Skip to main content

Molecular Chaperones in Signal Transduction

  • Chapter
Molecular Chaperones in Health and Disease

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 172))

Abstract

Many cellular signaling molecules exist in different conformations corresponding to active and inactive states. Transition between these states is regulated by reversible modifications, such asphosphorylation, or by binding of nucleotide triphosphates, their regulated hydrolysis to diphosphates, and their exchange against fresh triphosphates. Specificity and efficiency of cellular signaling is further maintained by regulated subcellular localization of signaling molecules as well as regulated protein—protein interaction. Hence, it is not surprising that molecular chaperones-proteins that are able to specifically interact with distinct conformations of other proteins—could per se interfere with cellular signaling. Hence, it is not surprising that chaperones have co-evolved as integral components of signaling networks where they can function in the maturation as well as in regulating the transition between active and inactive state of signaling molecules, such as receptors, transcriptional regulators and potein kinases. Furthermore, new classes of specific chaperones are emerging and their role in histone-mediated chromatin remodeling and RNA folding are under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abravaya K, Myers MP, Murphy SP, Morimoto RI (1992) The humanheat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock gene expression. Genes Dev 6:1153–1164

    PubMed  CAS  Google Scholar 

  • Ali A, Bharadwaj S, O’Carroll R, Ovsenek N (1998) HSP90 interacts with and regulates the activity of heat shock factor 1 in Xenopus oocytes. Mol Cell Biol 18:4949–4960

    PubMed  CAS  Google Scholar 

  • Baler R, Welch WJ, Voellmy R (1992) Heat shock gene regulation by nascentpolypeptides and denatured proteins: hsp70 as a potential autoregulatory factor. J Cell Biol 117:1151–1159

    Article  PubMed  CAS  Google Scholar 

  • Bardelli A, Longati P, Albero D, Goruppi S, Schneider C, Ponzetto C, Comoglio PM (1996) HGF receptor associates with the anti-apoptotic protein BAG-1 and prevents cell death. Embo J 15:6205–6212

    PubMed  CAS  Google Scholar 

  • Bharadwaj S, Ali A, Ovsenek N (1999) Multiple components of the HSP90 chaperone complex function in regulation of heat shock factor 1 In vivo. Mol Cell Biol 19:8033–8041

    PubMed  CAS  Google Scholar 

  • Boellmann F, Guettouche T, Guo Y, Fenna M, Mnayer L, Voellmy R (2004) DAXX interacts with heat shock factor 1 during stress activation and enhances its transcriptional activity. Proc Natl Acad Sci U S A 101:4100–4105. Epub 2004 Mar 4111

    Article  PubMed  CAS  Google Scholar 

  • Bonvini P, Dalla Rosa H, Vignes N, Rosolen A (2004) Ubiquitination and proteasomal degradation of nucleophosmin-anaplastic lymphoma kinase induced by 17-allylamino-demethoxygeldanamycin: role of the co-chaperone carboxyl heat shock protein 70-interacting protein. Cancer Res 64:3256–3264

    Article  PubMed  CAS  Google Scholar 

  • Broemer M, Krappmann D, Scheidereit C (2004) Requirement of Hsp90 activity for IkappaB kinase (IKK) biosynthesis and for constitutive and inducible IKK and NF-kappaB activation. Oncogene 23:5378–5386

    Article  PubMed  CAS  Google Scholar 

  • Bruey JM, Ducasse C, Bonniaud P, Ravagnan L, Susin SA, Diaz-Latoud C, Gurbuxani S, Arrigo AP, Kroemer G, Solary E, Garrido C (2000) Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol 2:645–652

    PubMed  CAS  Google Scholar 

  • Brugge JS, Erikson E, Erikson RL (1981) The specific interaction of the Rous sarcoma virus transforming protein, pp60src, with two cellular proteins. Cell 25:363–372

    Article  PubMed  CAS  Google Scholar 

  • Catelli MG, Binart N, Jung-Testas I, Renoir JM, Baulieu EE, Feramisco JR, Welch WJ (1985) The common 90-kd protein component of non-transformed ‘8S’ steroid receptors is a heat-shock protein. EMBO J 4: 3131–3135

    PubMed  CAS  Google Scholar 

  • Charette SJ, Lavoie JN, Lambert H, Landry J (2000) Inhibition of Daxx-mediated apoptosis by heat shock protein 27. Mol Cell Biol 20:7602–7612

    Article  PubMed  CAS  Google Scholar 

  • Chu B, Soncin F, Price BD, Stevenson MA, Calderwood SK (1996) Sequential phosphorylation by mitogen-activated protein kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock factor-1. J Biol Chem 271:30847–30857

    PubMed  CAS  Google Scholar 

  • Citri A, Gan J, Mosesson Y, Vereb G, Szollosi J, Yarden Y (2004) Hsp90 restrains ErbB-2/HER2 signalling by limiting heterodimer formation. EMBO Rep 5:1165–1170

    Article  PubMed  CAS  Google Scholar 

  • Cowan JL, Morley SJ (2004) The proteasome inhibitor, MG132, promotes the reprogramming of translation in C2C12 myoblasts and facilitates the association of hsp25 with the eIF4F complex. Eur J Biochem 271:3596–3611

    Article  PubMed  CAS  Google Scholar 

  • Cutforth T, Rubin GM (1994) Mutations in Hsp83 and cdc37 impair signaling by the sevenless receptor tyrosine kinase in Drosophila. Cell 77:1027–1036

    Article  PubMed  CAS  Google Scholar 

  • Dai Q, Zhang C, Wu Y, McDonough H, Whaley RA, Godfrey V, Li HH, Madamanchi N, Xu W, Neckers L, Cyr D, Patterson C (2003) CHIP activates HSF1 and confers protection against apoptosis and cellular stress. EMBO J 22:5446–5458

    Article  PubMed  CAS  Google Scholar 

  • Dai R, Frejtag W, He B, Zhang Y, Mivechi NF (2000) c-Jun NH2-terminal kinase targeting and phosphorylation of heat shock factor-1 suppress its transcriptional activity. J Biol Chem 275:18210–18218

    PubMed  CAS  Google Scholar 

  • De Carcer G (2004) Heat shock protein 90 regulates the metaphase-anaphase transition in a polo-like kinase-dependent manner. Cancer Res 64:5106–5112

    PubMed  Google Scholar 

  • De Nardo D, Masendycz P, Ho S, Cross M, Fleetwood AJ, Reynolds EC, Hamilton JA, Scholz GM (2005) A central role for the Hsp90middle dotCdc37 molecular chaperone module in interleukin-1 receptor-associated-kinase-dependent signaling by toll-like receptors. J Biol Chem 280:9813–9822. Epub 2005 Jan 9812

    PubMed  Google Scholar 

  • Den Engelsman J, Bennink EJ, Doerwald L, Onnekink C, Wunderink L, Andley UP, Kato K, de Jong WW, Boelens WC (2004) Mimicking phosphorylation of the small heat-shock protein alphaB-crystallin recruits the F-box protein FBX4 to nuclear SC35 speckles. Eur J Biochem 271:4195–4203

    Google Scholar 

  • Diehl JA, Yang W, Rimerman RA, Xiao H, Emili A (2003) Hsc70 regulates accumulation of cyclin D1 and cyclin D1-dependent protein kinase. Mol Cell Biol 23:1764–1774

    Article  PubMed  CAS  Google Scholar 

  • Donze O, Abbas-Terki T, Picard D (2001) The Hsp90 chaperone complex is both a facilitator and a repressor of the dsRNA-dependent kinase PKR. EMBO J 20:3771–3780

    PubMed  CAS  Google Scholar 

  • Evgrafov OV, Mersiyanova I, Irobi J, Van Den Bosch L, Dierick I, Leung CL, Schagina O, Verpoorten N, Van Impe K, Fedotov V, Dadali E, Auer-Grumbach M, Windpassinger C, Wagner K, Mitrovic Z, Hilton-Jones D, Talbot K, Martin JJ, Vasserman N, Tverskaya S, Polyakov A, Liem RK, Gettemans J, Robberecht W, De Jonghe P, Timmerman V (2004) Mutant small heat-shock protein 27 causes axonal Charcot-Marie-Tooth disease and distal hereditary motor neuropathy. Nat Genet 36:602–606. Epub 2004 May 2002

    Article  PubMed  CAS  Google Scholar 

  • Freeman BC, Felts SJ, Toft DO, Yamamoto KR (2000) The p23 molecular chaperones act at a late step in intracellular receptor action to differentially affect ligand efficacies. Genes Dev 14:422–434

    PubMed  CAS  Google Scholar 

  • Freeman BC, Yamamoto KR (2002) Disassembly of transcriptional regulatory complexes by molecular chaperones. Science 296:2232–2235

    Article  PubMed  CAS  Google Scholar 

  • Froesch BA, Takayama S, Reed JC (1998) BAG-1L protein enhances androgen receptor function. J Biol Chem 273:11660–11666

    Article  PubMed  CAS  Google Scholar 

  • Grammatikakis N, Lin JH, Grammatikakis A, Tsichlis PN, Cochran BH (1999) p50(cdc37) acting in concert with Hsp90 is required for Raf-1 function. Mol Cell Biol 19:1661–1672

    PubMed  CAS  Google Scholar 

  • Guay J, Lambert H, Gingras-Breton G, Lavoie JN, Huot J, Landry J (1997) Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27. J Cell Sci 110:357–368

    PubMed  CAS  Google Scholar 

  • Guzey M, Takayama S, Reed JC (2000) BAG1L enhances trans-activation function of the vitamin D receptor. J Biol Chem 275:40749–40756

    Article  PubMed  CAS  Google Scholar 

  • Herschlag D (1995) RNA chaperones and the RNA folding problem. J Biol Chem 270:20871–20874

    PubMed  CAS  Google Scholar 

  • Hjorth-Sorensen B, Hoffmann ER, Lissin NM, Sewell AK, Jakobsen BK (2001) Activation of heat shock transcription factor in yeast is not influenced by the levels of expression of heat shock proteins. Mol Microbiol 39: 914–923

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann JH, Linke K, Graf PC, Lilie H, Jakob U (2004) Identification of a redox-regulated chaperone network. EMBO J 23:160–168. Epub 2003 Dec 2011

    Article  PubMed  CAS  Google Scholar 

  • Hohfeld J, Jentsch S (1997) GrpE-like regulation of the hsc70 chaperone by the anti-apoptotic protein BAG-1. EMBO J 16:6209–6216

    Article  PubMed  CAS  Google Scholar 

  • Holmberg CI, Hietakangas V, Mikhailov A, Rantanen JO, Kallio M, Meinander A, Hellman J, Morrice N, MacKintosh C, Morimoto RI, Eriksson JE, Sistonen L (2001) Phosphorylation of serine 230 promotes inducible transcriptional activity of heat shock factor 1. EMBO J 20:3800–3810

    Article  PubMed  CAS  Google Scholar 

  • Irobi J, Van Impe K, Seeman P, Jordanova A, Dierick I, Verpoorten N, Michalik A, De Vriendt E, Jacobs A, Van Gerwen V, Vennekens K, Mazanec R, Tournev I, Hilton-Jones D, Talbot K, Kremensky I, Van Den Bosch L, Robberecht W, Van Vandekerckhove J, Broeckhoven C, Gettemans J, De Jonghe P, Timmerman V (2004) Hot-spot residue in small heat-shock protein 22 causes distalmotor neuropathy. Nat Genet 36:597–601. Epub 2004 May 2002

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Kamei K, Iwamoto I, Inaguma Y, Nohara D, Kato K (2001) Phosphorylation-induced change of the oligomerization state of alpha B-crystallin. J Biol Chem 276:5346–5352. Epub 2000 Nov 5328

    PubMed  CAS  Google Scholar 

  • Jakob U, Muse W, Eser M, Bardwell JC (1999) Chaperone activity with a redox switch. Cell 96:341–352

    Article  PubMed  CAS  Google Scholar 

  • Kantorow M, Piatigorsky J (1994) Alpha-crystallin/small heat shock protein has autokinase activity. Proc Natl Acad Sci U S A 91:3112–3116

    PubMed  CAS  Google Scholar 

  • Kantorow M, Horwitz J, van Boekel MA, de Jong WW, Piatigorsky J (1995) Conversion from oligomers to tetramers enhances autophosphorylation by lens alpha A-crystallin. Specificity between alpha A-and alpha B-crystallin subunits. Alpha-crystallin/small heat shock protein has autokinase activity. J Biol Chem 270:17215–17220

    Article  PubMed  CAS  Google Scholar 

  • Kato K, Ito H, Kamei K, Inaguma Y, Iwamoto I, Saga S (1998) Phosphorylation of alphaB-crystallin in mitotic cells and identification of enzymatic activities responsible for phosphorylation. J Biol Chem 273:28346–28354

    PubMed  CAS  Google Scholar 

  • Kim HJ, Song EJ, Lee YS, Kim E, Lee KJ (2005a) Human Fas-associated factor 1 interacts with heat shock protein 70 and negatively regulates chaperone activity. J Biol Chem 280:8125–8133. Epub 2004 Dec 8113

    PubMed  CAS  Google Scholar 

  • Kim J, Nueda A, Meng YH, Dynan WS, Mivechi NF (1997) Analysis of the phosphorylation of human heat shock transcription factor-1 by MAP kinase familymembers. J Cell Biochem 67:43–54

    PubMed  CAS  Google Scholar 

  • Kim MV, Seit-Nebi AS, Gusev NB (2004a) The problem of protein kinase activity of small heat shock protein Hsp22 (H11 or HspB8). Biochem Biophys Res Commun 325:649–652

    PubMed  CAS  Google Scholar 

  • Kim SA, Yoon JH, Lee SH, Ahn SG (2005b) Polo-like kinase 1 phosphorylates HSF1 and mediates its nuclear translocation during heat stress. J Biol Chem 20:20

    Google Scholar 

  • Kim SW, Chao TH, Xiang R, Lo JF, Campbell MJ, Fearns C, Lee JD (2004b) Tid1, the human homologue of a Drosophila tumor suppressor, reduces the malignant activity of ErbB-2 in carcinoma cells. Cancer Res 64: 7732–7739

    PubMed  CAS  Google Scholar 

  • Kimura Y, Rutherford SL, Miyata Y, Yahara I, Freeman BC, Yue L, Morimoto RI, Lindquist S (1997) Cdc37 is a molecular chaperone with specific functions in signal transduction. Genes Dev 11:1775–1785

    PubMed  CAS  Google Scholar 

  • Kline MP, Morimoto RI (1997) Repression of the heat shock factor 1 transcriptional activation domain is modulated by constitutive phosphorylation. Mol Cell Biol 17:2107–2115

    PubMed  CAS  Google Scholar 

  • Knauf U, Newton EM, Kyriakis J, Kingston RE (1996) Repression of human heat shock factor 1 activity at control temperature by phosphorylation. Genes Dev 10:2782–2793

    PubMed  CAS  Google Scholar 

  • Kosano H, Stensgard B, Charlesworth MC, McMahon N, Toft D (1998) The assembly of progesterone receptor-hsp90 complexes using purified proteins. J Biol Chem 273:32973–32979

    Article  PubMed  CAS  Google Scholar 

  • Lambert H, Charette SJ, Bernier AF, Guimond A, Landry J (1999) HSP27 multimerization mediated by phosphorylation-sensitive intermolecular interactions at the amino terminus. J Biol Chem 274:9378–9385

    Article  PubMed  CAS  Google Scholar 

  • Le Boeuf F, Houle F, Huot J (2004) Regulation of vascular endothelial growth factor receptor 2-mediated phosphorylation of focal adhesion kinase by heat shock protein 90 and Src kinase activities. J Biol Chem 279: 39175–39185. Epub 32004 Jul 39106

    PubMed  Google Scholar 

  • Lorsch JR (2002) RNA chaperones exist and DEAD box proteins get a life. Cell 109:797–800

    Article  PubMed  CAS  Google Scholar 

  • Louvion JF, Abbas-Terki T, Picard D (1998) Hsp90 is required for pheromone signaling in yeast. Mol Biol Cell 9:3071–3083

    PubMed  CAS  Google Scholar 

  • Loyola A, Almouzni G (2004) Histone chaperones, a supporting role in the limelight. Biochim Biophys Acta 1677:3–11

    PubMed  CAS  Google Scholar 

  • McMillan DR, Xiao X, Shao L, Graves K, Benjamin IJ (1998) Targeted disruptionof heat shock transcription factor 1 abolishes thermotolerance and protection against heat-inducible apoptosis. J Biol Chem 273:7523–7528

    Article  PubMed  CAS  Google Scholar 

  • Mikolajczyk M, Nelson MA (2004) Regulation of stability of cyclin-dependent kinase CDK11p110and a caspase-processed form, CDK11p46, byHsp90. Biochem J 384:461–467

    PubMed  CAS  Google Scholar 

  • Miyata Y, Yahara I (1992) The 90-kDa heat shock protein, HSP90, binds and protects casein kinase II from self-aggregation and enhances its kinase activity. J Biol Chem 267:7042–7047

    PubMed  CAS  Google Scholar 

  • Miyata Y, Nishida E (2004) CK2 controls multiple protein kinases by phosphorylating a kinase-targeting molecular chaperone, Cdc37. Mol Cell Biol 24:4065–4074

    Article  PubMed  CAS  Google Scholar 

  • Morimoto RI (1993) Cells in stress: transcriptional activation of heat shock genes. Science 259:1409–1410

    PubMed  CAS  Google Scholar 

  • Morimoto RI (2002) Dynamic remodeling of transcription complexes by molecular chaperones. Cell 110: 281–284

    Article  PubMed  CAS  Google Scholar 

  • Musch MW, Kapil A, Chang EB (2004) Heat shockprotein 72 binds and protects dihydrofolate reductase against oxidative injury. Biochem Biophys Res Commun 313:185–192

    Article  PubMed  CAS  Google Scholar 

  • Nollen EA, Morimoto RI (2002) Chaperoning signaling pathways: molecular chaperones as stress-sensing ‘heat shock’ proteins. J Cell Sci 115:2809–2816

    PubMed  CAS  Google Scholar 

  • Oppermann H, Levinson AD, Levintow L, Varmus HE, Bishop JM, Kawai S (1981) Two cellular proteins that immunoprecipitate with the transforming protein of Rous sarcoma virus. Virology 113:736–751

    Article  PubMed  CAS  Google Scholar 

  • Ozaki M, Deshpande SS, Angkeow P, Suzuki S, Irani K (2000) Rac1 regulates stress-induced, redox-dependent heat shock factor activation. J Biol Chem 275:35377–35383

    Article  PubMed  CAS  Google Scholar 

  • Parcellier A, Schmitt E, Gurbuxani S, Seigneurin-Berny D, Pance A, Chantome A, Plenchette S, Khochbin S, Solary E, Garrido C (2003) HSP27 is a ubiquitin-binding protein involved in I-kappaBalpha proteasomal degradation. Mol Cell Biol 23:5790–5802

    Article  PubMed  CAS  Google Scholar 

  • Park KJ, Gaynor RB, Kwak YT (2003) Heat shock protein 27 association with the I kappa B kinase complex regulates tumor necrosis factor alpha-induced NF-kappa B activation. J Biol Chem 278:35272–35278. Epub 32003 Jun 35225

    PubMed  CAS  Google Scholar 

  • Philpott A, Leno GH, Laskey RA (1991) Sperm decondensation in Xenopus egg cytoplasm is mediated by nucleoplasmin. Cell 65:569–578

    Article  PubMed  CAS  Google Scholar 

  • Pontius BW, Berg P (1992) Rapid assembly and disassembly of complementary DNA strands through an equilibrium intermediate state mediated by A1 hnRNP protein. J Biol Chem 267:13815–13818

    PubMed  CAS  Google Scholar 

  • Pratt WB, Galigniana MD, Harrell JM, DeFranco DB (2004) Role of hsp90 and the hsp90-binding immunophilins in signalling protein movement. Cell Signal 16:857–872

    Article  PubMed  CAS  Google Scholar 

  • Rogalla T, Ehrnsperger M, Preville X, Kotlyarov A, Lutsch G, Ducasse C, Paul C, Wieske M, Arrigo AP, Buchner J, Gaestel M (1999) Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor alpha by phosphorylation. J Biol Chem 274:18947–18956

    Article  PubMed  CAS  Google Scholar 

  • Sanchez ER, Toft DO, Schlesinger MJ, Pratt WB (1985) Evidence that the 90-kDa phosphoprotein associated with the untransformed L-cell glucocorticoid receptor is a murine heat shock protein. J Biol Chem 260:12398–12401

    PubMed  CAS  Google Scholar 

  • Satyal SH, Chen D, Fox SG, Kramer JM, Morimoto RI (1998) Negative regulation of the heat shock transcriptional response by HSBP1. Genes Dev 12:1962–1974

    PubMed  CAS  Google Scholar 

  • Schneikert J, Hubner S, Martin E, Cato AC (1999) A nuclear action of the eukaryotic cochaperone RAP46 in downregulation of glucocorticoid receptor activity. J Cell Biol 146:929–940

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Mosser DD, Morimoto RI (1998) Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev 12:654–666

    PubMed  CAS  Google Scholar 

  • Silverstein AM, Galigniana MD, Chen MS, Owens-Grillo JK, Chinkers M, Pratt WB (1997) Protein phosphatase 5 is a major component of glucocorticoid receptor hsp90 complexes with properties of an FK506-binding immunophilin. J Biol Chem 272:16224–16230

    PubMed  CAS  Google Scholar 

  • Sitia R, Molteni SN (2004) Stress, protein (mis)folding, and signaling: the redox connection. Sci STKE 2004: pe27

    Article  PubMed  Google Scholar 

  • Smith CC, Yu YX, Kulka M, Aurelian L (2000) A novel human gene similar to the protein kinase (PK) coding domain of the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10) codes for a serine-threonine PK and is expressed in melanoma cells. J Biol Chem 275:25690–25699

    PubMed  CAS  Google Scholar 

  • Soncin F, Zhang X, Chu B, Wang X, Asea A, Ann Stevenson M, Sacks DB, Calderwood SK (2003) Transcriptional activity and DNA binding of heat shock factor-1 involve phosphorylation on threonine 142 by CK2. Biochem Biophys Res Commun 303:700–706

    Article  PubMed  CAS  Google Scholar 

  • Song J, Takeda M, Morimoto RI (2001) Bag1-Hsp70 mediates a physiological stress signalling pathway that regulates Raf-1/ERK and cell growth. Nat Cell Biol 3:276–282

    Article  PubMed  CAS  Google Scholar 

  • Stokoe D, Engel K, Campbell DG, Cohen P, Gaestel M (1992) Identification of MAPKAP kinase 2 as a major enzyme responsible for the phosphorylation of the small mammalian heat shock proteins. FEBS Lett 313:307–313

    Article  PubMed  CAS  Google Scholar 

  • Suzuki A, Sugiyama Y, Hayashi Y, Nyu-i N, Yoshida M, Nonaka I, Ishiura S, Arahata K, Ohno S (1998) MKBP, a novel member of the small heat shock protein family, binds and activates the myotonic dystrophy protein kinase. J Cell Biol 140:1113–1124

    Article  PubMed  CAS  Google Scholar 

  • Takayama S, Bimston DN, Matsuzawa S, Freeman BC, Aime-Sempe C, Xie Z, Morimoto RI, Reed JC (1997) BAG-1 modulates the chaperone activity of Hsp70/Hsc70. EMBO J 16:4887–4896

    Article  PubMed  CAS  Google Scholar 

  • Takayama S, Sato T, Krajewski S, Kochel K, Irie S, Millan JA, Reed JC (1995) Cloning and functional analysis of BAG-1: a novel Bcl-2-binding protein with anti-cell death activity. Cell 80:279–284

    Article  PubMed  CAS  Google Scholar 

  • Wang HG, Takayama S, Rapp UR, Reed JC (1996) Bcl-2 interacting protein, BAG-1, binds to and activates the kinase Raf-1. Proc Natl Acad Sci U S A 93:7063–7068

    PubMed  CAS  Google Scholar 

  • Wang X, Grammatikakis N, Siganou A, Stevenson MA, Calderwood SK (2004) Interactions between extracellular signal-regulated protein kinase 1, 14-3-3epsilon, and heat shock factor 1 during stress. J Biol Chem 279: 49460–49469. Epub 42004 Sep 49410

    PubMed  CAS  Google Scholar 

  • Winkler W, Nahvi A, Breaker RR (2002) Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 419:952–956. Epub 2002 Oct 2016

    Article  PubMed  CAS  Google Scholar 

  • Winklhofer KF, Reintjes A, Hoener MC, Voellmy R, Tatzelt J (2001) Geldanamycin restores a defective heat shock response in vivo. J Biol Chem 276:45160–45167. Epub 42001 Sep 45126

    Article  PubMed  CAS  Google Scholar 

  • Xia W, Voellmy R, Spector NL (2000) Sensitization of tumor cells to fas killing through overexpression of heat-shock transcription factor 1. J Cell Physiol 183:425–431

    Article  PubMed  CAS  Google Scholar 

  • Xu W, Mimnaugh E, Rosser MF, Nicchitta C, Marcu M, Yarden Y, Neckers L (2001) Sensitivity of mature Erbb2 to geldanamycin is conferred by its kinase domain and is mediated by the chaperone protein Hsp90. J Biol Chem 276: 3702–3708. Epub 2000 Nov 3708

    PubMed  CAS  Google Scholar 

  • Yaffe MB, Schutkowski M, Shen M, Zhou XZ, Stukenberg PT, Rahfeld JU, Xu J, Kuang J, Kirschner MW, Fischer G, Cantley LC, Lu KP (1997) Sequence-specific and phosphorylation-dependent proline isomerization: a potential mitotic regulatory mechanism. Science 278:1957–1960

    Article  PubMed  CAS  Google Scholar 

  • Yan LJ, Christians ES, Liu L, Xiao X, Sohal RS, Benjamin IJ (2002) Mouse heat shock transcription factor 1 deficiency alters cardiac redox homeostasis and increases mitochondrial oxidative damage. EMBO J 21: 5164–5172

    Article  PubMed  CAS  Google Scholar 

  • Young JC, Hartl FU (2002) Chaperones and transcriptional regulation by nuclear receptors. Nat Struct Biol 9:640–642

    Article  PubMed  CAS  Google Scholar 

  • Zeiner M, Gehring U (1995) A protein that interacts with members of the nuclear hormone receptor family: identification and cDNA cloning. Proc Natl Acad Sci U S A 92:11465–11469

    PubMed  CAS  Google Scholar 

  • Zeiner M, Niyaz Y, Gehring U (1999) The hsp70-associating protein Hap46 binds to DNA and stimulates transcription. Proc Natl Acad Sci U S A 96:10194–10199

    Article  PubMed  CAS  Google Scholar 

  • Zeke T, Morrice N, Vazquez-Martin C, Cohen PT (2005) Human protein phosphatase 5 dissociates from heat-shock proteins and is proteolytically activated in response to arachidonic acid and the microtubule-depolymerizing drug nocodazole. Biochem J 385:45–56

    PubMed  CAS  Google Scholar 

  • Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R (1998) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94:471–480

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gaestel, M. (2006). Molecular Chaperones in Signal Transduction. In: Starke, K., Gaestel, M. (eds) Molecular Chaperones in Health and Disease. Handbook of Experimental Pharmacology, vol 172. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29717-0_4

Download citation

Publish with us

Policies and ethics