Skip to main content

KNApSAcK: A Comprehensive Species-Metabolite Relationship Database

  • Chapter
Plant Metabolomics

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 57))

Conclusion and Remarks

We prepared a database, KNApSAcK for accumulation and search of metabolite-species relationships. The power-law distribution observed in the present study is likely to be associated with research activity for finding novel metabolites from nature. In addition, it seems to be derived from searching rare metabolites from the organisms originally exhibiting power-law in the degree distribution of their metabolic networks. This suggests that the database contains chemical diversity of metabolites which occurred through evolution of species. Graph clustering is shown to be useful to extract taxonomic relationships on the basis of common metabolites. As we are continuously accumulating metabolite-species pairs in the database, we continue to advance our understanding of species-metabolite relations in taxonomic hierarchy. Furthermore, we plan to add an option for searching metabolite structures by entering partial structures, which will be helpful for metabolite research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Aharoni A, Ric de Vos CH, Verhoeven HA, Maliepaard CA, Kruppa G, Bino R, Goodenowe D (2002) Non-targeted metabolomic profiling using Fourier transform ion cyclotron mass spectrometry (FTMS). OMICS J Integr Biol 6:217–234

    Article  CAS  Google Scholar 

  • Amin MA, Kanaya S (2004) Detection of protein complexes in large interaction networks. Proc the 8th world multi-conference on systemics, cybernetics and informatics, vol VII, pp 119–123

    Google Scholar 

  • Arita M (2005) Scale-freeness and biological networks. J Biochem 138 (in press)

    Google Scholar 

  • Arlt K, Brandt S, Kehr J (2001) Amino acid analysis in five pooled single plant cell samples using capillary electrophoresis coupled to laser-induced fluorescence detection. J Chromatogr A 926:319–325

    Article  PubMed  CAS  Google Scholar 

  • Bailey NJ, Stanley PD, Hadfield ST, Lindon JC, Nicholson JK (2000) Mass spectrometrically detected directly coupled high performance liquid chromatography/nuclear magnetic resonance spectroscopy/mass spectrometry for the identification of xenobiotic metabolites in maize plants. Rapid Commun Mass Spectrom 14:679–684

    Article  PubMed  CAS  Google Scholar 

  • Bairoch A (2000) The ENZYME database in 2000. Nucleic Acids Res 28:304–305

    Article  PubMed  CAS  Google Scholar 

  • Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512

    Article  PubMed  Google Scholar 

  • Barrow MP, Headley JV, Perub KM, Derrick PJ (2004) Fourier transformion cyclotron resonance mass spectrometry of principal components in oils ands naphthenic acids. J Chromatogr A 1058:51–59

    Article  PubMed  CAS  Google Scholar 

  • Bligny R, Douce R (2001) NMR and plant metabolism. Curr Opin Plant Biol 4:191–196

    Article  PubMed  CAS  Google Scholar 

  • Boyes DC, Zayed AM, Ascenzi R, McCaskill AJ, Hoffman NE, Davis KR, Görlach J (2001) Growth stage-based phenotypic analysis of Arabidopsis: A model for high throughput functional genomics in plants. Plant Cell 13:1499–1510

    Article  PubMed  CAS  Google Scholar 

  • Chase MW, Morton CM, Kallunki JA (1999) Phylogenetic relationships of Rutaceae: A cladistic analysis of the subfamilies using evidence from rbcL and atpB sequence variation. Am J Bot 86:1191–1199

    Article  PubMed  CAS  Google Scholar 

  • De Luca V, St Pierre B (2000) The cell and developmental biology of alkaloid biosynthesis. Trends Plant Sci 5:168–173

    Article  PubMed  Google Scholar 

  • Feng Q, Zhang Y, Hao P, Wang S, Fu G, Huang Y, Li Y, Zhu J, Liu Y, Hu X et al. (2002) Sequence and analysis of rice chromosome 4. Nature 420:316–320

    Article  PubMed  CAS  Google Scholar 

  • Fraser PD, Pinto ME, Holloway DE, Bramley PM (2000) Application of high-performance liquid chromatography with photodiode array detection to the metabolic profiling of plant isoprenoids. Plant J 24:551–558

    Article  PubMed  CAS  Google Scholar 

  • Fukushima A, Ikemura A, Kinouchi M, Oshima T, Kudo Y, Mori H, Kanaya S (2002) Periodicity in prokaryotic and eukaryotic genomes identified by power spectrum analysis. Gene 300:203–211

    Article  PubMed  CAS  Google Scholar 

  • Gabaix X (1999) Zipf’s law for cities: An explanation. Q J Econ 114:739–767

    Article  Google Scholar 

  • Gerstein M (1997) A structural census of genomes: comparing bacterial, eukaryotic, and archaeal genomes in terms of protein structure. J Mol Biol 274:562–576

    Article  PubMed  CAS  Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    Article  PubMed  CAS  Google Scholar 

  • Goto S, Okuno Y, Hattori M, Nishioka T, Kanehisa M (2002) LIGAND: Database of chemical compounds and reactions in biological pathways. Nucleic Acids Res 30:402–404

    Article  PubMed  CAS  Google Scholar 

  • Huhman DV, Sumner LW (2002) Metabolic profiling of saponins in Medicago sativa and Medicago truncatula using HPLC coupled to an electrospray ion-trap mass spectometer. Phytochemistry 59:347–360

    Article  PubMed  CAS  Google Scholar 

  • Huynen MA, van Nimwegen E (1998) The frequency distribution of gene family sizes in complete genomes. Mol Biol Evol 15:583–589

    PubMed  CAS  Google Scholar 

  • Jeong H, Tombor B, Albert R, Oltvai ZN, Barabasi AL (2000) The large-scale organization of metabolic networks. Nature 407:651–654

    Article  PubMed  CAS  Google Scholar 

  • Kanehisa M, Goto S, Kawashima S, Nakaya A (2002) The KEGG databases at GenomeNet. Nucleic Acids Res 30:42–46

    Article  PubMed  CAS  Google Scholar 

  • Mantegna RN, Buldyrev SV, Goldberger AL, Havlin S, Peng C, Simons M, Stanley HE (1994) Linguistic features of noncoding DNA sequences. Phys Rev Lett 73:3169–3172

    Article  PubMed  CAS  Google Scholar 

  • Oliver SG, Winson MK, Kell DB, Baganz F (1998) Systematic functional analysis of the yeast genome. Trends Biotech 16:373–378

    Article  CAS  Google Scholar 

  • Park J, Lappe M, Teichmann SA (2001) Mapping protein family interactions; intramolecular and inter molecular protein family interaction repertories in the PDB and yeast. J Mol Biol 307:929–938

    Article  PubMed  CAS  Google Scholar 

  • Qian J, Luscombe NM, Gerstein M (2001) Protein family and fold occurance in genomes: Powerlaw behaviour and evolutionary model. J Mol Biol 313:673–681

    Article  PubMed  CAS  Google Scholar 

  • Ratcliffe RG, Shachar-Hill Y (2001) Probing plant metabolism with NMR. Annu Rev Plant Physiol Plant Mol Biol 52:499–526

    Article  PubMed  CAS  Google Scholar 

  • Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL (2002) Hierarchical organization of modularity in metabolic networks. Science 297:1551–1555

    Article  PubMed  CAS  Google Scholar 

  • Roberts JKM (2000) NMR adventures in the metabolic labyrinth within plants. Trends Plant Sci 5:30–34

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T, Matsumoto T, Yamamoto K, Sakata K, Baba T, Katayose Y, Wu J, Niimura Y, Cheng Z, Nagamura Y et al (2002) The genome sequence and structure of rice chromosome 1. Nature 420:312–316

    Article  PubMed  CAS  Google Scholar 

  • Soga Y, Ueno Y, Naraoka H, Ohashi Y, Tomita M, Nishioka T (2002) Simultaneous determination of anionic intermediates for Bacillus subtilis metabolic pathways by capillary electrophoresis electrospray ionization mass spectrometry. Anal Chem 74:2233–2239

    Article  PubMed  CAS  Google Scholar 

  • Tweeddale H, Notley-McRobb L, Ferenci T (1998) Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool (“metabolome”) analysis. J Bacteriol 180:5109–5116

    PubMed  CAS  Google Scholar 

  • Wallace RS, Cota JH (1996) An intron loss in the chloroplast gene rpoC1 supports a monophyletic origin for the subfamily Cactoideae of the Cactaceae. Curr Genet 29:275–281

    PubMed  CAS  Google Scholar 

  • Wink M (1988) Plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores. Theor Appl Genet 75:225–233

    Article  CAS  Google Scholar 

  • Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–11

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    Article  PubMed  CAS  Google Scholar 

  • Zipf GK (1949) Human behavior and the principle of least effort: an introduction to human ecology. Addison-Wesley, Cambridge, MA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shinbo, Y. et al. (2006). KNApSAcK: A Comprehensive Species-Metabolite Relationship Database. In: Saito, K., Dixon, R.A., Willmitzer, L. (eds) Plant Metabolomics. Biotechnology in Agriculture and Forestry, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29782-0_13

Download citation

Publish with us

Policies and ethics