Skip to main content

Manifold Learning and Applications in Recognition

  • Chapter
Intelligent Multimedia Processing with Soft Computing

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 168))

Abstract

Great amount of data under varying intrinsic features are empirically thought of as high-dimensional nonlinear manifold in the observation space. With respect to different categories, we present two recognition approaches, i.e. the combination of manifold learning algorithm and linear discriminant analysis (MLA+LDA), and nonlinear auto-associative modeling (NAM). For similar object recognition, e.g. face recognition, MLA + LDA is used. Otherwise, NAM is employed for objects from largely different categories. Experimental results on different benchmark databases show the advantages of the proposed approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. T. Hastie, and W. Stuetzle (1988) Principla Curves. Journal of the American Statistical Association, 84(406), pp. 502–516

    Article  MathSciNet  Google Scholar 

  2. B. Kégl, A. Krzyzak, T. Linder, and K. Zeger (2000) Learning and design of principal curves. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 3, pp. 281–297.

    Article  Google Scholar 

  3. C.M. Bishop, M. Sevensen, and C.K.I. Williams (1998) GTM: The generative topographic mapping. Neural Computation, 10, pp. 215–234

    Article  Google Scholar 

  4. K. Chang and J. Ghosh (2001) A unified model for probabilistic principal surfaces. IEEE transactions on Pattern Analysis and Machine Intelligence, 23(1), pp. 22–41

    Article  Google Scholar 

  5. A.J. Smola, S. Mika, et al (1999) Regularized Principal Manifolds. In Computational Learning Theory: 4th European Conference, Vol 1572 of Lecture Notes in Artificial Intelligence, New York: Springer, pp. 251–256

    Google Scholar 

  6. J. B. Tenenbaum, de Silva, V. & Langford, J.C (2000) A global geometric framework for nonlinear dimensionality reduction. Science, 290, pp. 2319–2323

    Article  Google Scholar 

  7. V. S. Silva, J. B. Tenenbaum (2002) Unsupervised learning of curved manifolds. Nonlinear Estimation and Classification, Springer-Verlag, New York

    Google Scholar 

  8. S. T. Roweis, and K. S. Lawrance (2000) Nonlinear Dimensionality reduction by locally linear embedding. Science, 290, pp. 2323–2326

    Article  Google Scholar 

  9. Mikhail Belkin, and Partha Niyogi (2003) Laplacian Eigenmaps for Dimensionality Reduction and Data Representation Neural Computation, 15(6), 1373–1396.

    MATH  Google Scholar 

  10. G. Hinton and S. Roweis (2002) Stochastic Neighbor Embedding. Neural Information Proceeding Systems: Natural and Synthetic, Vancouver, Canada, December 9–14

    Google Scholar 

  11. M. Brand, MERL (2002) Charting a manifold. Neural Information Proceeding Systems: Natural and Synthetic, Vancouver, Canada, December 9–14

    Google Scholar 

  12. Dick de Ridder, Robert P.W. Duin (2002) Locally Linear Embedding for Classification. Technical Reports, Delft University of Technology, The Netherlands

    Google Scholar 

  13. Daniel L. Swets and John (Juyang) Weng (1996) Using Discriminant Eigenfea-tures for Image Retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligences, Vol. 18, No. 8, pp.831–836

    Article  Google Scholar 

  14. F. S. Samaria (1994) Face Recognition Using Hidden Markov Models. PhD thesis, University of Cambridge

    Google Scholar 

  15. H. Wechsler, P. J. Phillips, V. Bruce, F. Fogelman-Soulie and T. S. Huang (1998) Characterizing virtual Eigensignatures for General Purpose Face Recognition. Daniel B Graham and Nigel M Allinson. In Face Recognition: From Theory to Applications; NATO ASI Series F, Computer and Systems Sciences, Vol. 163, pp. 446–456

    Google Scholar 

  16. Michael J. Lyons, Julien Budynek, and Shigeru Akamatsu (1999) Automatic classification of Single Facial Images. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.21, no. 12, pp. 1357–1362

    Article  Google Scholar 

  17. Prey, P. W., Slate, D. J. (1991). Letter recognition using holland-style adaptive classifiers. Machine Learning, 6, 161–182

    Google Scholar 

  18. Kumar, S., Ghosh, J., Crawford, M. (2000) A Bayesian Pairwise Classifier for Character Recognition. Cognitive and Neural Models for Word Recognition and Document Processing. Nabeel Mursheed (Ed), World Scientific Press

    Google Scholar 

  19. Steve Lawrence, C. Lee Giles, A. C. Tsoi, and A. D. Back (1997) Face recognition: A convolutional neural network approach. IEEE Transactions on Neural Networks, vol. 8, no. 1, pp. 98–113

    Article  Google Scholar 

  20. Y. Moses, Y. Adini, and S. Ullman (1994) Face Recognition: The Problem of compensating for changes in illumination direction, in Proceedings of the European Conference on Computer Vision, vol. A, pp: 286–296

    Google Scholar 

  21. M. Turk, and A. Pentland (1991) Eigenfaces for Recognition. Journal of Cognitive Neuroscience, vol 3, no.1, pp.71–86

    Article  Google Scholar 

  22. Junping Zhang, Stan Z. Li, Jue Wang (2004) Nearest Manifold Approach for Face Recognition. The 6th IEEE International Conference on Automatic Face and Gesture Recognition, May 17–19, Seoul, Korea, 2004.

    Google Scholar 

  23. Junping Zhang (2003) Manifold Learning and Applications. PhD Thesis, Institute of Automation, Chinese Academy of Sciences, Beijing, China.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, J., Li, S.Z., Wang, J. (2005). Manifold Learning and Applications in Recognition. In: Tan, YP., Yap, K.H., Wang, L. (eds) Intelligent Multimedia Processing with Soft Computing. Studies in Fuzziness and Soft Computing, vol 168. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-32367-8_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-32367-8_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23053-3

  • Online ISBN: 978-3-540-32367-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics