Skip to main content

Influence of Geochemical Processes on Stable Isotope Distribution in Marine Sediments

  • Chapter
Marine Geochemistry

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adkins, J.F., McIntyre, K., Schrag, D.P., 2002. The salinity, temperature, and δ18O of the glacial deep ocean. Science 298: 1769–1773.

    Google Scholar 

  • Altabet, M., 1988. Variations in nitrogen isotopic composition between sinking and suspended particles: implications for nitrogen cycling and particle transformation in the open ocean. Deep-Sea Research 35: 535–554.

    Google Scholar 

  • Altabet, M., Francois, R., 1994. Sedimentary nitrogen isotopic ratio as recorder for surface ocean nitrate utilization. Global Biogeochemical Cycles 8: 103–116.

    Google Scholar 

  • Altabet, M., McCarthy, J., 1985. Temporal and spatial variation in the natural abundance of 15N in PON from a warm-core ring. Deep-Sea Research 32: 755–722.

    Google Scholar 

  • Altabet, M., Curry, W.B., 1989. Testing models of past ocean chemistry using foraminifera 15N/14N. Global Biogeochemical Cycles 3: 107–119.

    Google Scholar 

  • Altabet, M., Deuser, W.G., Honjo, S., Stienen, C., 1991. Seasonal and depth-related changes in the source of sinking particles in the North Atlantic. Nature 354: 136–139.

    Google Scholar 

  • Altenbach, A.v., Sarnthein, M., 1989. Productivity record in benthic foraminifera. In: Berger, W.H., Smetacek, V.S., Wefer, G., (eds), Productivity of the ocean: Present and Past. Wiley & Sons, New York, pp 255–269.

    Google Scholar 

  • Andersen, N., Müller, P.J., Kirst, G., Schneider, R.R., 1999. Late Quaternary PCO2 variations in the Angola Current inferred from alkenone δ13C and carbon demand estimated by δ15N. In: Fischer, G., Wefer, G., (eds), Proxies in Paleoceanography: Examples from the South Atlantic. Springer, Berlin, pp 469–488.

    Google Scholar 

  • Arthur, M.A., Anderson, T.F., Kaplan, I.R., Veizer, J., Land, L.S., 1983. Stable isotopes in sedimentary geology. SEPM Short Course No. 10. SEPM, Tulsa, OK, 432 pp.

    Google Scholar 

  • Bemis, B.E., Spero, H.J., Bijma, J., Lea, D.W., 1998. Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised paleotemperature equations. Paleoceanography 13: 150–160.

    Google Scholar 

  • Berger, W.H., Smetacek, V.S., Wefer, G., 1989. Productivity of the ocean: Present and Past. Wiley & Sons, New York, 471 pp.

    Google Scholar 

  • Berger, W.H., Vincent, E., 1986. Deep-sea carbonates: reading the carbon-isotope signal. Geol Rundsch 75: 249–269.

    Google Scholar 

  • Berner, R.A., Raiswell, R., 1983. Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: a new theory. Geochimica et Cosmochimica Acta 47: 885–892.

    Google Scholar 

  • Bickert, T., Pätzold, J., Samtleben, C., Munnecke, A., 1997. Paleoenvironmental changes in the Silurian indicated by stable isotopes in brachiopod shells from Gotland, Sweden. Geochimica et Cosmochimica Acta 61: 2717–2739.

    Google Scholar 

  • Bickert, T., Mackensen, A., 2003. Last Glacial to Holocene changes in South Atlantic deep water circulation. In: Wefer, G., Mulitza, S., Rathmeyer, V., (eds), The South Atlantic during the Late Quaternary. Springer, Berlin, pp. 671–695.

    Google Scholar 

  • Bickert, T., Wefer, G., 1999. South Atlantic and benthic foraminifer δ13C-deviations: Implications for reconstructing the Late Quaternary deep-water circulation. Deep-Sea Research, 46: 437–452.

    Google Scholar 

  • Bidigare, R.R., Fluegge, A., Freeman, K.H., Hanson, K.L., Hayes, J.M., Hollander, D., Jasper, J., King, L.L., Laws, E.A., Milder, J., Millero, F.J., Pancost, R., Popp, B.N., Steinberg, P.A., Wakeham, S.G., 1997. Consistent fractionation of 13C in nature and in the laboratory: Growth rate effects in some haptophyte algae. Global Biogeochem Cycles 11: 279–292.

    Google Scholar 

  • Birchfield, G.E., 1987. Changes in deep-ocean water δ18O and temperature from last glacial maximum to the present. Paleoceanography 2: 431–442.

    Google Scholar 

  • Bolliger, C., Schroth, M.H., Bernasconi, S.M., Kleikemper, J., and Zeyer, J., 2001. Sulfur isotope fractionation during microbial sulfate reduction by toluene-degrading bacteria. Geochimica et Cosmochimica Acta 65: 3289–3298.

    Google Scholar 

  • Broecker, W.S., 1982. Ocean chemistry during glacial time. Geochimica et Cosmochimica Acta 46: 1689–1705.

    Google Scholar 

  • Broecker, W.S., Maier-Reimer, E., 1992. The influence of air and sea exchange on the carbon isotope distribution in the sea. Global Biogeochemical Cycles 6: 315–320.

    Google Scholar 

  • Burkhardt, S., Riebesell, U., Zondervan, I., 1999. Stable carbon isotope fractionation by marine phytoplankton in response to daylength, growth rate, and CO2 availability. Marine Ecology Progress Series 184: 31–41.

    Google Scholar 

  • Canfield, D.E., 2001. Biogeochemistry of sulfur isotopes. Reviews in Mineralogy and Geochemistry 43: 607–636.

    Google Scholar 

  • Carpenter, S.J., Lohmann, K.C., Holden, P., Walter, L.M., Huston, T.J., Halliday, A.N., 1991. δ18O values, 87Sr/86Sr and Sr/Mg ratios of Late Devonian abiotic marine calcite: Implications for the composition of ancient seawater. Geochimica et Cosmochimica Acta 55: 1991–2010.

    Google Scholar 

  • Charles, C.D., Fairbanks, R.G., 1990. Glacial to interglacial changes in the isotopic gradients of the Southern Ocean surface water. In: Bleil, U., Thiede, J., (eds), Geological history of the Polar Oceans: Artic versus Antarctic. Kluwer, Dordrecht, pp 519–538.

    Google Scholar 

  • Cifuentes, L.A., Sharp, J.H., Fogel, M.L., 1988. Stable carbon and nitrogen isotope biogeochemistry in the Delaware estuary. Limnology and Oceanography 33: 1102–1115.

    Google Scholar 

  • Claypool, G.E., Holser, W.T., Kaplan, I.R., Sakai, H., Zak, I., 1980. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chemical Geology 28: 190–260.

    Google Scholar 

  • Cline, J.D., Kaplan, I.R., 1975. Isotopic fractionation of dissolved nitrate during denitrification in the easter tropical North Pacific Ocean. Marine Chemistry 3: 271–299.

    Google Scholar 

  • Coplen, T.B., 1996. More uncertainty than necessary. Paleoceanography 11: 369–370.

    Google Scholar 

  • Craig, H., Gordon, L.I., 1965. Deuterium and oxygen-18 variations in the ocean and marine atmosphere. In: Tongiorgi, E., (eds), Stable isotopes in oceanic studies and paleotemperatures. Consiglio Nazionale Delle Ricerche, Laboratorio di Geologia Nucleare, Pisa, pp 9–130.

    Google Scholar 

  • Curry, W.B., Oppo, D.W., 2005. Glacial water mass geometry and the distribution of δ13C of ΣCO2 in the western Atlantic Ocean. Paleoceanography 20: PA1017.

    Google Scholar 

  • de Lange, G.J., van Os, B., Pruysers, P.A., Middelburg, J.J., Castradori, D., van Santvoort, P., Müller, P.J., Eggenkamp, H., Prahl, F.G., 1994. Possible early diagenetic alteration of palaeo proxies. In: Zahn, R., Pedersen, T.F., Kaminski, M.A., Labeyrie, L., (eds), Carbon cycling in the glacial ocean: Constraints on the ocean’s role in global climate. Springer, Berlin, pp 225–258.

    Google Scholar 

  • Degens, E.T., 1969. Biogeochemistry of stable carbon isotopes. In: Eglington, G., Murphy, M.T.J., (eds), Organic geochemistry. Methods and results. Springer, Berlin, pp 304–329.

    Google Scholar 

  • Degens, E.T., Guillard, R.R.L., Sackett, W.M., Hellebust, J.A., 1968. Metabolic fractionation of carbon isotopes in marine plankton. I. Temperature and respiration experiments. Deep Sea Research 15: 1–9.

    Google Scholar 

  • Deines, P., 1981. The isotopic composition of reduced organic carbon. In: Fritz, P., Fontes, J.C., (eds), Handbook of environmental geochemistry, vol. 1., Elsevier, New York, pp 239–406.

    Google Scholar 

  • Derry, L.A., France-Lanord, C., 1996. Neogene growth of the sedimentary organic carbon. Paleoceanography 11: 267–276.

    Google Scholar 

  • Emrich, K., Ehhalt, D.H., Vogel, J.C., 1970. Carbon isotope fractionation during the precipitation of calcium carbonate. Earth and Planetary Science Letters 8: 363–371.

    Google Scholar 

  • Epstein, S., Buchsbaum, R., Lowenstam, H.A., Urey, H.C., 1953. Revised carbonate-water isotopic temperature scale. Bull Geol Soc Am 64: 1315–1325.

    Google Scholar 

  • Erez, J., Luz, B., 1983. Experimental paleotemperature equation for planktonic foraminifera. Geochimica et Cosmochimica Acta 47: 1025–1031.

    Google Scholar 

  • Fairbanks, R.G., 1989. A 17,000-year glacio-eustatic sea level record: Influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342: 637–642.

    Google Scholar 

  • Fairbanks, R.G., Charles, C.D., Wright, J.D., 1992. Origin of global meltwater pulses. In: Taylor, R.E., (eds), Radiocarbon after four decades. Springer, New York, pp 473–500.

    Google Scholar 

  • Faure, G., Mensing, T.M., 2005. Isotopes: Principles and applications, 3rd edition. John Wiley & Sons, New York, 928 pp.

    Google Scholar 

  • Fontugne, M.R., Calvert, S.E., 1992. Late Pleistocene variability of the carbon isotopic composition of organic matter in the eastern Mediterranean: Monitor of changes in carbon sources and atmospheric CO2 concentrations. Paleoceanography 7: 1–20.

    Google Scholar 

  • Francois, R., Altabet, M.A., Burckle, L.H., 1992. Glacial to interglacial changes in surface nitrate utilization in the Indian sector of the Southern Ocean as recorded by sediment δ15N. Paleoceanography 7: 589–606.

    Google Scholar 

  • Freudenthal, T., Neuer, S., Meggers, H., Davenport, R., Wefer, G., 2001. Influence of lateral particle advection and organic matter degradation on sediment accumulation and stable nitrogen isotope ratios along a productivity gradient in the Canary Islands region. Marine Geology, 177: 93–109.

    Google Scholar 

  • Fry, B., Jannasch, H.W., Molyneaux, S.J., Wirsen, C.O., Muramato, Ja., King, S., 1991. Stable isotopes of the carbon, nitrogen and sulfur cycles in the Black Sea and the Cariaco Trench. Deep-Sea Research 38,Suppl. 2: S1003–S1019.

    Google Scholar 

  • Gruber, N., Sarmiento, J.L., 1997. Global patterns of marine nitrogen fixation and denitrification. Global Biogeochem Cycles 11: 235–266.

    Google Scholar 

  • Habicht, K.S., Canfield, D.E., 1997. Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments. Geochimica et Cosmochimica Acta 61: 5351–5361.

    Google Scholar 

  • Hartmann, M., Nielsen, H., 1969. 34S Werte in rezenten Meeressedimenten und ihre Deutung am Beispiel einiger Sedimentprofile aus der westlichen Ostsee. Geologische Rundschau 58: 621–655.

    Google Scholar 

  • Hayes, J.M., 1993. Factors controlling the 13C contents of sedimentary organic compounds: principals and evidence. Marine Geology 113: 111–125.

    Google Scholar 

  • Hayes, J.M., Freeman, K.H., Popp, B.N., Hoham, C.H., 1990. Compound-specific analyses, a novel tool for reconstruction of ancient biogeochemical processes. Organic Geochemistry 16: 1115–1128.

    Google Scholar 

  • Hemming, N.G., Hanson, G.N., 1992. Boron isotopic composition and concentration in modern marine carbonates. Geochimica et Cosmochimica Acta 56: 537–543.

    Google Scholar 

  • Hemming, N.G., Hanson, G.N. 1994. A procedure for the isotopic analysis of boron by negative thermal ionization mass spectrometry. Chemical Geology 114: 147–156.

    Google Scholar 

  • Hemming, N.G., Reeder, R.J., Hanson, G.N., 1995. Mineral-fluid partitioning and isotopic fractionation of boron in synthetic calcium carbonate, Geochimica et Cosmochimica Acta 59: 371–379.

    Google Scholar 

  • Hoefs, J., 2004. Stable isotope geochemistry. 5th ed. Springer, Berlin, 244 pp.

    Google Scholar 

  • Holland, H.D., 1978. The chemistry of the atmosphere and oceans. Wiley, New York, 351 pp

    Google Scholar 

  • Holmes, M.E., Müller, P.J., Schneider, R.R., Segl, M., Wefer, G., 1997. Reconstruction of past nutrient utilization in the eastern Angola Basin based on sedimentary 15N/14N ratios. Paleoceanography 12: 604–614.

    Google Scholar 

  • Holser, W.T., 1997. Geochemical events documented in inorganic carbon isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology 132: 173–182.

    Google Scholar 

  • Hönisch, B., Bijma, J., Russell, A.D., Spero, H.J., Palmer, M.R., Zeebe, R.E., Eisenhauer, A., 2003. The influence of symbiont photosynthesis on the boron isotopic composition of foraminifera shells. Mar. Micropaleontol. 49: 87–96.

    Google Scholar 

  • Hönisch B, Hemming NG (2004) Ground-truthing the boron isotope paleo-pH proxy in planktonic foraminifera shells: Partial dissolution and shell size effects. Paleoceanography 19: PA4010.

    Google Scholar 

  • Hönisch, B., Hemming, N.G., Grottoli, A.G., Amat, A., Hanson, G.N., Bijma, J., 2004. Assessing scleractinian corals as recorders for paleo-pH: Empirical calibration and vital effects. Geochimica et Cosmochimica Acta 68: 3675–3685.

    Google Scholar 

  • Irwin, H., Curtis, C., Coleman, M., 1977. Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Nature 269: 209–213.

    Google Scholar 

  • Jacobs, S.S., Fairbanks, R.G., Horibe, Y., 1985. Origin and evolution of water masses near the antarctic continental margin: Evidence from H218O/H216O ratios in seawater. Antarctic Research Series 43: 59–85.

    Google Scholar 

  • Jasper, J.P., Hayes, J.M., 1990. A carbon isotope record of CO2 levels during the late Quaternary. Nature 347: 462–464.

    Google Scholar 

  • Jasper, J.P., Hayes, J.M., 1994. Reconstruction of Paleoceanic PCO2 levels from carbon isotopic compositions of sedimentary biogenic components. In: Zahn, R., Pedersen, T.F., Kaminski, M.A., Labeyrie, L., (eds), Carbon cycling in the glacial ocean: Constraints on the ocean’s role in global climate. Springer, Berlin, pp 323–342.

    Google Scholar 

  • Jørgensen, B.B., 1979. A theoretical model of the stable sulfur isotope distribution in marine sediments. Geochimica et Cosmochimica Acta 43: 363–374.

    Google Scholar 

  • Jørgensen, B.B., 1990. A thiosulfate shunt in the sulfur cycle of marine sediments. Science 249: 152–154.

    Google Scholar 

  • Jørgensen, B.B., Erez, J., Revsbech, N.P., Cohen, Y., 1985. Symbiontic photosynthesis in a planktonic foraminifera, Globigerinoides sacculifer (Brady), studied with microelectrodes. Limnol Oceanogr 30: 1253–1267.

    Google Scholar 

  • Jørgensen, B.B., Böttcher, M.E., Lüschen, H., Neretin, L.N., Volkov, I.I., 2004. Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments. Geochimica et Cosmochimica Acta 68: 2095–2118.

    Google Scholar 

  • Kakihana, H., Kotaka, M., Satoh, S., Nomura, M., Okamoto, M., 1977. Fundamental studies on the ion-exchange of boron isotopes. Bull. Chem. Soc. Japan 50: 158–163.

    Google Scholar 

  • Kaplan, I.R., Rittenberg, S.C., 1964. Microbiological fractionation of sulfur isotopes. J Gen Microbiol 34: 195–212.

    Google Scholar 

  • King, A.L., Howard, W.R., 2004. Planktonic foraminiferal δ13C records from Southern Ocean sediment traps: New estimates of the oceanic Suess effect. Global Biogeochemical Cycles 18, GB2007.

    Google Scholar 

  • Kroopnick, P., 1985. The distribution of 13C of ΣCO2 in the world oceans. Deep-Sea Research 32: 57–84.

    Google Scholar 

  • Kuypers, M.M.M., Lavik, G., Woebken, D., Schmid, M., Fuchs, B.M., Amann, R., Jørgensen B.B., Jetten, M.S.M., 2005. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proceedings of the National Academy of Science 102: 6478–6483.

    Google Scholar 

  • Kuypers, M.M.M., Sliekers, A.O., Lavik, G., Schmid, M., Jørgensen, B.B. Kuenen, J.G., Sinninghe Damsté, J.S., Strous, M., Jetten, M.S.M, 2003. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422: 608–611.

    Google Scholar 

  • Kyser, T.K., 1995. Micro-analytical techniques in stable isotope geochemistry. Can Mineral 33: 261–278.

    Google Scholar 

  • Lawrence, J.R., 1989. The stable isotope geochemistry of deep-sea pore water. In: Fritz, P., Fontes, J.C., (eds), Handbook of environmental isotope geochemistry, vol. 3. Elsevier, Amsterdam, pp 317–356.

    Google Scholar 

  • Laws, E.A., Popp, B.N., Bidigare, R.R., Kennicutt, M.C., Macko, S.A., 1995. Dependence of phytoplankton carbon isotopic composition on growth rate and (CO2)aq: Theoretical considerations and experimental results. Geochimica et Cosmochimica Acta 59: 1131–1138.

    Google Scholar 

  • Lecuyer, C., Grandjean, P., Reynard, B., Albarede, F., Telouk, P., 2002. 11B/10B analysis of geological materials by ICP-MS PLasma 54: application to boron fractionation between brachiopod calcite and seawater. Chem Geol 186: 45–55.

    Google Scholar 

  • Lemarchand, D., Gaillardet, J., Lewin, E., Allègre, C., 2000. The influence of rivers on marine boron isotopes and implications for reconstructing past ocean pH. Nature 408: 951–954.

    Google Scholar 

  • Liu, K.K., Kaplan, I.R., 1989. The eastern tropical Pacific as a source of 15N-enriched nitrate in seawater off southern California. Limnol Oceanography 34: 820–830.

    Google Scholar 

  • Longinelli, A., 1989. Oxygen-18 and sulphur-34 in dissolved oceanic sulphate and phosphate. In: Fritz, P., Fontes, J.C., (eds), Handbook of environmental isotope geochemistry, vol. 3. Elsevier, Amsterdam, pp 219–255.

    Google Scholar 

  • Lynch-Stieglitz. J., Stocker, T.F., Broecker, W.S., Fairbanks, R.G., 1995. The influence of air-sea exchange on the isotopic composition of oceanic carbon: observations and modeling. Global Biogeochemical Cycles 9: 653–665.

    Google Scholar 

  • Lyons, T.W., Berner, R.A., 1992. Carbon-sulfur-iron systematics of the uppermost deep-water sediments of the Black Sea. Chemical Geology 99: 1–27.

    Google Scholar 

  • Mackensen, A., 2001. Oxygen and carbon stable isotope tracers of Weddell Sea water masses: New data and some paleoceanographic implications. Deep-Sea Research 48: 1401–1422.

    Google Scholar 

  • Mackensen, A., Hubberten, H.W., Bickert, T., Fischer, G., Fütterer, D.K. 1993. δ13C in benthic foraminiferal tests of Fontbotia wuellerstorfi (SCHWAGER) relative to δ13C of dissolved inorganic carbon in Southern Ocean deep water: implications for glacial ocean circulation models. Paleoceanography 8: 587–610.

    Google Scholar 

  • Mackensen, A., Hubberten, H.W., Scheele, N., Schlitzer, R., 1996. Decoupling of δ13CΣCO2 and phosphate in recent Weddell Sea Deep and Bottom Water: Implications for glacial Southern Ocean paleoceanography. Paleoceanography 11: 203–215.

    Google Scholar 

  • Matsumoto, R., 1992. Causes of the oxygen isotopic depletion of interstitial waters from sites 798 and 799, Japan Sea, Leg 128. Proc ODP, Sci Res 127/128: 697–703.

    Google Scholar 

  • McConnaughey, T.A., Burdett, J., Whelan, J.F., Paull, C.K., 1997. Carbon isotopes in biological carbonates: Respiration and photosynthesis. Geochimica et Cosmochimica Acta 61: 611–622.

    Google Scholar 

  • McCorkle, D.C., Corliss, B.H., Farnham, C.A., 1997. Vertical distributions and stable isotopic compositions of live (stained) benthic foraminifera from the North Carolina and California continental margins. Deep-Sea Research 44: 983–1024.

    Google Scholar 

  • McCorkle, D.C., Emerson, S.R., 1988. The relationship between pore water carbon isotopic composition and bottom water oxygen concentration. Geochimica et Cosmochimica Acta 52: 1169–1178.

    Google Scholar 

  • McCorkle, D.C., Emerson, S.R., Quay, P.D., 1985. Stable carbon isotopes in marine porewaters. Earth and Planetary Science Letters 74: 13–26.

    Google Scholar 

  • McCorkle, D.C., Keigwin, L.D., Corliss, B.H., Emerson, S.R., 1990. The influence of microhabitats on the carbon isotopic composition of deep-sea benthic foraminifera. Paleoceanography 5: 161–185.

    Google Scholar 

  • McCorkle, D.C., Martin, P.A., Lea D.W., Klinkhammer, G.P., 1995. Evidence of a dissolution effect on benthic foraminiferal shell chemistry: δ13C, Cd/Ca, Ba/Ca, and Sr/Ca results from the Ontong Java Plateau. Paleoceanography 10: 699–714.

    Google Scholar 

  • Merrit, D.A., Hayes, J.M., 1994. Factors controlling precision and accuracy in isotope-ratio-monitoring mass spectrometry. Anal Chem 66: 2336–2347.

    Google Scholar 

  • Miyake, Y., Wada, E., 1971. The isotope effect on the nitrogen in biochemical oxidation-reduction reactions. Rec Oceanogr Works Japan 11: 1–6.

    Google Scholar 

  • Montoya, J.P., 1994. Nitrogen fractionation in the modern ocean: Implications for the sedimentary record. In: Zahn, R., Pedersen, T.F., Kaminski, M.A., Labeyrie, L., (eds), Carbon cycling in the glacial ocean: Constraints on the ocean’s role in global change. Springer, Berlin, pp 259–279.

    Google Scholar 

  • Mook, W.G., Bommerson, J.C., Staverman, W.H., 1974. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth and Planetary Science Letters 22: 169–176.

    Google Scholar 

  • Mulitza, S., Donner, B., Fischer, G., Paul, A., Pätzold, J., Rühlemann, C. Segl, M., 2003. The South Atlantic oxygen isotope record of planktic foraminifera. In: The South Atlantic in the Late Quaternary: Reconstruction of Material Budgets and Current Systems. Wefer, G., Mulitza, S., and Ratmeyer, V., editors. Springer, Berlin, pp. 121–142.

    Google Scholar 

  • Müller, P.J., Schneider, R., Ruhland, G., 1994. Late Quaternary pCO2 variations in the Angola Current: Evidence from organic carbon δ13C and alkenone temperatures. In: Zahn, R., Pedersen, T.F., Kaminski, M.A., Labeyrie, L., (eds), Carbon cycling in the glacial ocean: Constraints on the ocean’s role in global change. Springer, Berlin, pp 343–366.

    Google Scholar 

  • Newman, J.W., Parker, P.L., Behrens, E.W., 1973. Organic carbon ratios in Quaternary cores from the Gulf of Mexico. Geochimica et Cosmochimica Acta 37: 225–238.

    Google Scholar 

  • Nielsen, H., Ricke, W., 1964. Schwefel-Isotopen-Verhältnisse von Evaporiten aus Deutschland: ein Beitrag zur Kenntnis von 34S im Meerwasser-Sulfat. Geochimica et Cosmochimica Acta 28: 577–591.

    Google Scholar 

  • Nissenbaum, A., Presley, B.J., Kaplan, I.R., 1972. Early diagenesis in a reducing fjord, Saanich Inlet, British Columbia-I. Chemical and isotopic changes in major components of interstitial water. Geochimica et Cosmochimica Acta 36: 1007–1027.

    Google Scholar 

  • Ohmoto, H., Kaiser, C.J., Geer, K.A., 1990. Systematics of sulphur isotopes in recent marine sediments and ancient sediment-hosted basemetal deposits. Univ Western Australia Publ 23: 70–120.

    Google Scholar 

  • O’Leary, M.H., 1981. Carbon isotope fractionation in plants. Phytochemistry 20: 553–567.

    Google Scholar 

  • Palmer, M.R., Pearson, P.N., 2003. A 23,000-year record of surface water pH and PCO2 in the Western Equatorial Pacific Ocean. Science 300: 480–482.

    Google Scholar 

  • Park, R., Epstein, S., 1960. Carbon isotope fractionation during photosynthesis. Geochimica et Cosmochimica Acta 21: 110–126.

    Google Scholar 

  • Pearson, P.N., Palmer, M.R., 2000. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406: 695–699.

    Google Scholar 

  • Pearson, P.N., Ditchfield, P.W., Singano, J., Harcourt-Brown, K.G., Nicholas, C.J., Olsson, R.K., Shackleton, N.J. and Hall, M.A., 2001. Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs. Nature 413: 481–487.

    Google Scholar 

  • Popp, B.N., Anderson, T.F., Sandberg, P.A., 1986. Brachiopods as indicators of original isotopic compositions in some Paleozoic limestones. Geological Society America Bulletin 97: 1262–1269.

    Google Scholar 

  • Popp, B.N., Laws, E.A., Bidigare, R.R., Dore, J.E., Hanson, K.L., Wakeham, S.G., 1998. Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochimica et Cosmochimica Acta 62: 69–77.

    Google Scholar 

  • Popp, B.N., Parekh, P., Tilbrook, B., Bidigare, R.R., Laws, E.A., 1997. Organic carbon δ13C variations in sedimentary rocks as chemostratigraphic and paleoenvironmental tools. Palaeogeography, Palaeoclimatology, Palaeoecology 132: 119–132.

    Google Scholar 

  • Popp, B.N., Tagiku, R., Hayes, J.M., Louda, J.W., Baker, E.W., 1989. The post-paleozoic chronology and mechanism of δ13C depletion in primary marine organic matter. American Journal of Sciences 289: 436–454.

    Google Scholar 

  • Raab, M., Spiro, B., 1991. Sulfur isotopic variations during seawater evaporation with fractional crystallization. Chemical Geology 86: 323–333.

    Google Scholar 

  • Railsback, L.B., 1990. Influence of changing deep ocean circulation on the Phanerozoic oxygen isotopic record. Geochimica et Cosmochimica Acta 54: 1501–1509.

    Google Scholar 

  • Raiswell, R., 1997. A geochemical framework for the application of stable sulphur isotopes to fossil pyritization. Journal of the Geological Society, London 154: 343–356.

    Google Scholar 

  • Raiswell, R., Berner, R.A., 1985. Pyrite formation in euxinic and semi-euxinic sediments. American Journal of Sciences 285: 710–724.

    Google Scholar 

  • Raiswell, R., Berner, R.A., 1986. Pyrite and organic matter in Phanerozoic normal marine shales. Geochimica et Cosmochimica Acta 50: 1967–1976.

    Google Scholar 

  • Rau, G.H., Froehlich, P.N., Takahashi, T., Des Marais, D.J., 1991. Does sedimentary organic δ13C record variations in Quaternary ocean [CO2(aq)]? Paleoceanography 6: 335–347.

    Google Scholar 

  • Rau, G.H., Riebesell, U., Wolf-Gladrow, D., 1997. CO2aq-dependent photosynthetic 13C fractionation in the ocean: A model versus measurements. Global Biogeochemical Cycles 11: 267–278.

    Google Scholar 

  • Reynaud, S., Hemming, N.G., Juillet-Leclerc. A., Gattuso. J.P., 2004. Effect of pCO2 and temperature on the boron isotopic composition of a zooxanthellate coral: Acropora sp. Coral Reefs 23: 539–546.

    Google Scholar 

  • Rink, S., Kühl, M., Bijma, J., and Spero, H. J., 1998. Microsensor studies of photosynthesis and respiration in the symbiontic foraminifer O. universa.. Marine Biology, 131: 583–596.

    Google Scholar 

  • Rost, B., Zondervan, I., Riebesell, U., 2002. Lightdependent carbon isotope fractionation in the coccolithophorid Emiliania huxleyi. Limnol. Oceanogr. 47: 120–128.

    Google Scholar 

  • Rühlemann, C., Frank, M., Hale, W., Mangini, A., Mulitza, S., Müller, P.J., Wefer, G., 1996. Late Quaternary productivity changes in the western equatorial Atlantic: Evidence from 230Th-normalized carbonate and organic carbon accumulation rates. Marine Geology 135: 127–152.

    Google Scholar 

  • Sanyal, A., and Bijma, J., 1999. A comparative study of northwest Africa and eastern equatorial Pacific upwelling zones as sources of CO2 during glacial periods based on boron isotope paleo-pH estimation, Paleoceanography 14: 753–759.

    Google Scholar 

  • Sanyal, A., Hemming, N.G., Broecker, W.S., Lea, D.W., Spero, H.J., Hanson, G.N., 1996. Oceanic pH control on the boron isotopic composition of foraminifera: Evidence from culture experiments. Paleoceanography 11: 513–517.

    Google Scholar 

  • Sanyal, A., Nugent, M., Reeder, R.J., Bijma, J., 2000. Seawater pH control on the boron isotopic composition of calcite: Evidence from inorganic calcite precipitation experiments. Geochim. Cosmochim. Acta. 64: 1551–1555.

    Google Scholar 

  • Sanyal, A., Bijma, J., Spero, H.J., Lea, D.W., 2001. Empirical relationship between pH and the boron isotopic composition of G. sacculifer: Implications for the boron isotope paleo-pH proxy. Paleoceanography 16: 515–519.

    Google Scholar 

  • Sanyal, A., Hemming, N.G., Hanson, G.N., Broecker, W.S., 1995. Evidence for a higher pH in the glacial ocean from boron isotopes in foraminifera. Nature 373: 234–236.

    Google Scholar 

  • Sarnthein, M., Winn, K., Jung, S.J.A., Duplessy, J.C., Labeyrie, L., Erlenkeuser, H., Ganssen G., 1994. Changes in east Atlantic deepwater circulation over the last 30,000 years: Eight time slice reconstructions. Paleoceanography 9: 209–268.

    Google Scholar 

  • Schmidt, G.A., Bigg, G.R., and Rohling, E.J., 1999. Global seawater oxygen-18 database. http://data.giss.nasa.gov/o18data/.

    Google Scholar 

  • Schneider, R., Dahmke, A., Kölling, A., Müller, P.J., Schulz, H.D., Wefer, G., 1992. Strong deglacial minimum in the δ13C record from planktonic foraminifera in the Benguela Upwelling Region: paleoceanographic signal or early diagenetic imprint. In: Summerhayes, C.P., Prell, W.L., Emeis, K.C., (eds), Upwelling systems: Evolution since the early Miocene. Geological Society Special Publication 63, pp 285–297.

    Google Scholar 

  • Schrag, D.P., and DePaolo, D.J., 1993. Determination of δ18O of seawater in the deep ocean during the last glacial maximum: Paleoceanography, 8: 1–6.

    Google Scholar 

  • Schrag, D.P., DePaolo, D.J., and Richter, F.M., 1995. Reconstructing past sea surface temperatures correcting for diagenesis of bulk marine carbonate: Geochimica et Cosmochimica Acta 59: 2265–2278.

    Google Scholar 

  • Schulte, S., Benthien, A., Andersen, N., Müller, P.J., Rühlemann, C., Schneider, R.R., 2003. Stable carbon isotopic composition of the C37:2 alkenone: A proxy for CO2(aq) concentration in oceanic surface waters? In: The South Atlantic in the Late Quaternary: Reconstruction of Material Budgets and Current Systems. G. Wefer, S. Mulitza and V. Ratmeyer, (eds), Springer, Berlin, pp. 195–211.

    Google Scholar 

  • Shackleton, N.J., 1977. Tropical rainforest history and the equatorial Pacific carbonate dissolution cycles. In: Anderson, N.R., Malahoff, A., (eds), Fate in fossil fuel CO2 in the oceans. Plenum, New York, pp 401–427.

    Google Scholar 

  • Shackleton, N.J., Opdyke, N.D., 1973. Oxygen isotope and paleomagnetic stratigraphy of equatorial Pacific core V 28-238: Oxygen isotope temperatures and ice volumes on a 10 5 year scale. Quartenary Research 3: 39–55.

    Google Scholar 

  • Sigman, D.M., Altabet, M., Francois, R., McCorkle, D.C., Gaillard, J.F., 1999. The isotopic composition of diatom-bound nitrogen in Southern Ocean sediments. Paleoceanography, 14, 118–134.

    Google Scholar 

  • Spero, H.J., 1992. Do planktonic foraminifera accurately record shifts in the carbon isotopic composition of δCO2? Marine Micropaleontology 19: 275–285.

    Google Scholar 

  • Spero, H.J., Bijma, J., Lea, D.W., Bemis, B.E., 1997. Effect of seawater carbonate chemistry on planktonic foraminiferal carbon and oxygen isotope values. Nature 390: 497–500.

    Google Scholar 

  • Spero, H.J., Lea, D.W., 1993. Intraspecific stable isotope variability in the planktic foraminifera Globigerinoides sacculifer: Results from laboratory experiments. Marine Micropaleontology 22: 221–234.

    Google Scholar 

  • Spivack, A.J., Edmond, J.M., 1986. Determination of boron isotope ratios by thermal ionization mass spectrometry of the dicesium metaborate cation. Anal Chem 58: 31–35.

    Google Scholar 

  • Strauss, H., 1997. The isotopic composition of sedimentary sulfur through time. Palaeogeography, Palaeoclimatology, Palaeoecology 132: 97–118.

    Google Scholar 

  • Sweeney, R.E., Kaplan, I.R., 1980. Natural abundances of 15N as a source indicator for near-shore marine sedimentary and dissolved nitrogen. Marine Chemistry 9: 81–94.

    Google Scholar 

  • Sweeney, R.E., Liu, K.K., Kaplan, I.R., 1978. Oceanic nitrogen isotopes and their uses in determining the source of sedimentary nitrogen. In: Robinson, B.W., (eds), Stable isotopes in earth sciences. Dept. Scientific and Industrial Research, Wellington, pp 9–26.

    Google Scholar 

  • Valley, J.W., and Cole, D.R., (eds), 2001. Stable Isotope Geochemistry. Reviews in Mineralogy and Geochemistry, The Mineralogical Society of America, Blacksburg, vol. 43, pp. 662.

    Google Scholar 

  • Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G.A.F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O., Strauss, H., 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chemical Geology 161, 59–88. With data update 2004: http://www.science.uottawa.ca/geology/isotope_data/.

    Google Scholar 

  • Veizer, J., Bruckschen, P., Pawellek, F., Diener, A., Podlaha, O.G., Carden, G.A.F., Jasper, T., Korte, C., Strauss, H., Azmy, K., Ala, D., 1997. Oxygen isotope evolution of Phanerozoic seawater. Palaeogeography, Palaeoclimatology, Palaeoecology 132: 159–172.

    Google Scholar 

  • Vinogradov, A.P., Grinenko, V.A., Ustinov, V.I., 1962. Isotopic composition of sulfur compounds in the Black Sea. Geokhimiya 10: 973–997.

    Google Scholar 

  • Voss, M., Altabet, M.A., von Bodungen, B., 1996. δ15N in sedimenting particles as indicator of euphoticzone processes. Deep-Sea Research 43: 33–47.

    Google Scholar 

  • Wada, E., Hattori, A., 1978. Nitrogen assimilation effects in the assimilation of inorganic nitrogenous compounds by marine diatoms. Geomicrobiol J 1: 85–101.

    Google Scholar 

  • Wada, E., Minagawa, M., Mizutani, H., Tsuji, T., Imaizumi, R., Karasawa, K., 1987. Biogeochemical studies on the transport of organic matter along the Otsuchi River watershed, Japan. Estuarine, Coastal and Shelf Sciences 25: 321–336.

    Google Scholar 

  • Waelbroeck, C., Mulitza, S., Spero, H., Dokken, T., Kiefer, T., Cortijo, E., 2004. A global compilation of Holocene planktonic foraminiferal δ18O: relationship between surface water temperature and δ18O, Quaternary Science Reviews 24: 853–868.

    Google Scholar 

  • Wallmann, K., 2001. The geological water cycle and the evolution of marine δ18O values. Geochimica et Cosmochimica Acta 65: 2469–2485.

    Google Scholar 

  • Wefer, G., Berger, W.H., 1991. Isotope paleontology: growth and composition of extant calcareous species. Marine Geology 100: 207–248.

    Google Scholar 

  • Wefer, G., Heinze, P.M., Berger, W.H., 1994. Clues to ancient methane release. Nature, 369: 282.

    Google Scholar 

  • Weiss, R.F., 1974. Carbon dioxide in water and seawater: The solubility of a non-ideal gas. Marine Chemistry 2: 203–215.

    Google Scholar 

  • Weiss, R.F., Östlund, H.G., Craig, H., 1979. Geochemical studies of the Weddell Sea. Deep-Sea Research 26: 1093–1120.

    Google Scholar 

  • Williams, L.B., Ferell, R.E., Hutcheon, I., Bakel, A.J., Walsh, M.M., Krouse, H.R., 1995. Nitrogen isotope geochemsitry of organic matter and minerals during diagenesis and hydrocarbon migration. Geochimica et Cosmochimica Acta 59: 765–779.

    Google Scholar 

  • Wu, G., Berger, W.H., 1989. Planktonic foraminifera: differential dissolution and the Quaternary stable isotope record in the west Equatorial Pacific. Paleoceanography 4: 181–198.

    Google Scholar 

  • Zahn, R., Keir, R., 1994. Tracer-nutrient correlations in the upper ocean: observational and box model constraints on the use of benthic foraminiferal δ13C and Cd/Ca as paleo-proxies for the intermediatedepth ocean. In: Zahn, R., Pedersen, T.F., Kaminski, M.A., Labeyrie, L., (eds), Carbon cycling in the glacial ocean: Constraints on the ocean’s role in global change. Springer, Berlin, pp 195–223.

    Google Scholar 

  • Zahn, R., Mix, A.C., 1991. Benthic foraminiferal δ18O in the ocean’s temperature-salinity-density field: Constraints on ice age thermohaline circulation. Paleoceanography 6: 1–20.

    Google Scholar 

  • Zeebe, R.E., Wolf-Gladrow, D.A., Bijma, J., Hšnisch, B., 2003. Vital effects in foraminifera do not compromise the use of d11B as a paleo-pH indicator: Evidence from modeling. Paleoceanography 18: PA 1043.

    Google Scholar 

  • Zeebe, R.E., and Sanyal, A., 2002. Comparison of two potential strategies of planktonic foraminifera for house building: Mg2+ or H+ removal? Geochim. Cosmochim. Acta, 66: 1159–1169.

    Google Scholar 

  • Zeebe, R.E., 1999. An explanation of the effect of seawater carbonate concentration on foraminiferal oxygen isotopes. Geochimica et Cosmochimica Acta 63: 2001–2007.

    Google Scholar 

  • Zeebe, R.E., 2001. Seawater pH and isotopic paleotemperatures of Cretaceous oceans. Palaeogeography, Palaeoclimatology, Palaeoecology, 170:49–57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bickert, T. (2006). Influence of Geochemical Processes on Stable Isotope Distribution in Marine Sediments. In: Schulz, H.D., Zabel, M. (eds) Marine Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32144-6_10

Download citation

Publish with us

Policies and ethics