Skip to main content

Production Technologies of Magnesium

  • Chapter
Magnesium Technology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. CRC handbook of Chemistry and Physics, 61 ed., 1980–81, CRC Press Inc., pp. D–156

    Google Scholar 

  2. Kipouros GJ and Sadoway DR (1987) in Mamantov, Mamantov, Braunstein (Eds.), Advances in Molten Salt Chemistry, V. 6, Elsevier, Amsterdam, pp. 127–209

    Google Scholar 

  3. Emley EF (1966) Principles of Magnesium Technology, Pergamon, London

    Google Scholar 

  4. Kirk-Othmer (1992) Encyclopedia of Chemical Technology, V. 15, John Wiley & Sons, New York

    Google Scholar 

  5. Olami R (1994) IMA-51 Proceedings, p. 59

    Google Scholar 

  6. Strelets KhL (1997) Electrolytic Production of Magnesium translated by J. Schmorak, Keter, Jerusalem, also available as TT 76-50003, U.S. Dept. Commerce, NTIS, Springfield VA

    Google Scholar 

  7. Wilson CB (1966) IMA-53 Proceedings, p. 52

    Google Scholar 

  8. Krenzke FJ (1972) in Hampel CA (Ed.), ‘The Encyclopedia of Electrochemistry,’ Krieger, Huntington NY, pp. 783–787

    Google Scholar 

  9. Salomon & Smith & Barney Report, October 1999

    Google Scholar 

  10. Stanley RW, Berube M, Celik C, Oosako Peacy YJ, Avedesian M (1996) IMA-53 Proceedings, p. 58

    Google Scholar 

  11. The Magnola process, www.noranda.com

    Google Scholar 

  12. Magnola and Magnesium, www.mining-journal.com/mininginfo/projrcts/magnola.htm

    Google Scholar 

  13. Harris GB and Peacey JG (1992), U.S. Pat. 5091161

    Google Scholar 

  14. Janz GG. Thermodynamic and Transport Properties for Molten Salts: Correlation Equations for Critically Evaluated Density, Surface Tension, Electrical Conductance, and Viscosity Data, J. of Physical and Chemical Reference Data, V. 17,Suppl. 2

    Google Scholar 

  15. Williams EJ, Dean LG and McCutchen CW (1960) Brit. Pat. 849969

    Google Scholar 

  16. Andreassen KA, Boyum Q, Johnsen HK, Ognedal LB, Solheim PR (1981) U.S. Pat. 4308116

    Google Scholar 

  17. Sivilotti OG (1985) U.S. Pat. 4518475

    Google Scholar 

  18. Sivilotti OG (1985) U.S. Pat. 4560449

    Google Scholar 

  19. Sivilotti OG (1983) U.S. Pat. 4420381

    Google Scholar 

  20. Sivilotti OG (1986) U.S. Pat. 4604177

    Google Scholar 

  21. Sivilotti OG (1990) U.S. Pat. 4960501

    Google Scholar 

  22. Sivilotti OG (1985) U.S. Pat. 4514269

    Google Scholar 

  23. Sivilotti OG (1997) U.S. Pat. 5660710

    Google Scholar 

  24. Christensen J, Creber D, Holywell G, Moriya A and Yamaguchi M (1997) in Aghion E and Eliezer D (Eds.) Proceedings on the First Israeli International Conference on Magnesium Science & Technology, Dead Sea, Israel, pp. 9–14

    Google Scholar 

  25. Blue RD, Hunter RM and Neipert MP (1949) U.S. Pat. 2468022

    Google Scholar 

  26. Petrunko AN and Lobanov VS (1977) Light Metal Age, 35, 16, 18, 20, 21

    CAS  Google Scholar 

  27. Donskikh PA, Korotkov YA and E.F. Michailov EF (1985) Tsvetnye Metally (Engl. trans.), 26(6), 68–70

    Google Scholar 

  28. Saburov LN, Teterin VV, Mikhailov EF and Penskii V (1985) Tsvetnye Metally (Engl. trans.), 26(8), 83–84

    Google Scholar 

  29. Reznikov IL, Sandler GY, Svidlo VP and Krayukhin AB (1985) Tsvetnye Metally (Engl. trans.) 26(9), 51–53

    Google Scholar 

  30. Muzhzhavlev KD et al. (1977) U.S. Pat. 4,058,448

    Google Scholar 

  31. Gilroy D (1971) in Kuhn AT (Ed.) Industrial Electrochemical Processes, Elsevier, Amsterdam, pp. 175–217

    Google Scholar 

  32. Beck TR and Ruggeri RT (1981) in Gerischer H and Tobias CW (Eds.) Advances in Electrochemistry and Electrochemical Engineering, Vol. 12, Wiley, New York, pp. 263–354

    Google Scholar 

  33. Zabelin IV et al. (1984) U.S. Pat. 4,483,753

    Google Scholar 

  34. Shekhotsov G, Shchegolev V, Devyatkin V, Tatakin A and Zabelin I (2000), in Aghion E and Eliezer D (Eds.) ‘Proceedings on the Second Israeli International Conference on Magnesium Science & Technology’, Dead Sea, Israel, pp. 57–61

    Google Scholar 

  35. Barannik I. and Sikorskaya I (1997), in Aghion E and Eliezer D (Eds.) ‘Proceedings on the First Israeli International Conference on Magnesium Science & Technology’, Dead Sea, Israel, pp. 15–20

    Google Scholar 

  36. Kosarev SP, Didrikh NV, Yasev VD, Raskatov VG, Romanenko ON, Trukhin AF (1978) Can. Pat. 1022978

    Google Scholar 

  37. Golub G, Katsnelson G, Zinn M, Aghion E (2000) U.S. Pat. 6,132,490

    Google Scholar 

  38. Boyum O, Eriksen KE, Solberg P, Tveten KW (1973) U.S. Pat. 3742100

    Google Scholar 

  39. Blaker I, Boyum O, Anton K, Skipperud R, Tveten KW (1973) U.S. 3760050

    Google Scholar 

  40. Wallevik O, Ronhaug JB (1983) U.S. Pat. 4385931

    Google Scholar 

  41. Mejdell GT, Baumann HM, Tveten KW (1992) U.S. Pat. 5112584

    Google Scholar 

  42. Tveten KW, Mejdell GT, Marcussen JB (1992) U.S. Pat. 5120514

    Google Scholar 

  43. Mezzeta G (1991) Light Metal Age, 49, 12

    Google Scholar 

  44. Andreassen KA and Stiansen KB (1975) U.S. Pat. 3,907,651

    Google Scholar 

  45. Peacey JG, Kennedy MW, Walker TP (1996) U.S. Pat. 5565080

    Google Scholar 

  46. White C, Berube M (1999) U.S. Pat. 5980854

    Google Scholar 

  47. Peacey JG, Kennedy MW, Walker TP (1995) WO Pat. 95/31401

    Google Scholar 

  48. Sivilotti OG (1995) U.S. Pat. 5439563

    Google Scholar 

  49. Sivilotti OG, Sang JV, Lemay RJR (1996) U.S. Pat. 5514359

    Google Scholar 

  50. Amundsen K, Eklund HR, Schmidt R (2000) U.S. Pat. 6042794

    Google Scholar 

  51. Pidgeon LM (1944) Trans. Can. Inst. Min. Met., 47, 17

    Google Scholar 

  52. Pidgeon LM and Alexander WA (1944) Trans. AIME, 159, 315

    Google Scholar 

  53. Pidgeon LM (1946) Trans. Can. Inst. Min. Met., 49, 621

    CAS  Google Scholar 

  54. Humes WB (1944) Trans. AIME, 159, 353

    Google Scholar 

  55. Mayer A (1944) Trans. AIME, 159, 363

    Google Scholar 

  56. Pierce WM, Waring RK, Fetterolf LD and Mahler G (1944) Trans. AIME, 159, 377

    Google Scholar 

  57. Schrier E (1952) Chem. Eng., 59(4), 148

    CAS  Google Scholar 

  58. Froats A (1979) in McMinn CJ (Ed.), ‘Light Metals 1980,’ TMS/AIME, Warrendale PA, pp. 969–979

    Google Scholar 

  59. Brit. Pat. 606644, 606637

    Google Scholar 

  60. Toguri JM and Pidgeon LM (1962) Canadian J. Chem., 40, 1769

    CAS  Google Scholar 

  61. Toguri JM and Pidgeon LM (1961) Canadian J. Chem., 39, 540

    CAS  Google Scholar 

  62. Faure C and Marchal J (1964) J. Metals, 16, 721

    CAS  Google Scholar 

  63. Trocme F (1971) in Edgeworth TG (Ed.), ‘Light Metals 1971,’ TMS/AIME, Warrendale PA, pp. 669–677

    Google Scholar 

  64. Logerot JM and Mena AM (1980) Extractive Metallurgy: Latest Developments of the Magnetherm Process, TMS Paper Selection, CM-80-74, TMS/AIME, Warrendale PA, pp. 29

    Google Scholar 

  65. Christini RA, Roiles R, Bowman KA and Ballain MD (1984) U.S. Pat. 4,478,637

    Google Scholar 

  66. Bowman KA, Christini RA and Ballain MD (1985) U.S. Pat. 4,498,927

    Google Scholar 

  67. Brit. Pat. 908531

    Google Scholar 

  68. Christini RA (1979) in McMinn CJ (ed.), “Light Metals 1980”, AIME, Warrendale PA, pp. 981–995

    Google Scholar 

  69. Bettanini C, Zanier S and Enrici M (1980) U.S. Pat. 4,238,223

    Google Scholar 

  70. Ravelli S et al. (1981) U.S. Pat. 4,264,778

    Google Scholar 

  71. S.Afr. Pat. 8704237, (1987)

    Google Scholar 

  72. Exploration & Project development Summary, www.mtgrace.com/exploration.html

    Google Scholar 

  73. Dungan TA (1944) Trans. AIME, 159, 308

    Google Scholar 

  74. Hansgirg FJ (1943) Iron Age, 152(21), 56; 152 (22), 52

    Google Scholar 

  75. Hansrig FJ (1948) U.S. Pat. 2,437,815

    Google Scholar 

  76. Miller GL (1952) Vacuum, 2, 19

    Google Scholar 

  77. Production of magnesium and magnesia, 2nd. Nat. Expend. Rep. HMSO, pp. 1934–44

    Google Scholar 

  78. Komesaroff M (2000) Metal Bulletin Monthly, p. 58

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aghion, E., Golub, G. (2006). Production Technologies of Magnesium. In: Magnesium Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30812-1_2

Download citation

Publish with us

Policies and ethics