Skip to main content

Cometary Micrometeorites in Planetology, Exobiology, and Early Climatology

  • Chapter
Comets and the Origin and Evolution of Life

Abstract

Large unmelted Antarctic micrometeorites with sizes ≥100 μm that survive upon atmospheric entry started to be exploited in planetology and exobiology in the early 1990s. This chapter mostly focuses on micrometeorites that are destroyed upon atmospheric entry, through either volatilization or melting. Their “ashes” behave as powerful “tracers” that help decrypting some mysteries of our distant past, such as the formation of the Earth’s atmosphere and the early history of the Earth’s mantle. Moreover, they probably opened new reaction channels in the prebiotic chemistry of life, and they were involved in the post-lunar greenhouse eect that allowed the birth of life on the Earth. These large micrometeorites would be dominantly cometary dust grains that were released in the inner solar system, and which kept an astonishing invariant and simple composition over the last ~4.4 Gyr.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe Y., Genda H., Nishikawa K. (2002) A mixed pro-atmosphere during the runaway accretion. Geochim. Cosmochim. Acta, 66, number 15A, A5.

    Google Scholar 

  • Ahrens T.J. (1993) Impact erosion of terrestrial planetary atmosphere. Ann. Rev. Earth Planet. Sci., 21, 525–555.

    Article  ADS  Google Scholar 

  • Ambrose S.H. (2005) Population bottleneck. In, Robinson R. (Ed.) Genetics, (MacMillan Reference Books).

    Google Scholar 

  • Anders E. (1989) Pre-biotic organic matter from comets and asteroids. Nature, 342, 255–256.

    Article  ADS  Google Scholar 

  • Bailey M.E., Clube S.V.M., Hahn G., Napier W.M., Valsecchi, G.B. (1994) Hasards due to giant comets: climate and short-term catastrophism. In, Gehrels T. (Ed) Hazards due to comets and asteroids (Univeristy Arizona Press), pp. 479–536.

    Google Scholar 

  • Boice D. and Huebner W. (1999) Physics and chemistry of comets. In, Weisman P. R., McFadden L., Johnson T.V. (Eds.) Encycolpedia of the solar system (Academic Press, New York), pp. 519–536.

    Google Scholar 

  • Bonny Ph. (1990) Entrée atmosphérique de micrométéorites pierreuses chargées en matière organique. ONERA, Rapport TP, 110, pp. 1–110.

    Google Scholar 

  • Burns J.A., Lamy P., Soter S. (1979) Radiation forces on small particles in the solar system. Icarus, 40, 1–48.

    Article  ADS  Google Scholar 

  • Bardintze. J.M. (1991) Vocanologie (Dunod, Paris), pp. 1–284.

    Google Scholar 

  • Brinton K., Engrand C., Glavin D.P., Bada J.F., Maurette M. (1998) A search for extraterrestrial Amino acids in carbonaceous Antarctic micrometeorites. Origin Life Biosphere, 28, 413–424.

    Article  ADS  Google Scholar 

  • Brownlee D.E. (2001) The origin and properties of dust impacting the Earth In, Peucker-Ehrenbrink and Schmitz B. (Eds) Accretion of extraterrestrial matter throughout Earth’s history (Kluger Academic / Plenum Publishers, N.Y.), pp.1–12.

    Google Scholar 

  • Cameron A.G.W. (1992) The giant impact revisited. Lunar Planet Sci., XXIII, 199–200.

    ADS  Google Scholar 

  • Canup R. and Asphaug E. (2001) Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature, 412, 708–712.

    Article  ADS  Google Scholar 

  • Carlson R.W. and Lugmaier G.W. (1988) The age of ferroan anorthosite 60025: Oldest crust on a young Moon. Earth Planet. Sci. Lett., 90, 119–130.

    Article  ADS  Google Scholar 

  • Chyba C.F. and Sagan C. (1992). Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origin of life. Nature, 355, 125–132.

    Article  ADS  Google Scholar 

  • Chyba C.F. and Sagan C. (1997) Comets as a source of prebiotic molecules for the early Earth. In, Thomas P.J., Chyba C.F., McKays, C.P. (Eds.) Comets and the origin and evolution of life (Springer Verlag, New York), pp. 147–174.

    Google Scholar 

  • Clemett S.J., Chillier X.D., Gillette S., Zare R.N., Maurette M., Engrand C., Kurat M. (1998) Observation of indigenous polycyclic aromatic hydrocarbons in “giant” carbonaceous Antarctic micrometeorites. Ibid, 425–448.

    Google Scholar 

  • Cuillierier R., Duprat J., Maurette M., Hammer C. (2002) The crucial role of neon to identify cometary micrometeorites from historical and future Leonids showers trapped in Antarctic and Greenland snows. Lunar Planet. Sci., XXXIII, A1519 (CD-ROM).

    ADS  Google Scholar 

  • De Duve C. (1998) Clues from present-day biology: the thioester world. In A.Brack (ed.), The molecular origin of Life (Cambridge University Press), pp. 147–186.

    Google Scholar 

  • Delsemme A. (1997) The origin of the atmosphere and oceans. In, Thomas P.J., Chyba C.F., McKays C.P.(Eds) Comets and the origin of life (Springer Verlag, New York), pp. 29–68.

    Google Scholar 

  • Delsemme A. (1999) The deuterium enrichment observed in recent comets is consistent with the cometary origin of seawater. Planet. Space Sci., 47, 125–131.

    Article  ADS  Google Scholar 

  • Dermott S.F., Crogan K., Durda D.D, Jayaraman S., Kekoe T.J., Kortenkamp S.J, Wyatt M.C. (2001) Orbital evolution of Interplanetary dust. In E. Grün, B.A.S. Gustafson, S.F. Dermott, H. Fechtig (Eds.), Interplanetary Dust, (Springer-Verlag, Berlin), pp. 569–640.

    Google Scholar 

  • Dodd R.T. (1981) Meteorites: A petrological-chemical synthesis (Cambridge University Press).

    Google Scholar 

  • Dran J.C., Duraud J.P., Langevin Y., Maurette M. (1979) The predicted irradiation record of asteroidal regoliths and the origin of gas-rich meteorites. Lunar Planet. Sci., X, 309–311.

    ADS  Google Scholar 

  • Duprat J., Hammer C., Maurette M., Engrand C., Matrajt G., Gounelle M., Kurat G. (2001) Search for past and future “frozen” Leonid showers in Antarctica and Greenland. Lunar Planet. Sci., XXXII, A1773 (CD-ROM).

    ADS  Google Scholar 

  • Duprat J., Engrand C., Maurette M., Gounelle M., Hammer C., Kurat G. (2003) The Concordia-Collection : pristine contemporary micrometeorites from central Antarctica surface snow. Lunar Planet. Sci., XXXIV, A1727 (CD-ROM).

    ADS  Google Scholar 

  • Duraud J.P., Langevin Y., Maurette M., Comstock G., Burlingame A.L. (1975) The simulated depth history of dust grains in the lunar regolith. Geochim. Cosmochim. Acta Suppl., 6, 3471–3482.

    Google Scholar 

  • Duraud J.P., Langevin Y., Maurette M. (1979) An analytical model for the regolith evolution of small bodies in the solar system. Lunar Planet. Sci, X, 323–325.

    ADS  Google Scholar 

  • Eiler J.M. and Kitchen N. (2004). Hydrogen isotope evidence for the origin and evolution of the carbonaceous chondrites. Geochim. Cosmochim. Acta, 68, 1395–1411.

    Article  ADS  Google Scholar 

  • Engrand C. and Maurette M. (1998) Carbonaceous micrometeorites from Antarctica. Meteoritics Planet. Sci., 33, 565–580.

    Article  ADS  Google Scholar 

  • Engrand C., Deloule F, Robert F., Maurette M., Kurat G. (1999) Extraterrestrial water in micrometeorites and cosmic spherules from Antarctica: an ion microprobe study. Meteoritics Planet. Sci, 34, 773–787.

    Article  ADS  Google Scholar 

  • Fouquet Y, Knott R., Cambon P., Fallick A., Rickard D., Desbruyeres D. (1996) Formation of large sulfide minerals deposits along fast spreading ridges. Earth Planet. Sci., 44, 147–162.

    Article  ADS  Google Scholar 

  • Genda H., and Abe Y. (2003) Survival of a proto-atmosphere through the stage of giant impacts. Lunar Planet. Sci, XXXIV, 1623–1624.

    ADS  Google Scholar 

  • Genda H., Abe Y. (2005) Enhanced atmospheric loss on protoplanets at the giant impact phase in the presence of oceans. Nature, 433, 842–844.

    Article  ADS  Google Scholar 

  • Gomes R., Levinson H.F., Tsiganis K., Morbidelli A. (2005) Origin of the cataclysmic late heavy bombardment of the terrestrial planets. Nature 435, 466–469.

    Article  ADS  Google Scholar 

  • Gounelle M. (2000) Matière extraterrestre sur Terre: des océans aux protoétoiles. PhD thesis, University Paris 7, pp. 1–163.

    Google Scholar 

  • Greaves J.S. (2005) Disks around stars and the growth of planetary systems. Science, 307, 68–71.

    Article  ADS  Google Scholar 

  • Hartman W. K. (1999) Moons and Planets, 4th Edition (Wadsworth, Belmont), pp. 1–428.

    Google Scholar 

  • Hasgawa S. and Abe M. (2001) An estimate of surface regolith condition from IRAS observed asteroids using the free beam parameter thermal model. In, Eds, Mizutani H. and Kato M. (ISAS, Kanakawa, Japan) Proc. 34th ISAS Lunar Planet. Sci.,91–94.

    Google Scholar 

  • Heinen W. and Lauwers A.M. (1996) Sulfur compounds resulting from the interaction of iron sulfide and carbon dioxide in an anaerobic aqueous environment. Origins of Life Evol. Biosphere, 26, 131–150 (1996).

    Article  ADS  Google Scholar 

  • Hohenberg C.M., Nichols R.H., Olinger C.T., Goswami J.N. (1990) Cosmogenic neon from individual grains of CM meteorites: Extremely long pre-compaction exposure histories or an enhanced early particle flux. Geochim. Cosmochim Acta, 60, 3311–3340.

    Google Scholar 

  • Hunten D.M., Turco R.P., Toon O.B. (1980) Smoke and dust particles from meteoritic origin in the mesosphere and stratosphere. J. Atmos. Sci., 37, 1342–1357.

    Article  ADS  Google Scholar 

  • Jenniskens P. (2001) Discoveries from observations and modeling of the 1998/99 Leonids. In, E. Grün, B.A.S. Gustafson, S.F. Dermott, H. Fechtig (Eds.) Interplanetary Dust (Springer, New York), pp. 233–252.

    Google Scholar 

  • Kasting J.F. (1993) Earth’s early atmosphere. Science, 259, 920–926.

    Article  ADS  Google Scholar 

  • Krueger F.R. and Kissel J. (1987) The organic component in dust from comet Halley as measured with the PUMMA mass spectrometer on board of Vega 1. Nature, 326, 755–760.

    Article  ADS  Google Scholar 

  • Kurat G., Koeberl C., Presper Th., Brandstatter F., Maurette M. (1994) Petrology and geochemistry of Antarctic micrometeorites (1994). Geochim. Cosmochim. Acta, 58, 3879–3904.

    Article  ADS  Google Scholar 

  • Langevin Y. and Maurette M (1976) A Monte-Carlo simulation of galactic cosmic rays effects in the lunar regolith. Geochim. Cosmochim. Acta, Supp., 7, 75–85.

    Google Scholar 

  • Langevin Y. (1978) Etude de l’évolution de la surface des petits corps du systèeme solaire. PhD Thesis, University Paris XI, pp. 1–298.

    Google Scholar 

  • Langevin (1981) Evolution of an asteroidal regolith: granulometry, mixing and maturity. Proc. Conf. on lunar breccias and meteoritical analogs (Lunar Planetary Institute, Houston), pp. 87–93.

    Google Scholar 

  • Langevin Y. and Maurette M. (2004) CM2-type micrometeoritic lunar “winds” during the late heavy bombardment. Lunar Planet. Sci., A1610, CD-ROM.

    Google Scholar 

  • Leipunskii O.I., Konstantinov J.E., Federov G.A., Skotnikova O.G. (1970) Mean residence time of radioactive aerosols in the upper layers of the atmosphere based on fall-out of high-altitude tracers. J.Geophys.Res., 75, 3569–3574.

    Article  ADS  Google Scholar 

  • Levinson H.F., Dones L., Chapman C.R., Stern S.A., Ducna M.J., Zahnle K. (2001) Could the lunar “late heavy bombardment” have been triggered by the formation of Uranus and Neptune? Icarus, 151, 286–306.

    Article  ADS  Google Scholar 

  • Liou J. and Zook H.A. (1997) Evolution of interplanetary dust particles in mean motion resonances with planets. Icarus, 128, 354–367.

    Article  ADS  Google Scholar 

  • Lorand J.P. (1990) Are spinel Iherzolite xenoliths rerepsentative of the abundance of sulfur in the upper mantle? Geochim. Cosmochim. Acta, 54, 1487–1493.

    Article  ADS  Google Scholar 

  • Love S.G. and Brownlee D.E. (1993) A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science, 262, 550–553.

    Article  ADS  Google Scholar 

  • Mason B. (1971) Handbook of elemental abundances in meteorites (Gordon and Breach Science Publishers), pp.1–555.

    Google Scholar 

  • Matrajt G., Gallien J.P., Maurette M. (2001a) Nuclear microprobe analysis of carbon and nitrogen in Murchison and Antarctic micrometeorites. Meteoritics Planet. Sci., 36, A127.

    ADS  Google Scholar 

  • Matrajt G., Maurette M., Blanot D. (2001b) Ferrihydrite in micrometeorites: a potential adsorbent of aminoacids and catalyst of oligopeptide formation. Lunar Planet.Sci., XXXII, A1037 (CD-ROM).

    Google Scholar 

  • Matrajt G. (2002) La contribution des micrométéorites à l’origine de la vie sur Terre (Ph.D thesis, Université Paris VI), pp.1–166.

    Google Scholar 

  • Matrajt G., Blanot D., Perreau M., Lebreton J.M. (2003) Adsorption measurements of aminoacids on synthetic ferrihydrite. In, Celnikier L.M. and Trân Thanh Vân J. (Eds) Frontiers of life. Proc. XIIth Rencontres de Blois, July 2000 (Thê Gioi Publishers, Hanoï), pp. 7–22.

    Google Scholar 

  • Maurette M., Beccard B., Bonny Ph., Brack A., Christophe M., Veyssieres P. (1990) C-rich micrometeorites on the early Earth and icy planetary bodies. In, Heidmann J. and Klein M.J. (Eds) Proc. 24 th ESLAB Symp. On the formation of stars and planets, and the evolution of the solar system. ESA, SP-315, 167–172.

    Google Scholar 

  • Maurette M., Bonny Ph., Brack A., Jouret C., Pourchet M., Siry P. (1991a) C-rich micrometeorites and prebiotic synthesis. In J. Heidmann and M.J. Klein (Eds) Bioastronomy. Lecture Notes in Physics 390 (Springer-Verlag, New-York), pp. 124–132.

    Google Scholar 

  • Maurette M., Olinger C.T., Christophe M., Kurat G., Pourchet M., Brandstätter F., Bourot-Denise M. (1991b) A collection of diverse micrometeorites recovered from 100 tonnes of Antarctic blue ice. Nature, 351, 44–46.

    Article  ADS  Google Scholar 

  • Maurette M., Kurat G., Presper Th., Brandstatter F., Perreau M. (1992) Possible causes of depletion and enrichment of minor elements in Antarctic micrometeorites. Lunar Planet. Sci., 28, 861–862.

    ADS  Google Scholar 

  • Maurette M. (1998) Micrometeorites on the early Earth. In A.Brack (ed.), The molecular origin of Life, (Cambridge University Press), pp. 147–186.

    Google Scholar 

  • Maurette M., Duprat J., Engrand C., Kurat G., Gounelle M., Matrajt G., Toppani A. (2000a) Accretion of neon, organics, CO2, nitrogen and water from large interplanetary dust particles on the early Earth. Planet. Space Sci., 48, 1117–1137.

    Article  ADS  Google Scholar 

  • Maurette M., Matrajt G., Gounelle M., Engrand C., Duprat J. (2001a) La matière extraterrestre primitive et les mystères de nos origines. In Gargaud et al. (Eds), “L’environnement de la Terre primitive” (Presses Universitaires de Bordeaux), 99–127.

    Google Scholar 

  • Maurette M. and Morbidelli A. (2001b) Confirmation of high lunar cratering rates: new clues about the early configuration of planets, small bodies and nearby stars in the early solar system. Lunar Plane. Sci., XXXII, A1565, CD-ROM.

    Google Scholar 

  • Maurette M. (2002) L’origine cosmique de l’air et des océans. Pour la Science, 298, 36–43.

    Google Scholar 

  • Maurette M., Matrajt G., Gounelle M., Duprat J., Engrand C. (2003a) “Juvenile” KBOs dust and prebiotic chemistry. In, Celnikier L.M. and Trân Thanh Vân J. (Eds) Frontiers of life. Proc. XIIth Rencontres de Blois, July 2000 (Thê Gioi Publishers, Hanoý), 7–22.

    Google Scholar 

  • Maurette M., Balanzat E., Duprat J. (2003b) Cosmic irradiations of carbonaceous material in space and prebiotic chemistry. Lunar Planet. Sci., XXXIV, A1743 (CD-ROM).

    Google Scholar 

  • Maurette M., Duprat J., Engrand C., Kurat G. (2004a) From the Earth to Mars with micrometeorite volatiles. Advance Space Res., submitted.

    Google Scholar 

  • Maurette M, Brack A., Duprat J., Engrand C., Kurat G. (2004b) High input rates of micrometeoritic sulfur, “smoke” particles and oligoelements on the early Earth. Lunar Planet. Sci., XXXV, A1625, CD–ROM.

    ADS  Google Scholar 

  • Maurette M. (2005) Micrometeorites and the mysteries of our origins (Springer).

    Google Scholar 

  • Morbidelli A., Chambers J., Lunine J.I., Petit J.M., Robert F., Valsecchi G.B., Cyr K.E. (2000) Source regions and timescales for the delivery of water to Earth. Meteoritics Planet. Sci., 35, 1309–1320.

    Article  ADS  Google Scholar 

  • Morgan J.W. (1986) Ultramafic Xenoliths: clues to Earth’s late accretionary history. J.Geophys.Res., 91, 12375–12387.

    Article  ADS  Google Scholar 

  • Murphy D.M. (2001). Extraterrestrial material and stratospheric aerosols. In, Peucker-Ehrenbrink and Schmitz B. (Eds) Accretion of extraterrestrial matter throughout Earth’s history (Kluger Academic / Plenum Publishers, N.Y.), pp.129–142.

    Google Scholar 

  • Nakamura T., Nagao K., Metzler K., Takaoka N. (1999) Heterogeneous distribution of solar and cosmogenic noble gases in CM chondrites and implications for the formation of CM parent bodies. Geochim. Cosmochim. Acta, 63, 257–273.

    Article  ADS  Google Scholar 

  • Nakamura T. and Takaoka N. (2000) Solar wind derived light noble gases in micrometeorites collected at the Dome Fuji Station: Characterisation by stepped combustion. Antarct. Meteorite Res., 13, 311–321.

    ADS  Google Scholar 

  • Olinger C.T., Maurette M., Walker R.M., Hohenberg C. (1990) Neon measurements of individual Greenland sediment particles: proof of an extraterrestrial origin. Earth Plan. Scien. Lett., 100, 77–93.

    Article  ADS  Google Scholar 

  • Osawa T., Nagao K., Nakamura T., Takaoka N. (2000) Noble gas measurement in individual micrometeorites using laser gas-extraction system. Antarct. Meteorite Res., 13, 322–341.

    ADS  Google Scholar 

  • Osawa T. and Nagao K. (2002) Noble gas composition of Antarctic micrometeorites collected at the Dome Fuji station in 1996 and 1997. Meteoritics and Planet Sci., 37, 911–936.

    Article  ADS  Google Scholar 

  • Ozima M. and Podosek F. (2002) Noble Gas Geochemistry. (Cambridge University Press), 1–286.

    Google Scholar 

  • Ozima M. and Zahnle K. (1993) Mantle degassing and atmospheric evolution: Noble gas view. Geochemical Journal, 27, 185–200.

    Google Scholar 

  • Owen T., Cess R.D., Ramanathan V. (1979) Enhanced CO2 greenhouse to compensate for reduced solar luminosity on the early Earth. Nature, 277, 640–642.

    Article  ADS  Google Scholar 

  • Owens T. (1998) The origin of the atmosphere. In A.Brack (Ed.) The molecular origin of life (Cambridge University Press), pp. 13–34.

    Google Scholar 

  • Pepin R.O. and Phinney D. (1975) The formation interval of the Earth. Lunar Sci. Conf., VII, 682–683.

    Google Scholar 

  • Podolak M., Mekler Y., Prialnik D. (2002) Is the D/H ratio in the comet coma equal to the D/H ratio in the comet nucleus? Icarus, 160, 208–211.

    Article  ADS  Google Scholar 

  • Ponchelet H. (1989) Astrophysique. Tous Fils du Ciel. Le Point, 860, 121–122.

    Google Scholar 

  • Raisbeck G.M. and Yiou F. (1989) Cosmic rays exposure ages of cosmic spherules. Meteoritics, 24, 318A.

    ADS  Google Scholar 

  • Rampino H.R., Self S., Tothers R.B. (1988) Volcanic winters. Ann. Rev. Earth Planet. Sci., 16, 73–99.

    Article  ADS  Google Scholar 

  • Rampino M.R. and Self S. (1992) Volcanic winter and accelerated glaciations following the Toba super-eruption. Nature, 359, 50–53.

    Article  ADS  Google Scholar 

  • Rampino M.R. and Ambrose S.H. (2000) Volcanic winter in the garden of Eden: the Toba super-eruptions and the late pleistocene human population crash, In, Volcanic hazards and disasters in human antiquity, Special paper. Geological Society of America, 345, 71–82.

    Google Scholar 

  • Richter F.M. (1979) Focal mechanism and seismic energy release of deep and intermediate earthquakes in the Tonga-Kermadec region and their bearing on the depth extent of mantle flow. J. Geophys. Res., 84, 6783–6795.

    Article  ADS  Google Scholar 

  • Rubey W.W. (1955) In Polderwaart (Ed.) Crust of the Earth (Geol. Soc. of America, New-York), pp. 630–650.

    Google Scholar 

  • Rushmer T., Minarik W.G., Taylor G.J. (2000) Physical processes of core formation. In, Eds Canup R. and Righter K., Origin of the Earth and the Moon (University of Arizona Press), 227–243.

    Google Scholar 

  • Sarda Ph., Staudacher Th., Allègre C.J. (1985) 40Ar/36Ar in MORB glasses: constraints on atmosphere and mantle evolution. Earth Planet. Sci., 72, 357–375.

    Article  ADS  Google Scholar 

  • Schoenberg R., Kamber B.S., Collerson K.D., Eugster O. (2002) New W-isotope evidence for rapid terrestrial accretion and very early core formation. Geochim. Cosmochim. Acta, 66, 3150–3160.

    Article  ADS  Google Scholar 

  • Shu F.H., Shang H., Gounelle M., Glassgold A., Lee T. (2000) The origin of chondrules and refractory inclusions in chondritic meteorites. Astrophys. J., 548, 1029–1050.

    Article  ADS  Google Scholar 

  • Thordarson T. and Self S. (1996) Sulfur, chlorine, and florine degassing and atmospheric loading by the Rosaz eruption, Columbia River basalt group, Washington, USA. J. Volcanol. Geotherm. Res., 74. 49–79.

    Article  ADS  Google Scholar 

  • Thordarson T., Oskarsson N., Husebosch T. (1996) Sulfur, chlorine and fluorine degassing and atmospheric loading by the 1783–1784 AD Laki eruption in Iceland. Bull. Volc., 58, 205–225.

    Article  ADS  Google Scholar 

  • Tolstikhin I.N. and Marty B. (1998) The evolution of the terrestrial volatiles: a view from helium, neon, argon and nitrogen isotope modeling. Chem. Geol., 147, 27–52.

    Article  Google Scholar 

  • Urey H.C. (1952) On the early chemical history of the Earth and the origin of life. Proc. Natl. Acad. Sci., 38, 351–363.

    Article  ADS  Google Scholar 

  • Van der Hilst R.D., Widiyantoro S., Engdahl E.R. (1997) Evidence for deep mantle circulation from global tomography. Nature, 386, 578–584.

    Article  ADS  Google Scholar 

  • Wächtershäuser G. (1998) Origin of life in an iron-sulfur world. In A.Brack (ed.), The molecular origin of Life, (Cambridge University Press), pp. 206–218.

    Google Scholar 

  • Wieler R. (1998) The solar noble gas record of lunar samples and meteorites. Space Sci. Rev., 85, 303–314.

    Article  ADS  Google Scholar 

  • Wilde S.A., Valley J.W., Peck W.H., Graham C.M. (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature, 409, 175–178.

    Article  ADS  Google Scholar 

  • Wooden D.H., Harker D.E., Woodward C.E., Butner H.M., Koike C., Witteborn F.C., McMurty C.W. (1999) Silicate mineralogy of the dust in the inner coma of comet C/1995 01 (Hale-Bopp) pre- and post-perihelion. Astrophysical Journal, 517, 1034–1058.

    Article  ADS  Google Scholar 

  • Zook (2001) Spacecraft Measurements of the cosmic dust. In, Peucker-Ehrenbrink. and Schmitz B. (Eds) Accretion of extraterrestrial matter throughout Earth’s history (Kluger Academic / Plenum Publishers, N.Y.), pp.75–90.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Maurette, M. (2006). Cometary Micrometeorites in Planetology, Exobiology, and Early Climatology. In: Thomas, P.J., Hicks, R.D., Chyba, C.F., McKay, C.P. (eds) Comets and the Origin and Evolution of Life. Advances in Astrobiology and Biogeophysics. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-33088-7_3

Download citation

Publish with us

Policies and ethics