R.A. (1984), The distribution of asteroidal diameters, Mon. Not. Roy. Astron. Soc., 210, 673–682.

    ADS  Google Scholar 

  • Donnison, J.R. (1986), The distribution of cometary magnetudes, Astron. Astrophys., 167, 359–363.

    ADS  Google Scholar 

  • Dohnanyi, J.S. (1972), Interplanetary objects in review: statistics of their masses and dynamics, Icarus, 17, 1–48.

    ADS  Google Scholar 

  • Duncan, M., Quinn, T., and Tremaine, S. (1987), The formation and extent of the solar system comet cloud, Astron. J., 94, 1330–1338.

    ADS  Google Scholar 

  • Duncan, M., Quinn, T., and Tremaine, S. (1988), The origin of short period comets, Astrophys. J., 328, L69–L73.

    ADS  Google Scholar 

  • Finlay, B.J. (2002), Global dispersal of free-living microbial Eukaryote species, Science, 296, 1061–1063.

    ADS  Google Scholar 

  • Forterre, P., de la Tour, C.B., Philippe, H., and Duguet, M. (2000), Reverse gyrase from hyperthermophiles –probable transfer of a thermoadaption trait from Archaea to Bacteria, Trends Genetics, 16(4), 152–154.

    Google Scholar 

  • Forterre, P., Brochier, C., and Philippe, H. (2002), Evolution of the Archaea, Theor. Popul. Biol., 61, 409–422.

    Google Scholar 

  • Gladman, B. (1997), Destination Earth: Martian meteorite delivery, Icarus, 130, 228–246.

    ADS  Google Scholar 

  • Gladman, B.J., Burns, J.A., Duncan, H., Lee, P., and Levison, H.F. (1996), The exchange of impact ejecta between terrestrial planets, Science, 271, 1387–1392.

    ADS  Google Scholar 

  • Gladman, B., Kavelaars, J.J., Petit, J.-M., Morbidelli, A., Holman, M.J., Loredo, T. (2001), The Structure of the Kuiper Belt: Size Distribution and Radial Extent, Astron. J., 122, 1051–1066.

    ADS  Google Scholar 

  • Grieve, R.A.F. and Shoemaker, E.M. (1994), The record of past impacts on Earth. In Hazards Due to Comets and Asteroids, (Gehrels, T. ed.), Univ. Arizona Press, Tucson, pp. 417–462.

    Google Scholar 

  • Hahn and Bailey, M. (1990), Rapid dynamical evolution of giant comet Chiron, Nature, 348, 132–136.

    ADS  Google Scholar 

  • Hartmann, W.K. (1980), Dropping stones in magma oceans: Effects of early lunar cratering. In Proceedings of the Conference on the Lunar Highlands Crust, (J. Papike and R. Merrill, eds), Pergamon Press, New York, pp. 155–173.

    Google Scholar 

  • Hartmann, W.K., Phillips, R.J. and Taylor, G.J., eds. (1986), Origin of the Moon, Lunar and Planetary Institute, Houston.

    Google Scholar 

  • Hartmann, W.K., D.J. Tholen, K.J. Meech, and Criukshank, D.P. (1990), 2060 Chiron: Colorimetry and possible cometary behavior, Icarus, 83, 1–15.

    ADS  Google Scholar 

  • Hartmann, W.K., Ryder, G., Dones, L., and Grinspoon, D. (2000), The Time-Dependent Intense Bombardment of the Primordial Earth/Moon System. In Origin of the Earth and Moon, (Canup, R.M., and Righter, K. eds.), University of Arizona Press, Tucson, pp. 493–512.

    Google Scholar 

  • Hildebrand, A.R., Penfield, G.T., King, D.A., Pilkington, M., Camargo, Z.,A., Jacobsen, S.B. and Boynton, W.V. (1991), Chicxulub crater: a possible Cretaceous/Tertiary boundary impact crater on the Yucatan Peninsula, Mexico, Geology, 19, 867–871.

    Google Scholar 

  • Hughes, D.W. (1982), Asteroidal size distribution, Mon. Not. R. Astron. Soc., 199, 1149–1157.

    ADS  Google Scholar 

  • Hughes, D.W. (1988), Cometary distribution and the ratio between the numbers of long- and short- period comets, Icarus, 73, 149–162.

    ADS  Google Scholar 

  • Kasting, J.F. (1988), Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus, Icarus, 74, 472–494.

    ADS  Google Scholar 

  • Kasting, J.F. (1990), Bolide impacts and the oxidation state of carbon in the Earth’s early atmosphere, Orig. Life, 20, 199–231.

    Google Scholar 

  • Korotev, R.L. (1987), The nature of the meteoritic components of Apollo 16 soil, as inferred from correlations of iron, cobalt, iridium, and gold with nickel, J. Geophys. Res., 92, E447–E461.

    ADS  Google Scholar 

  • Koster van Groos, A.F. (1988), Weathering, the carbon cycle, and the differentiation of the continental crust and mantle, J. Geophys. Res., 93, 8952–8958.

    ADS  Google Scholar 

  • Kyte, F.T., Shukolyukov, A., Lugmair, G.W., Lowe, D.R., and Byerly, G. (2003), Early Archean spherule beds: chromium isotopes confirm origin throguh multiple impacts of projectiles of carbonaceous chondrite type, Geology, 31, 283–286.

    ADS  Google Scholar 

  • Lake, J.A. (1988), Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences, Nature, 331, 184–186.

    ADS  Google Scholar 

  • Lebofsky, L.A., Tholen, D.J., Rieke, G.H., and Lebofsky, M.J. (1984), 2060 Chiron: Visual and thermal infrared observations, Icarus, 60, 532–537.

    ADS  Google Scholar 

  • Levison, H.F., L. Dones, C.R. Chapman, S.A. Stern, M.J. Duncan, and Zahnle, K. (2001), Could the late lunar bombardment have been triggered by the formation of Uranus and Neptune? Nature, 151, 286–306.

    Google Scholar 

  • Lindstrom, M.M. and Lindstrom, D.J. (1986), Lunar granulites and their precursor anorthositic norites of the early lunar crust, J. Geophys. Res., 91, D263–D276.

    ADS  Google Scholar 

  • Lowe, D.R. and Byerly, G.R. (1986), Early Archean silicate spherules of probable impact origin South Africa and Western Australia, Geology, 11, 668–671.

    Google Scholar 

  • Lowe, D.R., Byerly, G.R., Asaro, F., and Kyte, F. (1989), Geological and geochemical record of 3400-million-year-old terrestrial meteorite impacts, Science, 245, 959–962.

    ADS  Google Scholar 

  • Lucey, P.G., Taylor, G.J., Hawke, B.R., and Spudis, P.D. (1998), FeO and TiO2 concentrations in the South Pole-Aitken basin - Implications for mantle composition and basin formation, J. Geophys. Res., 103, 3701–3708.

    ADS  Google Scholar 

  • Maher, K.A. and Stevenson, D.J. (1988), Impact Frustration of the origin of life, Nature, 331, 612–614.

    ADS  Google Scholar 

  • Marvin, U.B., Carey, J.W. and Lindstrom, M.M. (1989), Cordierite-spinel troctolite, a new magnesium-rich lithology from the lunar highlands, Science, 243, 925–931.

    ADS  Google Scholar 

  • Melosh, H.J. (1989), Impact Cratering: A Geological Process, Oxford University Press, New York.

    Google Scholar 

  • Melosh, H.J. (1990), Giant impacts and the thermal state of the Earth. In Origin of the Earth, (Newsom, H.E. and Jones, J.H., eds.), Oxford University Press, pp. 69–84.

    Google Scholar 

  • Melosh, H.J. (2003), Exchange of meteorites (and life?) between stellar systems, Astrobiology, 3, 207–215.

    ADS  Google Scholar 

  • Melosh, H.J., Schneider, N., Zahnle, K., and Latham, D.(1990), Ignition of global wildfires at the Cretaceous/Tertiary boundary, Nature, 343, 251–254.

    ADS  Google Scholar 

  • Melosh, H.J., and Vickery, A.M. (1989), Impact erosion of the primitive atmosphere of Mars, Nature, 338, 487–490.

    ADS  Google Scholar 

  • Michel, P., Farinella, P., and Froeschl’e, C. (1996), The orbital evolution of the asteroid Eros and implications for collision with Earth, Nature, 380, 689–691.

    ADS  Google Scholar 

  • Mileikowsky, C., Cucinotta, F.A., Wilson, J.W., Gladman, B., Horneck, G., Lindgren, L., Melosh, J., Rickman, H., Valtonen, M., and Zheng, J.Q. (2000), Risks threatening transfer of microbes between bodies in our solar system, Planet. Space Sci., 48, 1107–1115.

    ADS  Google Scholar 

  • Morbidelli, A. and Gladman, B. (1998), Orbital and temporal distributions of meteorites originating in the asteroid belt, Meteor. and Plan. Sci., 33, 999–1016.

    ADS  Google Scholar 

  • Morgan, J.W., Walker, R.J., Brandon, A.D., and Horan, M. F. (2001), Siderophile elements in the Earth’s upper mantle and lunar breccias: Data synthesis suggests manifestations of same late influx, Meteoritics Planet. Sci., 36, 1257–1275.

    Article  ADS  Google Scholar 

  • Mysen, B.O. and Kushiro, I. (1988), Condensation, evaporation, melting, and crystallization in the primitive solar nebula, Am. Min., 73, 1–19.

    ADS  Google Scholar 

  • Nakajima, S., Hayashi, Y.-Y., and Abe, Y. (1992), A Study of the ‘runaway greenhouse effect’ with a one-dimensional radiative-convective equilibrium model, J. Atm. Sci., 49, 2256–2266.

    ADS  Google Scholar 

  • Newsom, H.E. and Jones, J.H. (1990), Origin of the Earth, Oxford University Press.

    Google Scholar 

  • Newsom, H.E. and Taylor, S.R. (1989), Geochemical implications of the formation of the Moon by a single giant impact, Nature, 338, 29–34.

    ADS  Google Scholar 

  • Oberbeck, V. and Fogleman, G. (1989), Impacts and the origin of life, Nature, 339, 434.

    ADS  Google Scholar 

  • Oberbeck, V. and Fogleman, G. (1990), Estimates of the maximum time required for the origin of life, Orig. Life Evol. Bio., 19, 549–560.

    ADS  Google Scholar 

  • Oikawa, S. and Everhart, E. (1979), Past and future orbit of 1977 UB, object Chiron, Astron. J., 84, 134–139.

    ADS  Google Scholar 

  • Olsson-Steel, D. (1987), Collisions in the solar system. IV. Cometary impacts upon the planets, Mon. Not. Roy. Astron. Soc., 227, 501–524.

    ADS  Google Scholar 

  • Pace, N., Olsen, G.J., and Woese, C.R. (1986), Ribosomal RNA phylogeny and the primary lines of evolutionary descent, Cell, 45, 325–326.

    Google Scholar 

  • Pieters, C.M. (1986), Composition of the lunar highland crust from near-infrared spectroscopy, Rev. Geophys., 24, 557–578.

    ADS  Google Scholar 

  • Ringwood, A.E. and Seifert, S. (1986), Nickel-cobalt abundance systematics and their bearing on lunar origin. In Origin of the Moon, (Hartmann, W.K., Phillips, R.J. and Taylor, G.J., eds.), Lunar and Planetary Institute, Houston, pp. 331–358.

    Google Scholar 

  • Rivera, M.C. and Lake, J.A. (1992), Evidence that eukaryotes and eocyte prokaryotes are immediate relatives, Science, 257, 74–76.

    ADS  Google Scholar 

  • Ryder, G. (2002), Mass flux in the ancient Earth-Moon system and benign implications for the origin of life, J. Geophys. Res., 107(E4), 5022.

    Google Scholar 

  • Ryder, G. (2003), Bombardment of the Hadean Earth: Wholesome or deleterious?, Astrobiology, 3, 3–6.

    MATH  ADS  Google Scholar 

  • Safronov, V.S. (1972), Evolution of the Protoplanetary Cloud and Formation of the Earth and the Planets, NASA TT F-677.

    Google Scholar 

  • Safronov, V.S., G.V. Pechernikova, E.I. Ruskol, and Vitjazev, A.V. (1986), Protosatellite swarms, In Satellites, (Burns, J. and Matthews, M.S., eds.), The University of Arizona Press, Tucson, pp. 89–116.

    Google Scholar 

  • Schmidt, R.M., and Holsapple, K.A. (1982), Estimates of crater size for large body impact. In Geological Implications of Impacts of Large Asteroids and Comets on the Earth, (Silver, L.T., and Schultz, P.H., eds.), Geological Society of America Special Paper 190, pp. 93–102.

    Google Scholar 

  • Schmidt, R.M., and Housen, K.R. (1987), Some recent advances in the scaling of impact and explosion cratering, Int. J. Impact Mech., 5, 543–560.

    ADS  Google Scholar 

  • Scholl, H. (1979), History and evolution of Chiron’s orbit, Icarus, 40, 345–349.

    ADS  Google Scholar 

  • Sharpton, V., and Ward, P., eds. (1990), Global Catastrophes in Earth History, Geological Society of America Special Paper 247.

    Google Scholar 

  • Shoemaker, E.M.,Wolfe, R.F., and Shoemaker, C.S. (1982), Cratering timescales for the Galilean satellites. In Satellites of Jupiter, (Morrison, D., ed.), The University of Arizona Press, Tucson, pp. 277–339.

    Google Scholar 

  • Shoemaker, E.M., Wolfe, R.F., and Shoemaker, C.S. (1990), Asteroid and comet flux in the neighborhood of Earth. In Global Catastrophes in Earth History, (V.L. Sharpton and P.D. Ward, eds.), Geol. Soc. of Am. Special Paper 247, pp. 155–180.

    Google Scholar 

  • Silver, L.T., and Schultz, P.H., eds. (1982), Geological Implications of Impacts of Large Asteroids and Comets on the Earth, Geological Society of America Special Paper 190.

    Google Scholar 

  • Sleep, N.S., Zahnle, K., Kasting, J.F., and Morowitz, H. (1989), Annihilation of ecosystems by large asteroid impacts on the early Earth, Nature, 342, 139–142.

    ADS  Google Scholar 

  • Spudis, P.D. (1993), The Geology of Multi-Ring Impact Basins: The Moon and Other Planets, Cambridge University Press, New York.

    Google Scholar 

  • Spudis, P.D. and Davis, P.A. (1986), A Chemical and Petrological Model of the Lunar Crust and Implications for Lunar Crustal Origin, J. Geophys. Res., 91, E84–E90.

    ADS  Google Scholar 

  • Spudis, P.D., Hawke, B.R. and Lucey, P.G. (1988), Materials and formation of the Imbrium basin, Proc. Lunar Planet. Sci. Conf., 18, 155–168.

    ADS  Google Scholar 

  • Stadermann, F.J., Heusser, E., Jessberger, E.K., Lingner, S., and Stöffer, D. (1991), The case for a younger Imbrium basin: New 40Ar-39Ar ages of Apollo 14 rocks, Geochim. Cosmochim. Acta, 55, 2339–2349.

    ADS  Google Scholar 

  • Stevenson, D.J. (1987), Origin of the Moon –the Collision Hypothesis, Ann. Rev. Earth Planet. Sci., 15, 271–315.

    ADS  Google Scholar 

  • Suits, G.W. (1979), Natural Sources. In The Infrared Handbook, (Wolfe, W. and Zissis, G., eds.), Office of Naval Research, Washington, D.C., pp. 3–1–3–154.

    Google Scholar 

  • Swisher, C., Grajales-Nishimura, J., Montanari, A., Margolis, S., Claeys, P., Alvarez, W., Renne, P., Cedillo-Pardo, E., Maurrasse, F., Curtis, G., Smit, J., and McWilliams, M. (1992), Coeval 40Ar/39Ar ages of 65.0 million years ago from Chicxulub crater melt rock and Cretaceous-Tertiary boundary tektites, Science, 257, 954–958.

    ADS  Google Scholar 

  • Swindle, T.D., Caffee, M.W., Hohenberg, C.M. and Taylor, S.R. (1986), I-Pu-Xe dating and the relative ages of the Earth and Moon. In Origin of the Moon, (Hartmann, W.K., Phillips R.J. and Taylor, G.J., eds.), Lunar and Planetary Institute, Houston, pp. 331–358.

    Google Scholar 

  • Tanaka, H., S. Inaba, and Nakazawa, K. (1996), Steady-state size distribution for the self-similar cascade, Icarus 123, 450–455.

    ADS  Google Scholar 

  • Taylor, S.R. (1986), Planetary Science: A Lunar Perspective, Lunar and Planetary Institute, Houston.

    Google Scholar 

  • Tera, F., Papanastassiou, D.A., and Wasserburg, G.J. (1974), Isotopic evidence for a terminal lunar cataclysm, Earth Planet. Sci. Lett., 22, 1–21.

    ADS  Google Scholar 

  • Tremaine, S. and Dones, L. (1993), On the statistical distribution of massive impactors, Icarus, 106, 335–341.

    ADS  Google Scholar 

  • Trujillo, C.A. Jewitt, D.C., and Luu, J.X. (2001), Properties of the Trans-Neptunian Belt: Statistics from the Canada-France-Hawaii Telescope Survey, Astron. J., 122, 457–473.

    ADS  Google Scholar 

  • Turcotte, D.L., and Schubert, G. (1982), Geodynamics, Wiley, New York.

    Google Scholar 

  • Walker, D., and Mullins, O. (1981), Surface tension of natural silicate melts from 1200–1500 C and implications for melt structure, Contrib. Mineral. Petrol., 76, 455–462.

    ADS  Google Scholar 

  • Warren, P.H., Jerde, E.A. and Kallemeyn, G.W. (1989), Lunar meteorites - Siderophile element contents, and implications for the composition and origin of the moon, Earth Planet. Sci. Lett., 91, 245–260.

    ADS  Google Scholar 

  • Weiss, B.P., Kirshvink, J.L., Baudenbacher, F.J., Vali, H., Peters, N.T., Macdonald, F.A., and Wikswo, J.P. (2000), A low temperature transfer of ALH84001 from Mars to Earth, Science, 290, 791–795.

    ADS  Google Scholar 

  • Weissman, P.R. (1990), The cometary impactor flux at the Earth. In Global Catastrophes in Earth History, (Sharpton, V.L., and Ward, P.D., eds.), Geological Society of America Special Paper 247, 171–180.

    Google Scholar 

  • Wells, L.E., Armstrong, J.C., and Gonzalez, G. (2003), Reseeding of early Earth by impacts of returning ejecta during the late heavy bombardment, Icarus, 162, 38–46.

    ADS  Google Scholar 

  • Wetherill, G.W. (1975), Late heavy bombardment of the moon and terrestrial planets, Proc. Lunar Sci. Conf., 6 1539–1561.

    ADS  Google Scholar 

  • Wetherill, G.W. (1981), Nature and origin of basin-forming projectiles. In Multiring Basins, Proc. Lun. Planet. Sci. 12A, (Schultz, P. and Merrill, R.B., eds.), Pergamon Press, New York, pp. 1–18.

    Google Scholar 

  • Wilhelms, D.E. (1987), The Geologic History of the Moon, U.S.G.S. Professional Paper 1348.

    Google Scholar 

  • Williams, D.R., and Wetherill, G.W. (1994), Size Distribution of Collisionally Evolved Asteroidal Populations: Analytical Solution for Self-Similar Collision Cascades. Icarus, 107, 117–128.

    ADS  Google Scholar 

  • Valley, J.W., Peck, W.H., King, E.M., and Wilde, S.A. (2002), A cool early Earth, Geology, 30, 351–354.

    ADS  Google Scholar 

  • Vickery, A.M., and Melosh, H.J. (1990), Atmospheric erosion and impactor retention in large impacts, with application to mass extinctions. In Global Catastrophes in Earth History, (Sharpton, V.L., and Ward, P.D., eds.), Geological Society of America Special Paper 247, pp. 289–300.

    Google Scholar 

  • Zahnle, K. (1990), Atmospheric chemistry by large impacts. In Global Catastrophes in Earth History, (Sharpton, V.L., and Ward, P.D., eds.), Geological Society of America Special Paper 247, pp. 271–288.

    Google Scholar 

  • Zahnle, K. (1993), Xenological constraints on the impact erosion of the early Martian atmosphere, J. Geophys. Res., 98, 10899–10913.

    ADS  Google Scholar 

  • Zahnle, K. and Sleep, N. (1996), Impacts and the early evolution of life. In Comets and the Origin and Evolution of Life, (Thomas, P., Chyba, C., and McKay, C., eds.), Springer-Verlag, New York, pp. 175–208.

    Google Scholar 

  • Zappala, V., Cellin o, A., diMartino, M., Migliorini, F., and Paolicci, P. (1997), Maria’s family: physical structure and possible implications for the origin of giant NEAs, Icarus, 129, 1–20.

    ADS  Google Scholar 

  • Zel’dovich, Ia. B., and Raizer, Yu. P. (1967), Physics of Shock Waves and High Temperature Hydrodynamic Phenomena, Academic Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Zahnle, K., Sleep, N.H. (2006). Impacts and the Early Evolution of Life. In: Thomas, P.J., Hicks, R.D., Chyba, C.F., McKay, C.P. (eds) Comets and the Origin and Evolution of Life. Advances in Astrobiology and Biogeophysics. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-33088-7_7

Download citation

Publish with us

Policies and ethics