Skip to main content

Organic Matter: The Driving Force for Early Diagenesis

  • Chapter
Marine Geochemistry

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alperin, M.J., Reeburgh, W.S. and Devol, A.H., 1992. Organic carbon remineralization and preservation in sediments of Scan Bay, Alaska. In: Whelan, J.K. and Farrington, J.W. (eds), Organic matter: Productivity, accumulation and preservation in recent and ancient sediments. Columbia University Press, NY, pp. 99–122.

    Google Scholar 

  • Bailey, G.W., 1991. Organic carbon flux and development of oxygen deficiency on the northern Benguela continental shelf south of 22°S: Spatial and temporal variability. In: Tyson, R.V. and Pearson, T.H. (eds), Modern and ancient continental shelf anoxia. Geol. Soc. Spec. Publ., 58, Blackwell, Oxford, pp. 171–183.

    Google Scholar 

  • Benson, L.V., Burdett, J.W., Kashgarian, M., Lund, S.P., Phillips, F.M. and Rye, R.O., 1996. Climatic and hydrologic oscillations in the Owens Lake basin and adjacent Sierra Nevada, California. Science, 274: 746–749.

    Google Scholar 

  • Berger, W.H., 1989. Global maps of ocean productivity. In: Berger, W.H., Smetacek, V.S. and Wefer, G. (eds), Productivity of the ocean: Present and past. Dahlem Workshop Rep., Life Sci. Res. Rep., 44, Wiley, Chichester, pp. 429–456.

    Google Scholar 

  • Berger, W.H., Smetacek, V.S. and Wefer, G. (eds) 1989. Productivity of the ocean: Present and past. Dahlem Workshop Rep., Life Sci. Res. Rep., 44. Wiley, Chichester, 471 pp.

    Google Scholar 

  • Berner, R. and Raiswell, R., 1983. Burial of organic carbon and pyrite sulphur in sediments over Phanaerozoic time: A new theory. Geochim. Cosmochim. Acta, 47: 855–862.

    Google Scholar 

  • Betzer, P.R., Showers, W.J., Laws, E.A., Winn, C.D., Ditullo, G.R. and Kroopnick, P.M., 1984. Primary productivity and particle fluxes on a transect of the equator at 153°W in the Pacific Ocean. Deep-Sea Res., 31: 1–11.

    Google Scholar 

  • Blokker, P., Schouten, S., van den Ende, H., de Leeuw, J.W., Hatcher, P.G. and Sinninghe Damsté, J.S., 1998. Chemical structure of algaenans from the fresh water algae Tetraedron minimum, Scenedesmus communis and Pediastrum boryanum. Org. Geochem., 29: 1453–1468.

    Google Scholar 

  • Blokker, P., Schouten, S., de Leeuw, J.W., Sinninghe Damsté, J.S. and van den Ende, H., 2000. A comparative study of fossil and extant algaenans using ruthenium tetroxide degradation. Geochim. Cosmochim. Acta, 64: 2055–2065.

    Google Scholar 

  • Bouloubassi, I., Rullkötter, J. and Meyers, P.A., 1999. Origin and transformation of organic matter in Pliocene-Pleistocene Mediterranean sapropels: Organic geochemical evidence reviewed. Mar. Geol. 153: 177–199.

    Google Scholar 

  • Bralower, T.J. and Thierstein, H.R., 1987. Organic carbon and metal accumulation in Holocene and mid-Cretaceous marine sediments: Paleoceanographic significance. In: Brooks, J. and Fleet, A.J. (eds), Marine petroleum source rocks. Geol. Soc. Spec. Publ., 26, Blackwell, Oxford, pp. 345–369.

    Google Scholar 

  • Brassell, S.C., Eglinton, G., Marlowe, I.T., Pflaumann, U. and Sarnthein, M., 1986. Molecular stratigraphy: A new tool for climatic assessment. Nature, 320: 129–133.

    Google Scholar 

  • Brassell, S.C., 1993. Applications of biomarkers for delineating marine paleoclimatic fluctuations during the Pleistocene. In: Engel, M.H. and Macko, S.A. (eds), Organic geochemistry. Principles and applications. Plenum Press, NY, pp. 699–738.

    Google Scholar 

  • Brassell, S.C., Dumitrescu, M. and the ODP Leg 198 Shipboard Scientific Party, 2004. Recognition of alkenones in a lower Aptian porcellanite from the west-central Pacific. Org. Geochem., 35: 181–188.

    Google Scholar 

  • Brüchert, V., 1998. Early diagenesis of sulfur in estuarine sediments: The role of sedimentary humic and fulvic acids. Geochim. Cosmochim. Acta, 62: 1567–1586.

    Google Scholar 

  • Calvert, S.E., 1987. Oceanic controls on the accumulation of organic matter in marine sediments. In: Brooks, J. and Fleet, A.J. (eds), Marine petroleum source rocks. Geol. Soc. Spec. Publ., 26, Blackwell, Oxford, pp. 137–151.

    Google Scholar 

  • Canuel, E.A. and Martens, C.S., 1996. Reactivity of recently deposited organic matter: Degradation of lipid compounds near the sediment-water interface. Geochim. Cosmochim. Acta, 60: 1793–1806.

    Google Scholar 

  • Collins, M.J., Bishop, A.N. and Farrimond, P., 1995. Sorption by mineral surfaces: Rebirth of the classical condensation pathway for kerogen formation? Geochim. Cosmochim. Acta, 59: 2387–2391.

    Google Scholar 

  • Coolen, M.J.L., Muyzer, G., Rijpstra, W.I.C., Schouten, S., Volkman, J.K. and Sinninghe Damsté, J.S., 2004. Combined DNA and lipid analyses of sediments reveal changes in Holocene haptophyte and diatom populations in an Antarctic lake. Earth Planet. Sci. Lett., 223: 225–239.

    Google Scholar 

  • Corbet, B., Albrecht, A. and Ourisson, G., 1980. Photochemical or photomimetic fossil triterpenoids in sediments and petroleum. J. Am. Chem. Soc., 78: 183–188.

    Google Scholar 

  • Cornford, C., Rullkötter, J. and Welte, D., 1979. Organic geochemistry of DSDP Leg 47a, Site 397, eastern North Atlantic: Organic petrography and extractable hydrocarbons. In: von Rad, U., Ryan, W.B.F. et al. (eds), Initial Reports DSDP, 47, US Government Printing Office, Washington, DC, pp. 511–522.

    Google Scholar 

  • Cowie, G.L. and Hedges, J.I., 1984. Determination of neutral sugars in plankton, sediments, and wood by capillary gas chromatography of equilibrated isomeric mixtures. Anal. Chem., 56: 497–504.

    Google Scholar 

  • Cranwell, P.A., 1973. Chain-length distribution of n-alkanes from lake sediments in relation to postglacial environments. Freshw. Biol., 3: 259–265.

    Google Scholar 

  • de Leeuw, J.W., Cox, H.C., van Graas, G., van de Meer, F.W., Peakman, T.M., Baas, J.M.A. and van de Graaf, B., 1989. Limited double bond isomerisation and selective hydrogenation of sterenes during early diagenesis. Geochim. Cosmochim. Acta, 53: 903–909.

    Google Scholar 

  • de Leeuw, J.W. and Sinninghe Damsté, J.S., 1990. Organic sulphur compounds and other biomarkers as indicators of palaeosalinity: A critical evaluation. In: Orr, W.L. and White, C.M. (eds), Geochemistry of sulphur in fossil fuels, ACS symposium series, 429, American Chemical Society, Washington, DC, pp. 417–443.

    Google Scholar 

  • de Leeuw, J.W. and Largeau, C., 1993. A review of macromolecular organic compounds that comprise living organisms and their role in kerogen, coal and petroleum formation. In: Engel, M.H. and Macko, S.A. (eds), Organic geochemistry. Principles and applications. Plenum Press, NY, pp 23–72.

    Google Scholar 

  • de Leeuw, J.W., 2004. Mass Spectra of Geochemicals, Petrochemicals and Biomarkers. Wiley, CD-ROM.

    Google Scholar 

  • Degens, E.T. and Ittekot, V., 1987. The carbon cycle-tracking the path of organic particles from sea to sediment. In: Brooks, J. and Fleet, A. (eds), Marine petroleum source rocks. Geol. Soc. Spec. Publ. No. 26, Blackwell, Oxford, pp. 121–135.

    Google Scholar 

  • Demaison, G.J., 1991. Anoxia vs productivity: What controls the formation of organic-carbon-rich sediments and sedimentary rocks? Discussion. Bull. Am. Assoc. Petrol. Geol., 75: 499.

    Google Scholar 

  • Demaison, G.J. and Moore, G.T., 1980. Anoxic environments and oil source bed genesis. Bull. Am. Assoc. Petrol. Geol., 64: 1179–1209.

    Google Scholar 

  • D’Hondt., S., Rutherford., S. and Spivack, A.J., 2002. Metabolic activity of subsurface life in deep-sea sediments. Science, 295: 2067–2070.

    Google Scholar 

  • Dumitrescu, M. and Brassell, S.C., 2005. Biogeochemical assessment of sources of organic matter and paleoproductivity during the Early Aptian Oceanic Anoxic Event at Shatsky Rise, ODP Leg 198. Org. Geochem., 36:1002–1022.

    Google Scholar 

  • Durand, B., 1980. Kerogen. Insoluble organic matter from sedimentary rocks. Editions Technip, Paris, 519 pp.

    Google Scholar 

  • Eglinton, G, and Hamilton, R.J., 1967. Leaf epicuticular waxes. Science, 156: 1322–1335.

    Google Scholar 

  • Eglinton, T.I., Benitez-Nelson, B.C., Pearson, A., McNichol, A.P., Bauer, J.E. and Druffel, E.R.M., 1997. Variability in radiocarbon ages of individual organic compounds from marine sediments. Science, 277: 796–799.

    Google Scholar 

  • Elvert, M., Boetius, A., Knittel, K. and Jørgensen, B.B., 2003. Characterization of specific membrane fatty acids as chemotaxonomic markers for sulfate-reducing bacteria involved in anaerobic oxidation of methane. Geomicrobiol. J., 20: 403–419.

    Google Scholar 

  • Emeis, K.-C., Robertson, A.H.F., Richter, C. et al. (eds) 1996. Proceedings of the Ocean Drilling Program. Initial Reports, 160, ODP, College Station (TX), 972 pp.

    Google Scholar 

  • Emerson, S. and Hedges, J.I., 1988. Processes controlling the organic carbon content of open ocean sediments. Paleoceanography, 3: 621–634.

    Google Scholar 

  • Espitalié, J., LaPorte, J.L., Madec, M., Marquis, F., Leplat, P., Paulet, J. and Boutefeu, A., 1977. Méthode rapide de caractérisation des roches mères, de leur potentiel pétrolier et de leur degré d’évolution. Rev. Inst. Fr. Pét., 32: 23–42.

    Google Scholar 

  • Espitalié, J., Deroo, G. and Marquis, F., 1985. La pyrolyse Rock-Eval et ses applications. Rev. Inst. Fr. Pét., 40: 755–784.

    Google Scholar 

  • Fogel, M.L. and Cifuentes, L.A., 1993. Isotope fractionation during primary production. In: Engel, M.H. and Macko, S.A. (eds), Organic geochemistry. Principles and applications. Plenum Press, NY, pp 73–98.

    Google Scholar 

  • Freeman, K.H., Boreham, C.J., Summons, R.E. and Hayes, J.M., 1994. The effect of aromatization on the isotopic compositions of hydrocarbons during early diagenesis. Org. Geochem., 21: 1037–1049.

    Google Scholar 

  • Froelich, P.N., Klinkhammer, G.P., Bender, M.L., Luedtke, N.A., Heath, G.R., Cullen, D., Dauphin, P., Hammond, D., Hartmann, B. and Maynard, V., 1979. Early oxidation of organic matter in pelagic sediments of eastern equatorial Atlantic: Suboxic diagenesis. Geochim. Cosmochim. Acta, 43: 1075–1090.

    Google Scholar 

  • Gagosian, R.B., Peltzer, E.T. and Merrill, J.T., 1987. Long-range transport of terrestrially derived lipids in aerosols from the South Pacific. Nature, 325: 800–803.

    Google Scholar 

  • Goñi, M.A. and Hedges, J.I., 1992. Lignin dimers: Structures, distribution and potential geochemical applications. Geochim. Cosmochim. Acta, 56: 4025–4043.

    Google Scholar 

  • Goth, K., de Leeuw, J.W., Püttmann, W. and Tegelaar, E.W., 1988. The origin of Messel shale kerogen. Nature, 336:759–761.

    Google Scholar 

  • Hayes. J.M., Takigiku, R., Ocampo, R., Callot H.J. and Albrecht, P., 1987. Isotopic compositions and probable origins of organic molecules in the Eocene Messel shale. Nature, 329: 48–51.

    Google Scholar 

  • Hayes, J.M., Freeman, K.H., Popp, B.N. and Hoham, C.H., 1990. Compound-specific isotope analyses, a novel tool for reconstruction of ancient biogeochemical processes. Org. Geochem., 16: 1115–1128.

    Google Scholar 

  • Hayes, J.M., 1993. Factors controlling 13C contents of sedimentary organic compounds: Principles and evidence. Mar. Geol., 113: 111–125.

    Google Scholar 

  • Heath, G.R., Moore, T.C. and Dauphin, J.P., 1977. Organic carbon in deep-sea sediments. In: Anderson, N.R. and Malahoff, A. (eds), The fate of fossil fuel CO2 in the oceans. Plenum Press, NY, pp. 605–625.

    Google Scholar 

  • Hedges, J.I., Clark, W.A., Quay, P.D., Richey, J.E., Devol, A.H. and Santos, U.M., 1986a. Composition and fluxes of particulate organic material in the Amazon River. Limnol. Oceanogr., 31: 717–738.

    Google Scholar 

  • Hedges, J.I., Cowie, G.L., Quay, P.D., Grootes, P.M., Richey, J.E., Devol, A.H., Farwell, G.W., Schmidt, F.W. and Salati, E., 1986b. Organic carbon-14 in the Amazon river system. Nature, 321: 1129–1131.

    Google Scholar 

  • Hedges, J.I. and Prahl, F.G., 1993. Early diagenesis: Consequences for applications of molecular biomarkers. In: Engel, M.H. and Macko, S.A. (eds), Organic geochemistry. Principles and applications. Plenum Press, NY, pp. 237–253.

    Google Scholar 

  • Hedges, J.I., Ertel, J.R., Richey, J.E., Quay, P.D., Benner, R., Strom, M. and Forsberg, B., 1994. Origin and processing of organic matter in the Amazon River as indicated by carbohydrates and amino acids. Limnol. Oceanogr., 39:743–761.

    Google Scholar 

  • Hedges, J.I. and Keil, R.G., 1995. Sedimentary organic matter preservation: An assessment and speculative synthesis. Mar. Chem., 49: 81–115.

    Google Scholar 

  • Hedges, J.I., Keil, R.G. and Benner, R., 1997. What happens to terrestrial organic matter in the ocean? Org. Geochem., 27: 195–212.

    Google Scholar 

  • Henrichs, S.M. and Reeburgh, W.S., 1987. Anaerobic mineralization of marine sediment organic matter: Rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiol. J., 5: 191–237.

    Google Scholar 

  • Herbin, J.P., Montadert, L.O., Müller, C., Gomez, R., Thurow, J. and Wiedmann, J., 1986. Organic-rich sedimentation at the Cenomanian/Turonian boundary in oceanic and coastal basins in the North Atlantic and Tethys. In: Summerhayes, C.P. and Shackleton, N.J. (eds), North Atlantic paleoceanography, Geol. Soc. Spec. Publ., 21, Blackwell, Oxford, 389–422.

    Google Scholar 

  • Hinrichs, K.-U., Rinna, J. and Rullkötter, J., 1998. Late Quaternary paleoenvironmental conditions indicated by marine and terrestrial molecular biomarkers in sediments from the Santa Barbara basin. In: Wilson, R.C. and Tharp, V.L. (eds), Proceedings of the fourteenth annual Pacific climate (PACLIM) conference, April 6–9, 1997. Interagency Ecological Program, Technical Report, 57, California Department of Water Resources, Marysville (CA), pp. 125–133.

    Google Scholar 

  • Hinz, K., Winterer. E.L. et al. (eds) 1984. Initial Reports of the Deep Sea Drilling Project, 79, US Government Printing Office, Washington, DC, 934 pp.

    Google Scholar 

  • Ho, T.Y., Quigg, A., Zinkel, Z.V., Milligan, A.J., Wyman, K., Falkowski, P.G. and Morel, F.M.M., 2003. The elemental composition of some marine phytoplankton. J. Phycol., 39: 1145–1159.

    Google Scholar 

  • Huang, Y., Dupont, L., Sarnthein, M., Hayes, J.M. and Eglinton, G., 2000. Mapping of C4 plant input from North West Africa into North East Atlantic sediments. Geochim. Cosmochim. Acta, 64: 3505–3513.

    Google Scholar 

  • Huc, A.Y. and Durand, B., 1977. Occurrence and significance of humic acids in ancient sediments. Fuel, 56: 73–80.

    Google Scholar 

  • Huc, A.Y., 1988. Aspects of depositional processes of organic matter in sedimentary basins. Org. Geochem., 13: 263–272.

    Google Scholar 

  • Hulthe, G., Hulth, S. and Hall, P.O.J., 1998. Effect of oxygen on degradation rate of refractory and labile organic matter in continental margin sediments. Geochim. Cosmochim. Acta, 62: 1319–1328.

    Google Scholar 

  • Hunt, J.M., 1996. Petroleum geochemistry and geology. Freeman, NY, 743 pp.

    Google Scholar 

  • Ibach, L.E., 1982. Relationships between sedimentation rate and total organic carbon content in ancient marine sediments. Bull. Am. Assoc. Petrol. Geol., 66: 170–188.

    Google Scholar 

  • Ittekott, V., 1988. Global trends in the nature of organic matter in river suspensions. Nature, 332: 436–438.

    Google Scholar 

  • Jasper, J.P. and Gagosian, R.B., 1989. Alkenone molecular stratigraphy in an oceanic environment affected by glacial fresh-water events. Paleoceanography, 4: 603–614.

    Google Scholar 

  • Jasper, J.P. and Gagosian, R.B., 1990. The sources and deposition of organic matter in the Late Quaternary Pigmy Basin, Gulf of California. Geochim. Cosmochim. Acta, 54: 117–132.

    Google Scholar 

  • Jasper, J.P., Hayes, J.M., Mix, A.C. and Prahl, F.G., 1994. Photosynthetic fractionation of 13C and concentrations of dissolved CO2 in the central equatorial Pacific during the last 255,000 years. Paleoceanography, 9: 781–798.

    Google Scholar 

  • Jørgensen, B.B., 1996. Case study-Aarhus Bay. In: Jørgensen, B.B. and Richardson, K. (eds), Eutrophication in coastal marine ecosystems. Coastal and estuarine studies, 52, American Geophysical Union, Washington, DC, pp. 137–154.

    Google Scholar 

  • Keil, R.G., Tsamakis, E., Fuh, C.B., Giddings, J.C. and Hedges, J.I., 1994a. Mineralogical and textural controls on the organic matter composition of coastal marine sediments: hydrodynamic separation using SPLITT-fractionation. Geochim. Cosmochim. Acta, 58: 879–893.

    Google Scholar 

  • Keil, R.G., Montluçon, D.B., Prahl, F.G. and Hedges, J.I., 1994b. Sorptive preservation of labile organic matter in marine sediments. Nature, 370: 549–552.

    Google Scholar 

  • Killops, S. and Killops, V., 2005. Introduction to organic geochemistry. Blackwell, Oxford, 393 pp.

    Google Scholar 

  • Kolattukudy, P.E., 1976. Chemistry and biochemistry of natural waxes. Elsevier, Amsterdam, 459 pp.

    Google Scholar 

  • Krey, J., 1970. Die Urproduktion des Meeres (in German). In: Dietrich, G. (ed), Erforschung des Meeres. Umschau, Frankfurt, pp. 183–195.

    Google Scholar 

  • Kristensen, E., Ahmed, S.A. and Devol, A.H., 1995. Aerobic and anaerobic decomposition of organic matter in marine sediments. Which is faster? Limnol. Oceanogr., 40: 1430–1437.

    Google Scholar 

  • Lallier-Vergès, E., Bertrand, P. and Desprairies, P., 1993. Organic matter composition and sulfate reduction intensity in Oman margin sediments. Mar. Geol., 112: 57–69.

    Google Scholar 

  • Largeau. C., Derenne, S., Casadevall, E., Berkaloff, C., Corolleur, M., Lugardon, B., Raynaud, J.F. and Connan, J., 1990. Occurrence and origin of “ultralaminar” structures in “amorphous” kerogens of various source rocks and oil shales. Org. Geochem., 16: 889–895.

    Google Scholar 

  • Larter, S.R. and Horsfield, B., 1993. Determination of structural components of kerogens by the use of analytical pyrolysis methods. In: Engel, M.H. and Macko, S.A. (eds), Organic geochemistry. Principles and applications. Plenum Press, NY, pp. 271–287.

    Google Scholar 

  • Leonardos, N. and Geider, R.J., 2004. Limnol. Oceanogr., 49: 2105–2114.

    Google Scholar 

  • Leventhal, J.S., 1983. An interpretation of carbon and sulphur relationships in Black Sea sediments as indicators of environments of deposition. Geochim. Cosmochim. Acta, 47: 133–138.

    Google Scholar 

  • Littke, R., Rullkötter, J. and Schaefer, R.G., 1991a. Organic and carbonate carbon accumulation on Broken Ridge and Ninetyeast Ridge, central Indian Ocean. In: Weissel, J., Pierce, J. et al. (eds), Proceedings of the Ocean Drilling Program, Sci. Res., 121, ODP, College Station (TX), pp. 467–487.

    Google Scholar 

  • Littke, R., Baker, D.R., Leythaeuser, D. and Rullkötter, J., 1991b. Keys to the depositional history of the Posidonia Shale (Toarcian) in the Hils syncline, northern Germany. In: Tyson, R.V. and Pearson, T.H. (eds), Modern and ancient continental shelf anoxia. Geol. Soc. Spec. Publ., 58, The Geological Society, London, pp. 311–334.

    Google Scholar 

  • Littke, R., Baker, D.R. and Rullkötter, J., 1997a. Deposition of petroleum source rocks. In: Welte, D.H., Horsfield, B. and Baker, D.R. (eds), Petroleum and basin evolution. Springer-Verlag, Heidelberg, pp. 271–333.

    Google Scholar 

  • Littke, R., Lückge, A. and Welte, D.H., 1997b. Quantification of organic matter degradation by microbial sulphate reduction for Quaternary sediments from the northern Arabian Sea. Naturwissenschaften, 84: 312–315.

    Google Scholar 

  • Lückge, A., Boussafir, M., Lallier-Vergès, E. and Littke, R., 1996. Comparative study of organic matter preservation in immature sediments along the continental margins of Peru and Oman. Part I: Results of petrographical and bulk geochemical data. Org. Geochem., 24: 437–451.

    Google Scholar 

  • Mangelsdorf, K., Güntner, U. and Rullkötter, J., 2000. Climatic and oceanographic variations on the California continental margin during the last 160 kyr. Org. Geochem., 31: 829–846.

    Google Scholar 

  • Mariotti, A., Gadel, F., Giresse, P. and Kinga-Mouzeo, 1991. Carbon isotope composition and geochemistry of particulate organic matter in the Congo River (Central Africa): Application to the study of Quaternary sediments off the mouth of the river. Chem. Geol., 86: 345–357.

    Google Scholar 

  • Martens, C.S. and Klump, J.V., 1984. Biogeochemical cycling in an organic-rich coastal marine basin-4. An organic carbon budget for sediments dominated by sulfate reduction and methanogenesis. Geochim. Cosmochim. Acta, 48: 1987–2004.

    Google Scholar 

  • Martens, C.S., Haddad, R.I. and Chanton, J.P., 1992. Organic matter accumulation, remineralization, and burial in an anoxic coastal sediment. In: Whelan, J.K. and Farrington, J.W. (eds), Organic matter: Productivity, accumulation and preservation in recent and ancient sediments, Columbia University Press, NY, pp 82–98.

    Google Scholar 

  • Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T.C.J. and Shackleton, N.J., 1987. Age dating and the orbital theory of the ice ages: Development of a high-resolution 0 to 300,000-year chronostratigraphy. Quat. Res., 27: 1–29.

    Google Scholar 

  • Mayer, L.M., 1994. Surface area control of organic carbon accumulation in continental shelf sediments. Geochim. Cosmochim. Acta, 58: 1271–1284.

    Google Scholar 

  • Mayer, L.M., 1999. Extent of coverage of mineral surfaces by organic matter in marine sediments. Geochim. Cosmochim. Acta, 63: 207–215.

    Google Scholar 

  • Mayer, L.M., 2005. Erratum to L. M. Mayer (1999) “Extent of coverage of mineral surfaces by organic matter in marine sediments” Geochimica et Cosmochimica Acta 63, 207–215. Geochim. Cosmochim. Acta, 69: 1375.

    Google Scholar 

  • McIver, R., 1975. Hydrocarbon occurrences from JOIDES Deep Sea Drilling Project. Proceedings of the 9th World Petroleum Congress (Tokyo), 2, Applied Science Publishers, Barking, pp. 269–280.

    Google Scholar 

  • McLafferty, F.W. and Turecek, F., 1993. Interpretation of mass spectra. University Science Books, Mill Valley (CA), 371 pp.

    Google Scholar 

  • Meybeck, M., 1982. Carbon, nitrogen, and phosphorus transport by world rivers. Am. J. Sci., 282: 401–450.

    Google Scholar 

  • Meyers, P.A., 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem. Geol., 144: 289–302.

    Google Scholar 

  • Meyers, P.A., 1997. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org. Geochem., 27: 213–250.

    Google Scholar 

  • Mitterer, R.M., 1993. The diagenesis of proteins and amino acids in fossil shells. In: Engel, M.H. and Macko, S.A. (eds), Organic geochemistry. Principles and applications. Plenum Press, NY, pp 739–753.

    Google Scholar 

  • Moers, M.E.C., Jones, D.M., Eakin, P.A., Fallick, A.E., Griffiths, H. and Larter, S.R., 1993. Carbohydrate diagenesis in hypersaline environments: Application of GC-IRMS to the stable isotope analysis of derivatives of saccharides from surficial and buried sediments. Org. Geochem., 20: 927–933.

    Google Scholar 

  • Mollenhauer, G., Eglinton, T.I., Ohkouchi, N., Schneider, R.R., Müller, P.J., Grootes, P.M. and Rullkötter, J., 2003. Asynchronous alkenone and foraminifera records from the Benguela Upwelling System. Geochim. Cosmochim. Acta, 67: 2157–2171.

    Google Scholar 

  • Müller, P.J., 1977. C/N ratios in Pacific deep-sea sediments: Effect of inorganic ammonium and organic nitrogen compounds sorbed by clays. Geochim. Cosmochim. Acta, 41: 765–776.

    Google Scholar 

  • Müller, P.J. and Suess, E., 1979. Productivity, sedimentation rate and sedimentary organic matter in the oceans-organic carbon preservation. Deep-Sea Res., 27A: 1347–1362.

    Google Scholar 

  • Müller, P.J., Schneider, R. and Ruhland, G., 1994. Late Quarternary pCO2 variations in the Angola Current: Evidence from organic carbon δ13C and alkenone temperatures. In: Zahn, R. et al. (eds.), Carbon cycling in the glacial ocean: Constraints on the ocean’s role in global change, Nato ASI Series I, Vol. 17. Springer, Heidelberg, pp. 343–366.

    Google Scholar 

  • Müller, P.J., Kirst, G., Ruhland, G., von Storch, I. and Rosell-Melé, A. 1998. Calibration of the alkenone paleotemperature index U K′37 based on core-tops from the eastern South Atlantic and the global ocean (60°N-60°S). Geochim. Cosmochim. Acta, 62: 1757–1772.

    Google Scholar 

  • Muzuka, A.N.N., 1999. Isotopic compositions of tropical East African flora and their potential as source indicators of organic matter in coastal marine sediments. J. Afr. Earth Sci., 28: 757–766.

    Google Scholar 

  • Orphan, V.J., House C.H., Hinrichs, K.-U., McKeegan, K.D. and DeLong, E.F., 2001. Methane-consuming archaea revealed by direct coupled isotopic and phylogenetic analysis. Science, 293: 484–487.

    Google Scholar 

  • Orphan, V.J., House, C.H., Hinrichs, K.-U., McKeegan, K.D. and DeLong, E.F., 2002. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. PNAS, 99: 7663–7668.

    Google Scholar 

  • Parkes, R.J., Cragg, B.A., Bale, S.J., Getliff, J.M., Goodman, K., Rochelle, P.C., Fry, J.C., Weightman, A.J. and Harvey, S.M., 1994. Deep bacterial biosphere in Pacific ocean sediments. Nature, 371: 410–413.

    Google Scholar 

  • Pearson, A., McNichol, A.P., Benitez-Nelson, B.C., Hayes, J.M. and Eglinton, T.I., 2001. Origins of lipid biomarkers in Santa Monica Basin surface sediments: A case study using compound-specific δ14C analysis. Geochim. Cosmochim. Acta, 65: 3123–3137.

    Google Scholar 

  • Pedersen, T.F. and Calvert, S.E., 1990. Anoxia versus productivity: What controls the formation of organic-carbon-rich sediments and sedimentary rocks? Bull. Am. Assoc. Petrol. Geol., 74: 454–466.

    Google Scholar 

  • Pedersen, T.F. and Calvert, S.E., 1991. Anoxia vs productivity: What controls the formation of organic-carbon-rich sediments and sedimentary rocks? Reply. Bull. Am. Assoc. Petrol. Geol., 75: 500–501.

    Google Scholar 

  • Pelejero, C. and Calvo, E., 2003. The upper end of the U K′37 temperature calibration revisited. Geochem. Geophys. Geosyst., 4: 1014, doi:10.1029/2002GC000431.

    Google Scholar 

  • Peters, K.E., Walters, C.C. and Moldowan, J.M., 2005. The biomarker guide (2 volumes). Cambridge University Press, Cambridge, 1190 pp.

    Google Scholar 

  • Plough, H., Kühl, M., Buchholz-Cleven, B. and Jørgensen, B.B., 1997. Anoxic aggregates-an ephemeral phenomenon in the pelagic environment? Aqu. Microb. Ecol., 13: 285–294.

    Google Scholar 

  • Poynter, J., 1989. Molecular stratigraphy: The recognition of palaeoclimate signals in organic geochemical data. PhD Thesis, University of Bristol, 324 pp.

    Google Scholar 

  • Poynter, J. and Eglinton, G., 1991. The biomarker concept — strengths and weaknesses. Fresenius’ J. Anal. Chem., 339: 725–731.

    Google Scholar 

  • Prahl, F.G. and Wakeham, S.G., 1987. Calibration of unsaturation patterns in long-chain ketone compositions for paleotemperature assessment. Nature, 330: 367–369.

    Google Scholar 

  • Prahl, F.G., Muehlhausen, L.A. and Zahnle, D.L., 1988. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochim. Cosmochim. Acta, 52: 2303–2310.

    Google Scholar 

  • Prahl, F.G., Ertel, J.R., Goñi, M.A., Sparrow, M.A. and Eversmeyer, B., 1994. Terrestrial organic carbon contributions to sediments on the Washington margin. Geochim. Cosmochim. Acta, 58: 3035–3048.

    Google Scholar 

  • Radke, M., Willsch, H. und Welte, D.H., 1980. Preparative hydrocarbon group type determination by automated medium pressure liquid chromatography. Anal. Chem., 52: 406–411.

    Google Scholar 

  • Ransom, B., Kim, D., Kastner, M. and Wainwright, S., 1998. Organic matter preservation on continental slopes: Importance of mineralogy and surface area. Geochim. Cosmochim. Acta, 62: 1329–1345.

    Google Scholar 

  • Rashid, M.A., 1985. Geochemistry of marine humic compounds. Springer-Verlag, Berlin, 300 pp.

    Google Scholar 

  • Rau, G.H., Takahashi, T., Des Marais, D.J. and Sullivan, C.W., 1991. Particulate organic matter δ13C variations across the Drake Passage. J. Geophys. Res., 96: 15131–15135.

    Google Scholar 

  • Redfield, A.C., Ketchum, B.H. and Richards, F.W., 1963. The influence of organisms on the composition of sea water. In: Hill, M.N. (ed), The sea, 2, Wiley Interscience, NY, pp. 26–77.

    Google Scholar 

  • Rohmer, M., Bisseret, P. and Neunlist, S., 1992. The hopanoids, prokaryotic triterpenoids and precursors of ubiquitous molecular fossils. In: Moldowan, J.M., Albrecht, P. and Philp, R.P. (eds), Biological markers in sediments and petroleum. Prentice Hall, Englewood Cliffs (NJ), pp. 1–17.

    Google Scholar 

  • Romankevitch, E.A., 1984. Geochemistry of organic matter in the ocean. Springer-Verlag, Heidelberg, 334 pp.

    Google Scholar 

  • Rommerskirchen, F., Eglinton, G., Dupont, L., Güntner, U., Wenzel, C. and Rullkötter, J., 2003. A north to south transect of Holocene Southeast Atlantic continental margin sediments: Relationship between aerosol transport and compound-specific δ13C land plant biomarker and pollen records. Geochem. Geophys. Geosyst., 4(12), 1101, DOI 10.1029/2003GC000541.

    Google Scholar 

  • Rosell-Melé, A., Bard, E., Emeis, K.-C., Grimalt, J.O., Müller, P., Schneider, R., Bouloubassi, I., Epstein, B., Fahl, K., Fluegge, A., Freeman, K., Goñi, M., Güntner, U., Hartz, D., Hellebust, S., Herbert, T., Ikehara, M., Ishiwatari, R., Kawamura, K., Kenig, F., de Leeuw, J.W., Lehman, S., Mejanell, L., Ohkouchi, N., Pancost, R.D., Pelejero, C., Prahl, F., Quinn, J., Rontani, J.-F., Rostek, F., Rullkötter, J., Sachs, J., Blanz, T., Sawada, K., Schulz-Bull, D., Sikes, E., Sonzogni, C., Ternois, Y., Versteegh, G., Volkman, J.K. and Wakeham, S., 2001. Precision of the current methods to measure the alkenone proxy U K′37 and absolute alkenone abundance in sediments: Results of an interlaboratory comparison study. Geochem. Geophys. Geosyst., 2: Paper number 2000GC000141.

    Google Scholar 

  • Rullkötter, J., Cornford, C. and Welte, D.H., 1982. Geochemistry and petrography of organic matter in Northwest African continental margin sediments: quantity, provenance, depositional environment and temperature history. In: von Rad, U., Hinz, K., Sarnthein, M. and Seibold, E. (eds), Geology of the Northwest African continental margin, Springer-Verlag, Heidelberg, pp. 686–703.

    Google Scholar 

  • Rullkötter, J., Vuchev, V., Hinz, K., Winterer, E.L., Baumgartner, P.O., Bradshaw, M.L., Channel, J.E.T., Jaffrezo, M., Jansa, L.F., Leckie, R.M., Moore, J.M., Schaftenaar, C., Steiger, T.H. and Wiegand, G.E., 1983. Potential deep sea petroleum source beds related to coastal upwelling. In: Thiede, J. and Suess, E. (eds), Coastal upwelling: Its sediment record, Part B: Sedimentary records of ancient coastal upwelling. Plenum Press, NY, pp. 467–483.

    Google Scholar 

  • Rullkötter, J., Mukhopadhyay, P.K., Schaefer, R.G. and Welte, D.H., 1984. Geochemistry and petrography of organic matter in sediments from Deep Sea Drilling Project Sites 545 and 547, Mazagan Escarpment. In: Hinz, K., Winterer, E.L. et al. (eds), Initial Reports DSDP, 79, US Government Printing Office, Washington, DC, pp. 775–806.

    Google Scholar 

  • Rullkötter, J., Mukhopadhyay, P.K. and Welte, D.H., 1987. Geochemistry and petrography of organic matter from Deep Sea Drilling Project Site 603, lower continental rise off Cape Hatteras. In: van Hinte, J.E., Wise, S.E. Jr et al. (eds), Initial Reports DSDP, 92, US Government Printing Office, Washington DC, pp. 1163–1176.

    Google Scholar 

  • Rullkötter, J. and Michaelis, W., 1990. The structure of kerogen and related materials. A review of recent progress and future trends. Org. Geochem., 16: 829–852.

    Google Scholar 

  • Rullkötter, J., Peakman, T.M. and ten Haven, H.L., 1994. Early diagenesis of terrigenous triterpenoids and its implications for petroleum geochemistry. Org. Geochem., 21: 215–233.

    Google Scholar 

  • Rullkötter, J., 2001. Geochemistry, organic. In: Meyers, R.A. (ed), The encyclopedia of physical science and technology, 6, Academic Press, San Diego, pp. 547–572.

    Google Scholar 

  • Sarnthein, M., Winn, K. and Zahn, R., 1987. Paleoproductivity of oceanic upwelling and the effect of atmospheric CO2 and climatic change during deglaciation times. In: Berger, W.H. and Labeyrie, L.D. (eds), Abrupt climatic change. Reidel, Dordrecht, pp 311–337.

    Google Scholar 

  • Sarnthein, M., Winn, K., Duplessy, J.C. and Fontugne, M.R., 1988. Global variations of surface water productivity in low-and mid-latitudes: Influence of CO2 reservoirs of the deep ocean and atmosphere during the last 21,000 years. Paleoceanography, 3: 361–399.

    Google Scholar 

  • Sarnthein, M., Pflaumann, U., Ross, R., Tiedemann, R. and Winn, K., 1992. Transfer functions to reconstruct ocean paleoproductivity: A comparison. In: Summerhayes, C.P., Prell, W.L. and Emeis, K.C. (eds), Upwelling systems. Evolution since the early Miocene. Geol. Soc. Spec. Publ., 64, Blackwell, Oxford, pp 411–427.

    Google Scholar 

  • Sauer, P.E., Eglinton, T.I., Hayes, J.M., Schimmelmann, A. and Sessions, A.L., 2001. Compound-specific D/H ratios of lipid biomarkers from sediments as a proxy for environmental and climatic conditions. Geochim. Cosmochim. Acta, 65: 213–222.

    Google Scholar 

  • Schefuß, E., Versteegh, G.J.M., Jansen, J.H.F. and Sinninghe Damsté, J.S., 2004. Lipid biomarkers as major source and preservation indicators in SE Atlantic surface sediments. Deep-Sea Res. I, 51: 1199–1228.

    Google Scholar 

  • Schidlowski, M. 1988. A 3,800-million-year isotopic record of life from carbon in sedimentary rocks. Nature, 333: 313–318.

    Google Scholar 

  • Schlesinger, W.H. and Melack, J.M., 1981. Transport of organic carbon in the world’s rivers. Tellus, 33: 172–187.

    Google Scholar 

  • Schouten, S., Hopmans, E.C., Schefuß, E. and Sinninghe Damsté, J.S., 2002. Distributional variations in marine crenarchaeotal lipids: A new tool for reconstructing ancient sea water temperatures? Earth Planet. Sci. Lett., 204: 265–274.

    Google Scholar 

  • Schwartz, D., Mariotti, A., Lanfranchi, R. and Guillet, B., 1986. 13C/12C ratios of soil organic matter as indicators of vegetation changes in the Congo. Geoderma, 39: 97–103.

    Google Scholar 

  • Senesi, N. and Miano, T.M. (eds) 1994. Humic substances in the global environment and implications on human health. Elsevier, Amsterdam, 1390 pp.

    Google Scholar 

  • Sessions, A.L., Burgoyne, T.W., Schimmelmann, A. and Hayes, J.M., 1999. Fractionation of hydrogen isotopes in lipid biosynthesis. Org. Geochem., 30: 1193–1200.

    Google Scholar 

  • Sessions, A.L. and Hayes, J.M., 2005. Calculation of hydrogen isotopic fractionations in biogeochemical systems. Geochim. Cosmochim. Acta, 69: 593–597.

    Google Scholar 

  • Sicre, M.-A., Bard, E., Ezat, U. and Rostek, F., 2002. Alkenone distributions in the North Atlantic and Nordic sea surface waters. Geochem. Geophys. Geosyst., 3: doi:10.1029/ 2001GC000159.

    Google Scholar 

  • Sikes, E.L. and Sicre M.-A., 2002. Relationship of the tetraunsaturated C37 alkenone to salinity and temperature: Implications for paleoproxy applications. Geochem. Geophys. Geosyst., 3: 1063, doi:10.1029/2002GC000345.

    Google Scholar 

  • Simoneit, B.R.T., 1986. Cyclic terpenoids of the geosphere. In: Johns, R.B. (ed), Biological markers in the sedimentary record. Elsevier, Amsterdam, pp. 43–99.

    Google Scholar 

  • Sinninghe Damsté, J.S., Eglinton, T.I., de Leeuw, J.W. and Schenck, P.A., 1989a. Organic sulphur in macromolecular sedimentary organic matter I. Structure and origin of sulphur-containing moieties in kerogen, asphaltenes and coal as revealed by flash pyrolysis. Geochim. Cosmochim. Acta, 53: 873–899.

    Google Scholar 

  • Sinninghe Damsté, J.S., Rijpstra, W.I.C., Kock-van Dalen, A.C., de Leeuw, J.W. and Schenck, P.A., 1989b. Quenching of labile functionalized lipids by inorganic sulphur species: Evidence for the formation of sedimentary organic sulphur compounds at the early stages of diagenesis. Geochim. Cosmochim. Acta, 53: 1343–1355.

    Google Scholar 

  • Sinninghe Damsté, J.S., Eglinton, T.I., Rijpstra, W.I.C. and de Leeuw, J.W., 1990. Characterization of organically bound sulphur in high-molecular-weight sedimentary organic matter using flash pyrolysis and Raney Ni desulphurisation. In: Orr, W.L. and White, C.M. (eds), Geochemistry of sulphur in fossil fuels, ACS symposium series, 429, American Chemical Society, Washington, DC, pp. 486–528.

    Google Scholar 

  • Sinninghe Damsté, J.S. and Köster, J., 1998. A euxinic North Atlantic ocean during the Cenomanian/Turonian oceanic anoxic event. Earth Planet. Sci. Lett., 158: 165–173.

    Google Scholar 

  • Stein, R., 1986a. Surface-water paleo-productivity as inferred from sediment deposited in oxic and anoxic deep-water environments of the Mesozoic Atlantic Ocean. Mitt. Geol.-Paläont. Inst. Univ. Hamburg, 60: 55–70.

    Google Scholar 

  • Stein, R., 1986b. Organic carbon and sedimentation rate-further evidence for anoxic deep-water conditions in the Cenomanian/Turonian Atlantic Ocean. Mar. Geol., 72: 199–209.

    Google Scholar 

  • Stein, R., 1990. Organic carbon content/sedimentation rate relationship and its paleoenvironmental significance for marine sediments. Geo-Mar. Lett., 10: 37–40.

    Google Scholar 

  • Stein, R., 1991. Accumulation of organic carbon in marine sediments. Lect. Notes Earth Science, 34: 1–217.

    Google Scholar 

  • Stein, R. and Rack, F., 1995. A 160,000-year high-resolution record of quantity and composition of organic carbon in the Santa Barbara basin (Site 893). In: Kennett, J.P., Baldauf, J. and Lyle, M. (eds), Proceedings of the Ocean Drilling Program, Sci. Res., 146, ODP, College Station (TX), pp. 125–138.

    Google Scholar 

  • Stein, R. and Macdonald, R.W. (eds) 2005. The organic carbon cycle in the Arctic Ocean. Springer-Verlag, Berlin, 363 pp.

    Google Scholar 

  • Suess, E. and Thiede, J. (eds) 1983. Coastal upwelling: Its sediment record. Part A: Responses of the sedimentary regime to present coastal upwelling. Plenum Press, NY, 604 pp.

    Google Scholar 

  • Summerhayes, C.P., 1981. Organic facies of middle Cretaceous black shales in deep North Atlantic. Bull. Am. Assoc. Petrol. Geol., 65: 2364–2380.

    Google Scholar 

  • Summerhayes, C.P., Prell, P.I. and Emeis, K.C. (eds) 1992. Upwelling systems: Evolution since the early Miocene. Geol. Soc. Spec. Publ., 64, Blackwell, Oxford, 519 pp.

    Google Scholar 

  • Takahasi, T., Broecker, W.S. and Langer, S., 1985. Redfield ratio based on chemical data from isopycnal surfaces. J. Geophys. Res., 90: 6907–6924.

    Google Scholar 

  • Taylor, G.H., Teichmüller, M., Davis, A., Diessel, C.F.K., Littke, R. and Robert, P. (eds) 1998. Organic petrology: A new handbook incorporating some revised parts of Stach’s textbook of coal petrology. Gebrüder Borntraeger, Berlin, 704 pp.

    Google Scholar 

  • Tegelaar, E.W., Derenne, S., Largeau, C. and de Leeuw, J.W., 1989. A reappraisal of kerogen formation. Geochim. Cosmochim. Acta, 53: 3103–3107.

    Google Scholar 

  • ten Haven, H.L., Peakman, T.M. and Rullkötter, J., 1992. Early diagenetic transformation of higher plant triterpenoids in deep sea sediments from Baffin Bay. Geochim. Cosmochim. Acta, 56: 2001–2024.

    Google Scholar 

  • Thiede, J. and Suess, E. (eds) 1983. Coastal upwelling: Its sediment record. Part B: Sedimentary records of ancient coastal upwelling. Plenum Press, NY, 610 pp.

    Google Scholar 

  • Tissot, B.P. and Welte, D.H., 1984. Petroleum formation and occurrence. Springer-Verlag, Heidelberg, 699 pp.

    Google Scholar 

  • Tyson, R.V., 1987. The genesis and palynofacies characteristics of marine petroleum source rocks. In: Brooks, J. and Fleet, A.J. (eds), Marine petroleum source rocks. Geol. Soc. Spec. Publ., 26, Blackwell, Oxford, pp. 47–67.

    Google Scholar 

  • Tyson, R.V. and Pearson, T.H. (eds) 1991. Modern and ancient continental shelf anoxia. Geol. Soc. Spec. Publ., 58, Blackwell, Oxford, 470 pp.

    Google Scholar 

  • van Bergen, P.F., Blokker, P., Collinson, M.E., Sinninghe Damsté, J.S. and de Leeuw, J.W., 2004. Structural biomacromolecules in plants: What can be learnt from the fossil record. In: Hemsley, A.R. and Poole, I. (eds), Evolution of plant physiology. Elsevier, Amsterdam, pp. 133–154.

    Google Scholar 

  • van Krevelen, D.W., 1961. Coal typology — chemistry — physics — constitution. Elsevier, Amsterdam, 513 pp.

    Google Scholar 

  • Vetö, I., Hetényi, M., Demény, A. and Hertelendi, E., 1994. Hydrogen index as reflecting intensity of sulphide diagenesis in nonbioturbated, shaly sediments. Org. Geochem., 22: 299–310.

    Google Scholar 

  • Volkman, J.K. and Maxwell, J.R., 1986. Acyclic isoprenoids as biological markers. In: Johns, R.B. (ed), Biological markers in the sedimentary record. Elsevier, Amsterdam, pp. 1–42.

    Google Scholar 

  • Volkman, J.K., Barrett, S.M., Blackburn, S.I., Mansour, M.P., Sikes, E. and Gelin, F., 1998. Microalgal biomarkers: A review of recent research developments. Org. Geochem., 29: 1163–1179.

    Google Scholar 

  • Volkman, J.K., 2005. Sterols and other triterpenoids: Source specificity and evolution of biosynthetic pathways. Org. Geochem. 36: 139–159.

    Google Scholar 

  • von Engelhardt, W., 1973. Sedimentpetrologie, Teil III: Die Bildung von Sedimenten und Sedimentgesteinen (in German). Schweizerbarth, Stuttgart, 378 pp.

    Google Scholar 

  • von Rad, U., Ryan, W.B.F. et al. (eds) 1979. Initial Reports DSDP 47, US Government Printing Office, Washington, D.C., 835 pp.

    Google Scholar 

  • Wakeham, S.G. and Lee, C., 1989. Organic geochemistry of particulate matter in the ocean: The role of particles in oceanic sedimentary cycles. Org Geochem., 14: 83–96.

    Google Scholar 

  • Wakeham, S.G., Lewis, C.M., Hopmans, E.C., Schouten, S. and Sinninghe Damsté, J.S., 2003. Archaea mediate anaerobic oxidation of methane in deep euxinic waters of the Black Sea. Geochim. Cosmochim. Acta, 67: 1359–1374.

    Google Scholar 

  • Wellsbury, P., Mather, I.D. and Parkes, R.J., 2002. Geomicrobiology of deep, low organic carbon sediments in the Woodlark Basin, Pacific Ocean. FEMS Microbiol. Ecol., 42: 59–70.

    Google Scholar 

  • Welte, D.H., Horsfield, B. and Baker, D.R. (eds) 1997. Petroleum and basin evolution. Springer-Verlag, Heidelberg, 535 pp.

    Google Scholar 

  • Wenger, L.M. and Baker, D.R., 1986. Variations in organic geochemistry of anoxic-oxic black shale-carbonate sequences in the Pennsylvanian of the Midcontinent, U.S.A. Org. Geochem., 10: 85–92.

    Google Scholar 

  • Westerhausen, L., Poynter, J., Eglinton, G., Erlenkeuser, H. and Sarnthein, M., 1993. Marine and terrigenous origin of organic matter in modern sediments of the equatorial East Atlantic: The δ13C and molecular record. Deep-Sea Res. I, 40: 1087–1121.

    Google Scholar 

  • Willsch, H., Clegg, H., Horsfield, B., Radke, M. and Wilkes, H., 1997. Liquid chromatographic separation of sediment, rock, and coal extracts and crude oils into compound classes. Anal. Chem., 69: 4203–4209.

    Google Scholar 

  • Wuchter, C., Schouten, S., Coolen, M.J.L. and Sinninghe Damsté, J.S., 2004. Temperature-dependent variation in the distribution of tetraether membrane lipids of marine Crenarchaeota: Implications for TEX86 paleothermometry. Paleoceanography, 19: PA4028, doi:10.1029/ 2004PA001041.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rullkötter, J. (2006). Organic Matter: The Driving Force for Early Diagenesis. In: Schulz, H.D., Zabel, M. (eds) Marine Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32144-6_4

Download citation

Publish with us

Policies and ethics