Skip to main content

Melting, Alloying and Refining

  • Chapter
Magnesium Technology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References to Chapter 4.1

  1. Emley EF (1966) Principle of Magnesium Technology, Pergammon Press, pp. 92–167

    Google Scholar 

  2. Pilling NB and Bedworth JD (1923) Journal of Institute of Metals, Vol. 29, pp. 529–534

    Google Scholar 

  3. Devault R “Etudes des phenomenes superficiels dans l'oxydation de quelques metaux fondus”, PhD Thesis, Centre de documentation universitaire, Tournier et Constans, Paris, France

    Google Scholar 

  4. Housh SE and V. Petrovich V (1990) Magnesium Refining: A Fluxless Alternative, SAE Technical Paper 920071, Detroit

    Google Scholar 

  5. Leyendecker T and Schroder D (1998) Economical Process for In-House Remelting in Magnesium Diecasting Shops, Proceedings of the 55th Annual IMA Conference, International Magnesium Association, McLean, VA, May, pp. 16–18

    Google Scholar 

  6. Hillis JE and Mercer II EW (2000) Separation of Non-Metallic Contaminants in Fluxless Melting and Refining of Magnesium Alloys, Technical Paper #2000-01-1125, Society of Automotive Engineers, Detroit, MI

    Google Scholar 

  7. Tranelli G, Pettersen G, Aarstad K, Thorvald AE, Solheim I, Syvertsen M, Oye B (2001) A Systematic Approach for Identifying Replacements to SF6/SO2 in the Magnesium industry-An IMA/SINTEF-NTNU Cooperative Project Proc. IMA 2001 Magnesium Conference, May, Brussels, pp. 69–73

    Google Scholar 

  8. Alloy Phase Diagrams (1992) Baker H, Ed., ASM Handbook, Vol. 3

    Google Scholar 

  9. Hillis JE, Mercer WE and Murray RW (1998) Composoitional Requirements for Quality Performance with High Purity Magnesium Alloys, Proceedings of the IMA, The International Magnesium Association, McLean, VA, pp. 74–98

    Google Scholar 

  10. Thorvaldsen A and Aliravci CA (1994) Solubility of Manganese in Liquid Mg-Al Alloys, Light Metals Processing and Applications, CIM, Aug

    Google Scholar 

  11. Standard Specification for Magnesium Alloys in Ingot Form for Sand Castings, Permanent Mold Castings, and Die Castings, B 93/B 93M-98, Annual Book of ASTM Standards, Vol. 2.02, Aluminum and Magnesium Alloys, ASTM International, West Conshohocken, PA, pp. 46–49

    Google Scholar 

  12. Spielberg W, Wellmann B (1992) The Effects of Beryllium Additions on Magnesium and Magnesium Containing Alloys, Magnesium Alloys and Their Applications, B. L. Mordike and F. Hehmann, Eds. DGM, Garmische-Partenkirschen, pp. 259–267.

    Google Scholar 

  13. American National Standards Institute (1970) Acceptable concentrations of beryllium and beryllium compounds. New York: ANSI; ANSI Z37.29

    Google Scholar 

  14. Vainio H, Rice JM (1997) Editorial: Beryllium Revisited. J.Occup. Env. Med. 39(3): 203

    Article  CAS  Google Scholar 

  15. Eisenbud M (1990) Health Problems in the Beryllium Industry. In: An Environmental Odyssey: People, Pollution, Politics in the Life of a Practical Scientist. Seattle, WA: University of Washington Press; 48–54

    Google Scholar 

  16. Davis B (2001) Research Report 00701MG.DAV, submitted to Noranda Inc.

    Google Scholar 

  17. Waltrip JS (1990) Fresh Look at Some Old Magnesium Diecasting Alloys For elevated Temperature Applications, Proc. 47th Ann. World Magnesium Conf., IMA, Cannes, May, pp. 124–129

    Google Scholar 

  18. Mercer WE (1990) Magnesium Die cast Alloys for Elevated Temperature Applications, SAE 900788

    Google Scholar 

  19. Pekgüleryüz MO, Avedesian MM (1992) Magnesium Alloying — Some Potentials for Alloy Development, Jour. Japan Inst. Light Metals, Vol. 42, No. 11, pp. 679–686

    Google Scholar 

  20. Pekgüleryüz MO, Avedesian MM (1992) Magnesium Alloying — Some Metallurgical Aspects, Proc. Intl. Conf. Magnesium Alloys and Their Applications, Mordike BL and Hehman F, Eds. Deutsche Gesellschaft für Materialkunde, Garmisch, Germany, April, pp. 213–220

    Google Scholar 

  21. Pekgüleryüz MO, Luo A, Vermette P and Avedesian MM (1993) Magnesium Alloy Development, Proc. 50th Ann. World Magnesium Conf., IMA, Washington, D.C., May, pp. 20–27

    Google Scholar 

  22. Luo AA, Pekgüleryüz MO (1994) Cast Magnesium Alloys for Elevated Temperature Applications — A Review, Jour. Materials Science, Vol. 29, pp. 313–319

    Google Scholar 

  23. Pekgüleryüz MO and Luo A (1996) Creep Resistant Magnesium Alloys for Diecasting, ITM Inc., International Patent Application WO 96/25529

    Google Scholar 

  24. Luo A, Shinoda T (1998) A New Magnesium Alloy for Automotive Powetrain Applications, SAE 980086

    Google Scholar 

  25. Pekgüleryüz MO (1999) Development of Creep Resistant Magnesium Diecasting Alloys — An Overview, Proc.Aalen Conf.Magnesium Technology, Aalen, Germany, Sep.

    Google Scholar 

  26. Pekguleryüz MO and Renaud J (2000) Creep Resistance in Mg-Al-Ca Alloys, 2000 Magnesium Technology, H. Kaplan, J. Hryn and B. Clow, Eds. TMS, pp. 279–284

    Google Scholar 

  27. Koike S, Washizu K, Tanaka S, Baba T, Kikawa K (2000) Development of Lightweight Oil Pans Made of a Heat-Resistant Magnesium Alloy for Hybrid Engines SAE 2000-01-1117

    Google Scholar 

  28. Pekgüleryüz MO (2000) Development of Creep Resistant Magnesium Diecasting Alloys, Magnesium Alloys 2000, Materials Science Forum, Y. Kojima, T. Aizawa, S. Kamado, Eds. Trans. Tech. Publication, Switzerland, pp. 131–130

    Google Scholar 

  29. Pekgüleryüz MO, Baril E (2001) Development of Creep Resistant Magnesium-Aluminum-Strontium Alloys, 2001 Magnesium Technology, J. Hryn, Ed., TMS, New Orleans, March, pp. 119–136

    Google Scholar 

  30. Luo AA and B. Powell B (2001) Tensile and Compressive Creep of Magnesium-Aluminum-Calcium Based Alloys, 2001 Magnesium Technology, J. Hryn, Ed., TMS, New Orleans, March, pp. 137–144

    Google Scholar 

  31. Labelle P, Pekgüleryüz M, Don Argo, Dierks M, Sparks T, Waltematte T (2001) Heat Resistant Magnesium Alloys for Power-Train Applications, Society of Automotive Engineers SAE Paper 2001-01-0424

    Google Scholar 

  32. Gruzleski JE and Abdulcelil Aliravci (1992) Low Porosity, Fine-Grain Sized Strontium-Treated Magnesium Alloy Castings, US Patent 5,143,564, Sep. 1

    Google Scholar 

  33. Jackson JH, Frost PD, Loonam AC, Eastwood LW and Lorig CH (1949) Magnesium-Lithium Base Alloys — Preparation, Fabrication, and General Characteristics, Metallurgical Transactions, Vol. 182, pp. 149–168

    Google Scholar 

  34. Frost PD(1965) Technical and Economic Status of Magnesium Lithium Alloys, Technology Utilization Report to Industrial and Defense Management, National Aeronautics and Space Administration, Washington, DC, August, p. 38

    Google Scholar 

  35. Frost PD, Jackson JH, Loonam AC and Lorig CH (1959) The Effect of Sodium Contamination on Magnesium-Lithium Base Alloys, Journal of Metals, Trans AIME, Vol. 188, pp. 1171–1172

    Google Scholar 

  36. Vyatkin IP, Mushkov V, Kechin VA and Elkin FM (1972) Technological Features Related to the Preparation of Magnesium-Lithium Alloys, Sov. Journal of Non-Ferrous Metals, June Vol. 13, No. 6, pp. 48–49

    Google Scholar 

  37. Saia A and Edelman RE (1962) Silicon Effect on Magnesium Lithium Based Alloys, AFS Transactions, pp. 909–914

    Google Scholar 

  38. Saia A and Edelman RE (1962) Producing Magnesium-Lithium Alloy Castings, Foundry, Vol. 90 Aug. pp. 38–41

    Google Scholar 

  39. Saia A and Edelman RE and Gilmore HL (1967) The gating and Risering of Counter-Gravity Poured Magnesium-Lithium Castings, Modern Casting, Vol. 52, No. 1, July, pp. 105–114

    CAS  Google Scholar 

  40. Singh RK, Sudhakar B and Chakravorty CR (1989) Producing Magnesium-Lithium Alloys Castings, Indian Foundry Journal, Vol. 35, No. 5, pp. 21–24

    CAS  Google Scholar 

References to Chapter 4.2

  1. Sauerwald F (1947) Z. Anorg. Chem. 255, 212

    Article  CAS  Google Scholar 

  2. Sauerwald F (1949) Z. Anorg. Chem. 258, 296

    CAS  Google Scholar 

  3. Sauerwald F (1949) Z. Metallkunde. 40, 41

    CAS  Google Scholar 

  4. Emley EF (1966) Principles of Magnesium Technology Pergamon Press Ltd. pp. 126–156

    Google Scholar 

  5. Tamura Y, Kon N, Motegi T, Sato E (1998) J. Jpn. Inst. Light Metals. 48, pp. 185–189

    CAS  Google Scholar 

  6. Qian M, Zheng L, Graham D, Frost M, StJohn DH (2001) J. Light Metals, Vol 1, pp. 157–165

    Google Scholar 

  7. Davis B (2001) Study of Zr Grain refinement in Magnesium and Alloys by Sedimentation Techniques. Univ. Oxford. 2001.Magnesium Elektron Sponsored Post-Doc Project Report (Unpublished)

    Google Scholar 

  8. Emley EF (1966) “Principles of Magnesium Technology”Pergamon Press Ltd., pp. 254–261

    Google Scholar 

  9. StJohn DH, Dahle AK, Abbot T, Nave MD, Qian M (2003) “Solidification of cast Magnesium Alloys” Magnesium Technology 2003, Ed. Kaplan HI, TMS, pp. 95–100

    Google Scholar 

  10. Forward CT, Bettles C (2000) CAST, Australia (private communication, Jan 2000)

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2006). Melting, Alloying and Refining. In: Magnesium Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30812-1_4

Download citation

Publish with us

Policies and ethics