Skip to main content

Charge Transport in DNA-based Devices

  • Chapter
Introducing Molecular Electronics

Part of the book series: Lecture Notes in Physics ((LNP,volume 680))

Abstract

DNA is probably the molecule that carries the highest possible density of information. Information comes along with structuring and recognition that offer the possibility of using DNA to build self-assembled molecular circuits for nanoelectronics applications. This, however, must be complemented by suitable conductivity, which was tested in a series of experiments on charge migration along DNA molecules. These issues together with reports on possible high rates of charge transfer between donor and acceptor through the DNA, obtained in the last decade from solution chemistry experiments on large numbers of molecules, triggered a series of direct electrical transport measurements through DNA single molecules, bundles and networks. These measurements are reviewed and presented here. From these experiments we conclude that electrical transport is feasible in short DNA molecules, in bundles and networks, but blocked in long single molecules that are attached to surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Luryi S, Xu J, Zaslavsky A (eds) Future Trends in Microelectronics: The Road Ahead. Wiley, New York, USA (1999)

    Google Scholar 

  2. Joachim C, Gimzewski JK, Aviram A: Electronics using hybrid-molecular and mono-molecular devices, Nature 408, 541 (2000)

    Article  ADS  Google Scholar 

  3. Aviram A, Ratner MA (eds) Molecular Electronics Science and Technology: Annals of the New York Academy of Sciences, vol 852. The New York Academy of Sciences, New York (1998)

    Google Scholar 

  4. Aviram A, Ratner MA, Mujica V (eds) Molecular Electronics II: Annals of the New York Academy of Sciences, vol 960. The New York Academy of Sciences, New York (2002)

    Google Scholar 

  5. Tour JM: Molecular Electronics. Synthesis and Testing of Components, Acc Chem Res 33:791(2000)

    Article  Google Scholar 

  6. Aviram A, Ratner MA: Molecular rectifiers, Chem Phys Lett 29:277 (1974)

    Article  ADS  Google Scholar 

  7. Metzger RM: Electrical Rectification by a Molecule: The Advent of Unimolecuar Electronic Devices, Acc Chem Res 9:2027 (1999)

    MathSciNet  Google Scholar 

  8. Collier CP, Wong EW, Bolohradsky M, Raymo FM, Stoddart JF, Kuekes PJ, Williams RS, Heath JR: Electronically Configurable Molecular-Based Logic Gates, Science 285:391 (1999)

    Article  Google Scholar 

  9. Reed MA, Zhou C, Muller CJ, Burgin TP, Tour JM: Conductance of a Molecular Junction Science, 278:252 (1997)

    Google Scholar 

  10. Collier CP, Mattersteig G, Wong EW, Luo Y, Beverly K, Sampario J, Raymo FM, Stoddart JF, Heath JR: A[2] Catenane-based solid state electronically reconfigurable switch, Science 289:1172 (2000)

    Article  ADS  Google Scholar 

  11. Chen J, Reed MA: Electronic transport of molecular systems, Chem Phys 281:127 (2002)

    Article  ADS  Google Scholar 

  12. Braun E, Eichen Y, Sivan U, Ben-Yoseph G: DNA-templated assembly and electrode attachment of a conducting silver wire, Nature 391:775 (1998)

    Article  ADS  Google Scholar 

  13. Keren K, Krueger M, Gilad R. Ben-Yoseph G, Sivan U, Braun E: Sequence-Specific Molecular Lithography on Single DNA Molecules, Science 297:72 (2002)

    Article  ADS  Google Scholar 

  14. Porath D, Bezryadin A, de Vries S, Dekker C: Direct measurement of electrical transport through DNA molecules, Nature 403:635 (2000)

    Article  ADS  Google Scholar 

  15. Rinaldi R. Biasco A, Maruccio G, Cingolani R. Alliata D, Andolfi L, Facci P, De Rienzo F, Di Felice R. Molinari E: Solid-State Molecular Rectifier Based on Self-Organized Metalloproteins, Adv Mater 14:1453 (2002)

    Article  Google Scholar 

  16. Rinaldi R, Biasco A, Maruccio G, Arima V, Visconti P, Cingolani R, Facci P, De Rienzo F, Di Felice R, Molinari E, Verbeet MP, Canters GW:Electronic rectification in protein devices, Appl Phys Lett 82:472 (2003)

    Article  ADS  Google Scholar 

  17. Rinaldi R, Branca E, Cingolani R, Di Felice R, Calzolari A, Molinari E, Masiero S, Spada G, Gottarelli G, Garbesi: Biomolecular Electronic Devices Based on Self-Organized Deoxyguanosine Nanocrystals, Molecular electronics II, Annals of the New York Academy of Sciences 960:184 (2002)

    Article  ADS  Google Scholar 

  18. Alberti P, Mergny J-L: DNA duplex-quadruplex exchange as the basis for a nanomolecular machine, Proc Natl Acad Sci USA 100:1569 (2003)

    Article  ADS  Google Scholar 

  19. Benenson Y, Paz-Elizur T, Adar R, Keinan E, Livneh Z, Shapiro E: Programmable and autonomous computing machine made of biomolecules, Nature 414:430 (2001)

    Article  ADS  Google Scholar 

  20. Benenson Y, Adar R, Paz-Elizur T, Livneh Z, Shapiro E: DNA molecule provides a computing machine with both data and fuel, Proc Natl Acad Sci USA 100:2191 (2003)

    Article  ADS  Google Scholar 

  21. Porath D, Millo O: Single electron tunneling and level spectroscopy of isolated C-20 molecules, J Appl Phys 81:2241 (1997)

    Article  ADS  Google Scholar 

  22. Lemay SG, Janssen JW, van den Hout M, Mooji M, Bronikowski MJ, Willis PA, Smalley RE, Kouwenhoven LP, Dekker C: Two-dimensional imaging of electronic wavefunctions in carbon nanotubes, Nature 412:617 (2001)

    Article  ADS  Google Scholar 

  23. Liang W, Shores MP, Bockrath M, Long JR. Park H: Kondo resonance in a single-molecule transistor, Nature 417:725 (2002)

    Article  ADS  Google Scholar 

  24. Thorwart M, Grifoni M, Cuniberti G, Postma HWC, Dekker C: Correlated tunneling in intramolecular carbon nanotube quantum dots, Phys Rev Lett 89:196402 (2002)

    Article  ADS  Google Scholar 

  25. Porath D, Cunberti G, Di Felice R, in Shuster G (ed.): Charge transport in DNA-based devices, Topics Curr Chem 237, (2003) (ISBN: 3-540-20131-9).

    Google Scholar 

  26. Ventra M, Di Zwolak M, in Singh Nalwa H (ed.) Encyclopedia of Nanoscience and Nanotechnology, American Scientific Publishers, CA. (2003)

    Google Scholar 

  27. Enders RG, Cox DL, Singh RRP: The quest for high-conductance DNA, Rev Mod Phys 76:195. (2004)

    Article  ADS  Google Scholar 

  28. Lehn JM: Perspectives in Supramolecular Chemistry - From Molecular Recognition towards Molecular Information Processing and Self-Organization, Angew Chem Int Ed in English, 29:1304 (1990)

    Article  Google Scholar 

  29. Di Mauro E, Hollenberg CP: DNA technology in chip construction, Adv Mat 5:384 (1993)

    Article  Google Scholar 

  30. Niemeyer CM: DNA as a material for nanotechnology, Angew Chem Int Ed in English 36:585 (1997)

    Article  Google Scholar 

  31. Niemeyer CM: Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science, Angew Chem Int Ed 40: 4128 (2001)

    Article  Google Scholar 

  32. Chen J, Seeman NC: Synthesis from DNA of a molecule with the connectivity of a cube, Nature 350:631 (1991)

    Article  ADS  Google Scholar 

  33. Zhang Y, Seeman NC: Construction of a DNA truncated octahedron, J Am Chem Soc 116:1661 (1994)

    Article  Google Scholar 

  34. La Bean T, Yan H, Kopatsch J, Liu F, Winfree E, Reif JH, Seeman NC: Construction, analysis, legation, ans self-assembling of DNA triple crossover complexes, J Am Chem Soc 122:1848 (2000)

    Article  Google Scholar 

  35. Seeman NC: DNA Nicks and Nodes and Nanotechnology, Nano Lett 1:22 (2001)

    Article  ADS  Google Scholar 

  36. Zhang Y, Austin RH, Kraeft J, Cox EC: Insulating behavior of lambda-DNA on the micron scale, Ong NP Phys Rev Lett 89:198102 (2002)

    Article  ADS  Google Scholar 

  37. Dekker C, Ratner MA: Electronic properties of DNA, Physics World 14:29 (2001)

    Google Scholar 

  38. Eley DD, Spivey DI: Semiconductivity of organic substances. Nucleic acid in the dry state, Trans Faraday Soc 12:245 (1962)

    Google Scholar 

  39. Warman JM, de Haas MP, Rupprecht A: DNA: a molecular wire, Chem Phys Lett 249:319 (1996)

    Article  ADS  Google Scholar 

  40. O’Neill P, Fielden EM: Primary free radical processes in DNA, Adv Radiat Biol 17:53 (1993)

    Google Scholar 

  41. Retèl J, Hoebee B, Braun JEF, Lutgerink JT, van den Akker E, Wanamarta AH, Joenjie H, Lafleur MVM: Mutational specificity of oxidative DNA damage, Mutation Res 299:165 (1993)

    Article  Google Scholar 

  42. Turro NJ, Barton JK: Paradigms, supermolecules, electron transfer and chemistry at a distance. What's the problem? The science or the paradigm?, J Biol Inorg Chem. 3:201 (1998)

    Article  Google Scholar 

  43. Lewis FD, Wu T, Liu X, Letsinger RL, Greenfield SR. Miller SE, Wasielewski MR: Dynamics of photoinduced charge separation and charge recombination in synthetic DNA hairpins with stilbenedicarboxamide, J Am Chem Soc 122:2889 (2000)

    Article  Google Scholar 

  44. Murphy CJ, Arkin MA, Jenkins Y, Ghatlia ND, Bossman S, Turro NJ, Barton JK: Long- range photoinduced electron transfer through a DNA helix, Science 262:1025 (1993)

    Article  ADS  Google Scholar 

  45. Hall DB, Holmlin RE, Barton JK: Oxidative DNA damage through long-range electron transfer, Nature 382:731 (1996)

    Article  ADS  Google Scholar 

  46. Kelley SO, Jackson NM, Hill MG, Barton JK: Long-range electron transfer through DNA films, Angew Chem Int Ed 38:941 (1999)

    Article  Google Scholar 

  47. Grinstaff MW: How Do Charges Travel through DNA? – An Update on a Current Debate, Angew Chem Int Ed 38:3629 (1999)

    Article  Google Scholar 

  48. Barbara PF, Olson EJC: Experimental electron transfer kinetics in a DNA environment, Adv Chem Phys 107:647 (1999)

    Article  Google Scholar 

  49. Bixon M, Giese B, Wessely S, Langenbacher T, Michel-Beyerle ME, Jortner J: Long-range charge hopping in DNA, Proc Natl Acad Sci USA 96:11713 (1999)

    Article  ADS  Google Scholar 

  50. Schuster GB: Long-range charge transfer in DNA: transient structural distortions control the distance dependence, Acc Chem Res 33:253 (2000)

    Article  Google Scholar 

  51. Conwell EM, Rakhmanova SV: Polarons in DNA, Proc Natl Acad Sci USA 97:4556 (2000)

    Article  ADS  Google Scholar 

  52. Okahata Y, Kobayashi T, Tanaka K, Shimomura M: Anisotropic electric conductivity in an aligned DNA cast film, J Am Chem Soc 120:6165 (1998)

    Article  Google Scholar 

  53. Fink HW, Schönenberger C: Electrical conduction through DNA molecules, Nature 398:407 (1999)

    Article  ADS  Google Scholar 

  54. Bredas JL, Streat GB: Polarons, bipolarons, and solitons in conducting polymers, Acc Chem Res 18:309 (1985)

    Article  Google Scholar 

  55. Nitzan A: A relationship between electron-transfer rates and molecular conduction, J Phys Chem A 105:2677 (2001)

    Article  Google Scholar 

  56. Nitzan A: The Relationship between Electron Transfer Rate and Molecular Conduction. 2. The Sequential Hopping Case, Isr J Chem 42:163 (2002)

    Article  Google Scholar 

  57. R. Di Felice, A. Calzolari, D. Versano, A. Rubio: Electronic structure calculations for nanomolecular systems, Lecture Notes in Physics vvv, xxx (2005); Chap. 3 of this collection.

    Google Scholar 

  58. Meggers E, Michel-Beyerle ME, Giese B: Sequence dependent long range hole transport in DNA, J Am Chem Soc 120:12950 (1998)

    Article  Google Scholar 

  59. Giese B, Amaudrut J, Köhler AK, Spormann M, Wessely S: Direct observation of hole transfer through DNA by hopping between adenine bases and by tunneling, Nature 412:318 (2001)

    Article  ADS  Google Scholar 

  60. Davis WB, Naydenova I, Haselbeger R, Ogrodnik A, Giese B, Michel-Beyerle ME: Dynamics of hole trapping by GG, GG, and GGG in DNA, Angew Chem Int Ed 39:3649 (2000)

    Article  Google Scholar 

  61. Giese B: Electron transfer in DNA., Curr Opin Chem Biol 6:612 (2002)

    Article  Google Scholar 

  62. O'Neill MA, Barton JK: Effects of strand and directional asymmetry on base-base coupling and charge transfer in double-helical DNA, Proc Natl Acad Sci USA 99:16543, (2002)

    Article  ADS  Google Scholar 

  63. Henderson PT, Jones D, Hampikian G, Kan Y, Schuster G: Long-distance charge transport in duplex DNA: the phonon-assisted polaron-like hopping mechanism, Proc Natl Acad Sci USA 96:8353 (1999)

    Article  ADS  Google Scholar 

  64. de Pablo PJ, Moreno-Herrero F, Colchero J, Gómez Herrero J, Herrero P, Baró AM, Ordejón P, Soler JM, Artacho E: Absence of dc-conductivity in lambda-DNA, Phys Rev Lett 85:4992 (2000)

    Article  ADS  Google Scholar 

  65. Storm AJ, van Noort J, de Vries S, Dekker C: Insulating behavior for DNA molecules between nanoelectrodes at the 100 nm length scale, Appl Phys Lett 79:3881 (2001)

    Article  ADS  Google Scholar 

  66. Kasumov AY, Kociak M, Guéron S, Reulet B, Volkov VT, Klinov DV, Bouchiat H: Proximity-induced superconductivity in DNA, Science 291:280 (2001)

    Article  ADS  Google Scholar 

  67. Watanabe H, Manabe C, Shigematsu T, Shimotani K, Shimizu M: Dual-probe scanning tunneling microscope: Measuring a carbon nanotube ring transistor, Appl Phys Lett 79:2462 (2001)

    Article  ADS  Google Scholar 

  68. Shigematsu T, Shimotani K, Manabe C, Watanabe H, Shimizu M: Transport properties of carrier-injected DNA. J Chem Phys 118:4245 (2003)

    Article  ADS  Google Scholar 

  69. Watanabe H, Shimotani K, Shigemau T, Manabe C: Electric measurements of nano-scaled devices, Thin Solid Films 438: 462 (2003)

    Article  ADS  Google Scholar 

  70. Shimotani K, Shigematsu T, Manabe C, Watanabe H, Shimizu M: An advanced electric probing system: Measuring DNA derivatives, J Chem Phys 118:8016 (2003)

    Article  ADS  Google Scholar 

  71. Xu B, Zhang P, Li X, Tao N: Direct conductance measurement of single DNA molecules in aqueous solution, Nano Lett 4:1105 (2004)

    Article  ADS  Google Scholar 

  72. Bezryadin A, Dekker C: Nanofabrication of electrodes with sub-5nm spacing for transport experiments on single molecules and metal clusters, J Vac Sci Technol B 15:793 (1997)

    Article  Google Scholar 

  73. Bezryadin A, Dekker C, Schmid G: Electrostatic trapping of single conducting nanoparticles between nanoelectrodes, Appl Phys Lett 71:1273 (1997)

    Article  ADS  Google Scholar 

  74. Bockrath M, Markovic N, Shepard A, Tinkham M, Gurevich L, Kouwenhoven LP, Wu MW, Sohn LL: Scanned conductance microscopy of carbon nanotubes and lambda-DNA, Nano Lett 2:187 (2002)

    Article  ADS  Google Scholar 

  75. Gómez-Navarro C, Moreno-Herrero F, de Pablo PJ, Colchero J, Gómez-Herrero J, Baró AM: Contactless experiments on individual DNA molecules show no evidence for molecular wire behavior, Proc Natl Acad Sci USA 99:8484 (2002)

    Article  ADS  Google Scholar 

  76. Kasumov A Yu, Klinov DV, Roche P-E, Gueron S, Bouchiat H: Thickness and low-temperature conductivity of DNA molecules, Appl Phys Lett 84:1007 (2004)

    Article  ADS  Google Scholar 

  77. Yang C, Moses D, Heeger AJ: Base-Pair Stacking in Oriented Films of DNA-Surfactant Complex Adv Mater 15:1364 (2003)

    Article  Google Scholar 

  78. Salomon A, Cahen D, Lindsay S, Tomfohr J, Engelkes VB, Frisbie CD: Comparison of Electronic Transport Measurements on Organic Molecules, Adv Mater 15, 1881 (2003)

    Article  Google Scholar 

  79. Nogues C, Cohen SR. Daube SS, Naaman R: Electrical properties of short DNA oligomers characterized by conducting atomic force microscopy, Phys Chem Chem Phys 6:4459 (2004)

    Article  Google Scholar 

  80. J. Tomfohr, G. Ramachandran, O. F. Sankey, S. M. Lindsay: Making contacts to single molecules: Are we there yet? Lecture Notes in Physics vvv, xxx (2005); Chap. 11 of this collection.

    Google Scholar 

  81. Cai L, Tabata H, Kawai T: Self-assembled DNA networks and their electrical conductivity, Appl Phys Lett 77:3105 (2000)

    Article  ADS  Google Scholar 

  82. Lee HY, Tanaka H, Otsuka Y, Yoo K-H, Lee J-O, Kawai T: Control of electrical conduction in DNA using oxygen hole doping, Appl Phys Lett 80:1670 (2002)

    Article  ADS  Google Scholar 

  83. Tabata H, Cai LT, Gu J-H, Tanaka S, Otsuka Y, Sacho Y, Taniguchi M, Kawai T: Toward the DNA electronics Synthetic Metals 133:469 (2003)

    Article  Google Scholar 

  84. Taniguchi M, Lee HY, Tanaka H, Kawai T: Electrical Properties of Poly(dA).Poly(dT) and Poly(dG).Poly(dC) DNA Doped with Iodine Molecules Jpn J Appl Phys 42:L215 (2003)

    Article  ADS  Google Scholar 

  85. Taniguchi M, Otsuka Y, Tabata H, Kawai T: Humidity Dependence of Electrical Resistivity in Poly(dG).Poly(dC) DNA Thin Film, Jpn J Appl Phys 42:6629 (2003)

    Article  ADS  Google Scholar 

  86. Tanaka S. Cai L-T, Tabata H, Kawai T: Electrical Conducting Properties of DNA Molecules in a Metal (tip)/DNA/highly Oriented Pyrolytic Graphite Configuration, Jpn J Appl Phys 42:2818 (2003)

    Article  ADS  Google Scholar 

  87. Jo Y-S, Lee Y, Roh Y: Current-voltage characteristics of lambda and polyDNA, Mater Sci Eng C23:841 (2003)

    Google Scholar 

  88. Rakitin A, Aich P, Papadopoulos C, Kobzar Y, Vedeneev AS, Lee JS, Xu JM: Metallic conduction through engineered DNA: DNA nanoelectronics building blocks, Phys Rev Lett 86:3670 (2001)

    Article  ADS  Google Scholar 

  89. Aich P, Labiuk SL, Tari LW, Delbaere LJT, Roesler WJ, Falk KJ, Steer RP, Lee JS: M-DNA: a complex between divalent metal ions and DNA which behaves as a molecular wire, J Mol Biol 294:477 (1999)

    Article  Google Scholar 

  90. Wettig SD, Wood DO, Lee JS: Thermodynamic investigation of M-DNA: a novel metal ion-DNA complex, J Inorg Biochem 94:94 (2003)

    Article  Google Scholar 

  91. Li C-Z, Long Y-T, Kraatz H-B, Lee JS: Electrochemical investigations of M-DNA self-assembled monolayers on gold electrodes, J Phys Chem B 107:2291 (2003)

    Article  Google Scholar 

  92. Yoo K-H, Ha DH, Lee J-O, Park JW, Kim J, Kim JJ, Lee H-Y, Kawai T, Choi HY: Electrical Conduction through Poly (dA)-Poly (dT) and Poly (dG)-Poly (dC) DNA Molecules, Phys Rev Lett 87:198102 (2001)

    Article  ADS  Google Scholar 

  93. Hwang JS, Hwang SW, Ahn D Superlattices and Microstructures 34:433 (2003)

    Article  ADS  Google Scholar 

  94. Heim T, Deresmes D, Vuillaume D: Conductivity of DNA probed by conducting-atomic force microscopy: Effects of contact electrode, DNA structure, and surface interactions, J Appl Phys 96:2927 (2004)

    Article  ADS  Google Scholar 

  95. Lei CH, Das A, Elliott M, Mcdonald JE: Conductivity of macromolecular networks measured by electrostatic force microscopy, (2003) Appl Phys Lett 83:482

    Article  ADS  Google Scholar 

  96. Rinaldi R, Branca E, Cingolani R, Masiero S, Spada GP, Gottarelli G: Photodetectors fabricated from a self-assembly of a deoxyguanosine derivative, (2001) Appl Phys Lett 78:3541

    Article  ADS  Google Scholar 

  97. Maruccio G, Visconti P, Arima V, D'Amico S, Biasco A, D'Amone E, Cingolani R, Rinaldi R, Masiero S, Giorgi T, Gottarelli G: Field effect transistor based on a modified DNA base, Nano Lett 3:479 (2003)

    Article  ADS  Google Scholar 

  98. Richter J, Mertig M, Pompe W, Mönch I, Schackert HK: Construction of highly conductive nanowires on a DNA template, Appl Phys Lett 78:536 (2001)

    Article  ADS  Google Scholar 

  99. Tanaka K, Yamada Y, Shionoya M: Formation of silver(I)-mediated DNA duplex and triplex through an alternative base pair of pyridine nucleobases, J Am Chem Soc 124:8802 (2002)

    Article  Google Scholar 

  100. Tanaka K, Tengeiji A, Kato T, Toyama N, Shionoya M: A discrete self-assembled metal array in artificial DNA., Science 299:1212 (2003)

    Article  ADS  Google Scholar 

  101. Calzolari A, Di Felice R, Molinari E, Garbesi A: G-quartet biomolecular nanowires, Appl Phys Lett 80:3331 (2002)

    Article  ADS  Google Scholar 

  102. Phillips K, Dauter Z, Morchie AIH, Lilley DMJ, Luisi B: The crystal structure of a parallel-stranded guanine tetraplex at 0.95 A E resolution, J Mol Biol 273:171 (1997)

    Article  Google Scholar 

  103. Parkinson GN, Lee MPH, Neidle S: Crystal structure of parallel quadruplexes from human telomeric DNA, Nature 417:876 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Porath, D., Lapidot, N., Gomez-Herrero, J. (2006). Charge Transport in DNA-based Devices. In: Cuniberti, G., Richter, K., Fagas, G. (eds) Introducing Molecular Electronics. Lecture Notes in Physics, vol 680. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-31514-4_16

Download citation

Publish with us

Policies and ethics