Skip to main content

Pacemaker Current and Automatic Rhythms: Toward a Molecular Understanding

  • Chapter
Basis and Treatment of Cardiac Arrhythmias

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 171))

Abstract

The ionic basis of automaticity in the sinoatrial node and His-Purkinje system, the primary and secondary cardiac pacemaking regions, is discussed. Consideration is given to potential targets for pharmacologic or genetic therapies of rhythm disorders. An ideal target would be an ion channel that functions only during diastole, so that action potential repolarization is not affected, and one that exhibits regional differences in expression and/or function so that the primary and secondary pacemakers can be selectively targeted. The so-called pacemaker current, I f, generated by the HCN gene family, best fits these criteria. The biophysical and molecular characteristics of this current are reviewed, and progress to date in developing selective pharmacologic agents targeting I f and in using gene and cell-based therapies to modulate the current are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Accili EA, Redaelli G, DiFrancesco D (1997) Differential control of the hyperpolarization-activated current (if) by cAMP gating and phosphatase inhibition in rabbit sino-atrial node myocytes. J Physiol (Lond) 500:643–651

    CAS  PubMed  Google Scholar 

  • Accili EA, Proenza C, Baruscotti M, DiFrancesco D (2002) From funny current to HCN channels: 20 years of excitation. News Physiol Sci 17:32–37

    CAS  PubMed  Google Scholar 

  • Altomare C, Bucchi A, Camatini E, Baruscotti M, Viscomi C, Moroni A, DiFrancesco D(2001) Integrated allosteric model of voltage gating of hcn channels. J Gen Physiol 117:519–532

    Article  CAS  PubMed  Google Scholar 

  • Anumonwo JM, Freeman LC, Kwok WM, Kass RS (1992) Delayed rectification in single cells isolated from guinea pig sinoatrial node. Am J Physiol 262:H921–H925

    CAS  PubMed  Google Scholar 

  • Attwell D, Cohen I, Eisner DA, Ohba M, Ojeda C (1979) The steady state TTX-sensitive (“window”) sodium current in cardiac Purkinje fibres. Pflugers Arch 379:137–142

    Article  CAS  PubMed  Google Scholar 

  • Baruscotti M, DiFrancesco D (2004) Pacemaker channels. Ann N Y Acad Sci 1015: 111–121

    Article  PubMed  Google Scholar 

  • Baruscotti M, DiFrancesco D, Robinson RB (1996) A TTX-sensitive inward sodium current contributes to spontaneous activity in newborn rabbit sino-atrial node cells. J Physiol (Lond) 492:21–30

    CAS  PubMed  Google Scholar 

  • Baruscotti M, Westenbroek R, Catterall WA, DiFrancesco D, Robinson RB (1997) The newborn rabbit sino-atrial node expresses a neuronal type I—like Na+ channel. J Physiol (Lond) 498:641–648

    CAS  PubMed  Google Scholar 

  • Baruscotti M, DiFrancesco D, Robinson RB (2000) Na(+) current contribution to the diastolic depolarization in newborn rabbit SA node cells. Am J Physiol Heart Circ Physiol 279:H2303–H2309

    CAS  PubMed  Google Scholar 

  • Baruscotti M, DiFrancesco D, Robinson RB (2001) Single-channel properties of the sinoatrial node Na+ current in the newborn rabbit. Pflugers Arch 442:192–196

    Article  CAS  PubMed  Google Scholar 

  • Bell DC, Yao H, Saenger RC, Riley JH, Siegelbaum SA (2004) Changes in local S4 environment provide a voltage-sensing mechanism for mammalian hyperpolarization-activated HCN channels. J Gen Physiol 123:5–20

    Article  CAS  PubMed  Google Scholar 

  • Biel M, Ludwig A, Zong X, Hofmann F (1999) Hyperpolarization-activated cation channels: a multi-gene family. Rev Physiol Biochem Pharmacol 136:165–181

    CAS  PubMed  Google Scholar 

  • Biel M, Schneider A, Wahl C (2002) Cardiac HCN channels. structure, function, and modulation. Trends Cardiovasc Med 12:206–212

    Article  CAS  PubMed  Google Scholar 

  • Bogdanov KY, Vinogradova TM, Lakatta EG (2001) Sinoatrial nodal cell ryanodine receptor and Na(+)-Ca(2+) exchanger: molecular partners in pacemaker regulation. Circ Res 88:1254–1258

    CAS  PubMed  Google Scholar 

  • Bois P, Bescond J, Renaudon B, Lenfant J (1996) Mode of action of bradycardic agent, S 16257, on ionic currents of rabbit sinoatrial node cells. Br J Pharmacol 118:1051–1057

    CAS  PubMed  Google Scholar 

  • Borlak J, Thum T (2003) Hallmarks of ion channel gene expression in end-stage heart failure. FASEB J 17:1592–1608

    Article  CAS  PubMed  Google Scholar 

  • Boyett MR, Honjo H, Kodama I (2000) The sinoatrial node, a heterogeneous pacemaker structure. Cardiovasc Res 47:658–687

    Article  CAS  PubMed  Google Scholar 

  • Boyett MR, Dobrzynski H, Lancaster MK, Jones SA, Honjo H, Kodama I (2003) Sophisticated architecture is required for the sinoatrial node to perform its normal pacemaker function. J Cardiovasc Electrophysiol 14:104–106

    Article  PubMed  Google Scholar 

  • Brown HF, DiFrancesco D (1980) Voltage-clamp investigations of membrane currents underlying pacemaker activity in rabbit sino-atrial node. J Physiol (Lond) 308:331–351

    CAS  PubMed  Google Scholar 

  • Bryant SM, Sears CE, Rigg L, Terrar DA, Casadei B (2001) Nitric oxide does not modulate the hyperpolarization-activated current, If, in ventricular myocytes from spontaneously hypertensive rats. Cardiovasc Res 51:51–58

    Article  CAS  PubMed  Google Scholar 

  • Bucchi A, Baruscotti M, DiFrancesco D (2002) Current-dependent block of rabbit sino-atrial node I(f) channels by ivabradine. J Gen Physiol 120:1–13

    Article  CAS  PubMed  Google Scholar 

  • Bucchi A, Baruscotti M, Robinson RB, DiFrancesco D (2003) If-dependent modulation of pacemaker rate mediated by cAMP in the presence of ryanodine in rabbit sino-atrial node cells. J Mol Cell Cardiol 35:905–913

    Article  CAS  PubMed  Google Scholar 

  • Camelliti P, Green CR, LeGrice I, Kohl P (2004) Fibroblast network in rabbit sinoatrial node: structural and functional identification of homogeneous and heterogeneous cell coupling. Circ Res 94:828–835

    Article  CAS  PubMed  Google Scholar 

  • Catterall WA (1992) Cellular and molecular biology of voltage-gated sodium channels. Physiol Rev 72:S15–S48

    CAS  PubMed  Google Scholar 

  • Cerbai E, Barbieri M, Mugelli A (1996) Occurrence and properties of the hyperpolarization-activated current If in ventricular myocytes from normotensive and hypertensive rats during aging. Circulation 94:1674–1681

    CAS  PubMed  Google Scholar 

  • Cerbai E, Sartiani L, DePaoli P, Pino R, Maccherini M, Bizzarri F, DiCiolla F, Davoli G, Sani G, Mugelli A (2001) The properties of the pacemaker current If in human ventricular myocytes are modulated by cardiac disease. J Mol Cell Cardiol 33:441–448

    Article  CAS  PubMed  Google Scholar 

  • Chang F, Gao J, Tromba C, Cohen I, DiFrancesco D (1990) Acetylcholine reverses effects of beta-agonists on pacemaker current in canine cardiac Purkinje fibers but has no direct action. A difference between primary and secondary pacemakers. Circ Res 66:633–636

    CAS  PubMed  Google Scholar 

  • Chang F, Cohen IS, DiFrancesco D, Rosen MR, Tromba C (1991) Effects of protein kinase inhibitors on canine Purkinje fibre pacemaker depolarization and the pacemaker current if. J Physiol (Lond) 440:367–384

    CAS  PubMed  Google Scholar 

  • Chen J, Mitcheson JS, Lin M, Sanguinetti MC (2000) Functional roles of charged residues in the putative voltage sensor of the HCN2 pacemaker channel. J Biol Chem 275: 36465–36471

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Mitcheson JS, Tristani-Firouzi M, Lin M, Sanguinetti MC (2001) The S4-S5 linker couples voltage sensing and activation of pacemaker channels. Proc Natl Acad Sci U S A 98:11277–11282

    Article  CAS  PubMed  Google Scholar 

  • Cho HS, Takano M, Noma A (2003) The electrophysiological properties of spontaneously beating pacemaker cells isolated from mouse sinoatrial node. J Physiol (Lond) 550: 169–180

    Article  CAS  PubMed  Google Scholar 

  • Clapham DE (1998) Not so funny anymore: pacing channels are cloned. Neuron 21:5–7

    Article  CAS  PubMed  Google Scholar 

  • Cohen CJ, Bean BP, Colatsky TJ, Tsien RW (1981) Tetrodotoxin block of sodium channels in rabbit Purkinje fibers. J Gen Physiol 78:383–411

    Article  CAS  PubMed  Google Scholar 

  • Coraboeuf E, Carmeliet E (1982) Existence of two transient outward currents in sheep cardiac Purkinje fibers. Pflugers Arch 392:352–359

    Article  CAS  PubMed  Google Scholar 

  • Decher N, Bundis F, Vajna R, Steinmeyer K (2003) KCNE2 modulates current amplitudes and activation kinetics of HCN4: influence of KCNE family members on HCN4 currents. Pflugers Arch 446:633–640

    Article  CAS  PubMed  Google Scholar 

  • Decher N, Chen J, Sanguinetti MC (2004) Voltage-dependent gating of hyperpolarization-activated, cyclic nucleotide-gated pacemaker channels: molecular coupling between the S4-S5 and C-linkers. J Biol Chem 279:13859–13865

    Article  CAS  PubMed  Google Scholar 

  • Denyer JC, Brown HF (1990) Rabbit sino-atrial node cells: isolation and electrophysiological properties. J Physiol (Lond) 428:405–424

    CAS  PubMed  Google Scholar 

  • DiFrancesco D (1981a) A new interpretation of the pace-maker current in calf Purkinje fibres. J Physiol (Lond) 314:359–376

    CAS  PubMed  Google Scholar 

  • DiFrancesco D (1981b) A study of the ionic nature of the pace-maker current in calf Purkinje fibres. J Physiol (Lond) 314:377–393

    CAS  PubMed  Google Scholar 

  • DiFrancesco D (1982) Block and activation of the pacemaker if channel in calf Purkinje fibres: effects of potasium, caesium and rubidium. J Physiol (Lond) 329:485–507

    CAS  PubMed  Google Scholar 

  • DiFrancesco D (1986) Characterization of single pacemaker channels in cardiac sino-atrial node cells. Nature 324:470–473

    Article  CAS  PubMed  Google Scholar 

  • DiFrancesco D (1991) The contribution of the ‘pacemaker’ current (if) to generation of spontaneous activity in rabbit sino-atrial node myocytes. J Physiol (Lond) 434:23–40

    CAS  PubMed  Google Scholar 

  • DiFrancesco D (1993) Pacemaker mechanisms in cardiac tissue. Annu Rev Physiol 55:455–472

    Article  CAS  PubMed  Google Scholar 

  • DiFrancesco D (1995) Cardiovascular controversies: the pacemaker current, if, plays an important role in regulating SA node pacemaker activity. Cardiovasc Res 30:307–308

    Article  CAS  PubMed  Google Scholar 

  • DiFrancesco D, Ferroni A (1983) Delayed activation of the cardiac pacemaker current and its dependence on conditioning pre-hyperpolarizations. Pflugers Arch 396:265–267

    Article  CAS  PubMed  Google Scholar 

  • DiFrancesco D, Tortora P (1991) Direct activation of cardiac pacemaker channels by intracellular cyclic AMP. Nature 351:145–147

    Article  CAS  PubMed  Google Scholar 

  • DiFrancesco D, Tromba C (1988a) Inhibition of the hyperpolarization-activated current (if) induced by acetylcholine in rabbit sino-atrial node myocytes. J Physiol (Lond) 405:477–491

    CAS  PubMed  Google Scholar 

  • DiFrancesco D, Tromba C (1988b) Muscarinic control of the hyperpolarization-activated current (if) in rabbit sino-atrial node myocytes. J Physiol (Lond) 405:493–510

    CAS  PubMed  Google Scholar 

  • DiFrancesco D, Ducouret P, Robinson RB (1989) Muscarinic modulation of cardiac rate at low acetylcholine concentrations. Science 243:669–671

    CAS  PubMed  Google Scholar 

  • Er F, Larbig R, Ludwig A, Biel M, Hofmann F, Beuckelmann DJ, Hoppe UC(2003) Dominant-negative suppression of HCN channels markedly reduces the native pacemaker current I(f) and undermines spontaneous beating of neonatal cardiomyocytes. Circulation 107:485–489

    Article  PubMed  Google Scholar 

  • Fernandez-Velasco M, Goren N, Benito G, Blanco-Rivero J, Bosca L, Delgado C (2003) Regional distribution of hyperpolarization-activated current (If) and hyperpolarization-activated cyclic nucleotide-gated channel mRNA expression in ventricular cells from control and hypertrophied rat hearts. J Physiol (Lond) 553:395–405

    Article  CAS  PubMed  Google Scholar 

  • Gaudesius G, Miragoli M, Thomas SP, Rohr S (2003) Coupling of cardiac electrical activity over extended distances by fibroblasts of cardiac origin. Circ Res 93:421–428

    Article  CAS  PubMed  Google Scholar 

  • Gintant GA, Datyner NB, Cohen IS (1984) Slow inactivation of a tetrodotoxin-sensitive current in canine cardiac Purkinje fibers. Biophys J 45:509–512

    CAS  PubMed  Google Scholar 

  • Gloss B, Trost S, Bluhm W, Swanson E, Clark R, Winkfein R, Janzen K, Giles W, Chassande O, Samarut J, Dillmann W (2001) Cardiac ion channel expression and contractile function in mice with deletion of thyroid hormone receptor alpha or beta. Endocrinology 142:544–550

    Article  CAS  PubMed  Google Scholar 

  • Goldin AL, Barchi RL, Caldwell JH, Hofmann F, Howe JR, Hunter JC, Kallen RG, Mandel G, Meisler MH, Netter YB, Noda M, Tamkun MM, Waxman SG, Wood JN, Catterall WA (2000) Nomenclature of voltage-gated sodium channels. Neuron 28:365–368

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Ono K, Noma A (1995)A sustained inward current activated at the diastolic potential range in rabbit sino-atrial node cells. J Physiol (Lond) 483:1–13

    CAS  PubMed  Google Scholar 

  • Guo J, Mitsuiye T, Noma A (1997) The sustained inward current in sino-atrial node cells of guinea-pig heart. Pflugers Arch 433:390–396

    Article  CAS  PubMed  Google Scholar 

  • Hagiwara N, Irisawa H, Kameyama M (1988) Contribution of two types of calcium currents to the pacemaker potentials of rabbit sino-atrial node cells. J Physiol (Lond) 395: 233–253

    CAS  PubMed  Google Scholar 

  • Han W, Bao W, Wang Z, Nattel S (2002) Comparison of ion-channel subunit expression in canine cardiac Purkinje fibers and ventricular muscle. Circ Res 91:790–797

    Article  CAS  PubMed  Google Scholar 

  • Hauswirth O, Noble D, Tsien RW (1968) Adrenaline: mechanism of action on the pacemaker potential in cardiac Purkinje fibers. Science 162:916–917

    CAS  PubMed  Google Scholar 

  • Herring N, Rigg L, Terrar DA, Paterson DJ (2001) NO-cGMP pathway increases the hyperpolarisation-activated current, I(f), and heart rate during adrenergic stimulation. Cardiovasc Res 52:446–453

    Article  CAS  PubMed  Google Scholar 

  • Hiramatsu M, Furukawa T, Sawanobori T, Hiraoka M (2002) Ion channel remodeling in cardiac hypertrophy is prevented by blood pressure reduction without affecting heart weight increase in rats with abdominal aortic banding. J Cardiovasc Pharmacol 39:866–874

    Article  CAS  PubMed  Google Scholar 

  • Hoffman BF, Cranefield PF (1976) Electrophysiology of the heart. Futura Publishing Co, Mount Kisco

    Google Scholar 

  • Honjo H, Boyett MR, Kodama I, Toyama J (1996) Correlation between electrical activity and the size of rabbit sinoatrial node cells. J Physiol (Lond) 496:795–808

    CAS  PubMed  Google Scholar 

  • Honjo H, Boyett MR, Coppen SR, Takagishi Y, Opthof T, Severs NJ, Kodama I (2002) Heterogeneous expression of connexins in rabbit sinoatrial node cells: correlation between connexin isotype and cell size. Cardiovasc Res 53:89–96

    Article  CAS  PubMed  Google Scholar 

  • Irisawa H, Brown HF, Giles W (1993) Cardiac pacemaking in the sinoatrial node. Physiol Rev 73:197–227

    CAS  PubMed  Google Scholar 

  • Ju YK, Allen DG (1998) Intracellular calcium and Na+-Ca2+ exchange current in isolated toad pacemaker cells. J Physiol (Lond) 508:153–166

    CAS  PubMed  Google Scholar 

  • Kaupp UB, Seifert R (2001) Molecular diversity of pacemaker ion channels. Annu Rev Physiol 63:235–257

    Article  CAS  PubMed  Google Scholar 

  • Kodama I, Nikmaram MR, Boyett MR, Suzuki R, Honjo H, Owen JM (1997) Regional differences in the role of the Ca2+ and Na+ currents in pacemaker activity in the sinoatrial node. Am J Physiol 272:H2793–H2806

    CAS  PubMed  Google Scholar 

  • Kohl P (2003) Heterogeneous cell coupling in the heart: an electrophysiological role for fibroblasts. Circ Res 93:381–383

    Article  CAS  PubMed  Google Scholar 

  • Lancaster MK, Jones SA, Harrison SM, Boyett MR(2004) Intracellular Ca2+ and pacemaking within the rabbit sinoatrial node: heterogeneity of role and control. J Physiol (Lond) 556:481–494

    Article  CAS  PubMed  Google Scholar 

  • Lei M, Brown HF (1996) Two components of the delayed rectifier potassium current, IK in rabbit sino-atrial node cells. Exp Physiol 81:725–741

    CAS  PubMed  Google Scholar 

  • Lei M, Honjo H, Kodama I, Boyett MR (2001) Heterogeneous expression of the delayed–rectifier K+ currents i(K,r) and i(K,s) in rabbit sinoatrial node cells. J Physiol (Lond) 535:703–714

    Article  CAS  PubMed  Google Scholar 

  • Lei M, Jones SA, Liu J, Lancaster MK, Fung SSM, Dobrzynski H, Camelitti P, Maier S, Noble D, Boyett MR (2004) Requirement of neuronal-and cardiac-type sodium channels for murine sinoatrial node pacemaking. J Physiol (Lond) 559:835–848

    CAS  PubMed  Google Scholar 

  • Ludwig A, Zong X, Jeglitsch M, Hofmann F, Biel M (1998) A family of hyperpolarization-activated mammalian cation channels. Nature 393:587–591

    Article  CAS  PubMed  Google Scholar 

  • Ludwig A, Zong X, Stieber J, Hullin R, Hofmann F, Biel M (1999) Two pacemaker channels from human heart with profoundly different activation kinetics. EMBO J 18:2323–2329

    Article  CAS  PubMed  Google Scholar 

  • Ludwig A, Budde T, Stieber J, Moosmang S, Wahl C, Holthoff K, Langebartels A, Wotjak C, Munsch T, Zong X, Feil S, Feil R, Lancel M, Chien KR, Konnerth A, Pape HC, Biel M, Hofmann F (2003) Absence epilepsy and sinus dysrhythmia in mice lacking the pacemaker channel HCN2. EMBO J 22:216–224

    Article  CAS  PubMed  Google Scholar 

  • Maier SK, Westenbroek RE, Yamanushi TT, Dobrzynski H, Boyett MR, Catterall WA, Scheuer T (2003) An unexpected requirement for brain-type sodium channels for control of heart rate in the mouse sinoatrial node. Proc Natl Acad Sci U S A 100:3507–3512

    Article  CAS  PubMed  Google Scholar 

  • Mangoni ME, Couette B, Bourinet E, Platzer J, Reimer D, Striessnig J, Nargeot J (2003) Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity. Proc Natl Acad Sci U S A 100:5543–5548

    Article  CAS  PubMed  Google Scholar 

  • Mannikko R, Elinder F, Larsson HP (2002) Voltage-sensing mechanism is conserved among ion channels gated by opposite voltages. Nature 419:837–841

    Article  CAS  PubMed  Google Scholar 

  • Marx SO, Kurokawa J, Reiken S, Motoike H, D’Armiento J, Marks AR, Kass RS (2002) Requirement of a macromolecular signaling complex for beta adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. Science 295:496–499

    Article  CAS  PubMed  Google Scholar 

  • McAllister RE, Noble D, Tsien RW (1975) Reconstruction of the electrical activity of cardiac Purkinje fibres. J Physiol (Lond) 251:1–59

    CAS  PubMed  Google Scholar 

  • Miake J, Marban E, Nuss HB (2002) Gene therapy: biological pacemaker created by gene transfer. Nature 419:132–133

    Article  CAS  PubMed  Google Scholar 

  • Mitsuiye T, Guo J, Noma A (1999) Nicardipine-sensitive Na+-mediated single channel currents in guinea-pig sinoatrial node pacemaker cells. J Physiol (Lond) 521:69–79

    Article  CAS  PubMed  Google Scholar 

  • Mitsuiye T, Shinagawa Y, Noma A (2000) Sustained inward current during pacemaker depolarization in mammalian sinoatrial node cells. Circ Res 87:88–91

    CAS  PubMed  Google Scholar 

  • Mobley BA, Page E (1972) The surface area of sheep cardiac Purkinje fibres. J Physiol (Lond) 220:547–563

    CAS  PubMed  Google Scholar 

  • Moosmang S, Stieber J, Zong X, Biel M, Hofmann F, Ludwig A (2001) Cellular expression and functional characterization of four hyperpolarization-activated pacemaker channels in cardiac and neuronal tissues. Eur J Biochem 268:1646–1652

    Article  CAS  PubMed  Google Scholar 

  • Noble D, Tsien RW (1968) The kinetics and rectifier properties of the slow potassium current in cardiac Purkinje fibres. J Physiol (Lond) 195:185–214

    CAS  PubMed  Google Scholar 

  • Pachucki J, Burmeister LA, Larsen PR (1999) Thyroid hormone regulates hyperpolarization-activated cyclic nucleotide-gated channel (HCN2) mRNA in the rat heart. Circ Res 85:498–503

    CAS  PubMed  Google Scholar 

  • Perez-Reyes E (2003) Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev 83:117–161

    CAS  PubMed  Google Scholar 

  • Pinto JM, Sosunov EA, Gainullin RZ, Rosen MR, Boyden PA (1999) Effects of mibefradil, a T-type calcium current antagonist, on electrophysiology of Purkinje fibers that survived in the infarcted canine heart. J Cardiovasc Electrophysiol 10:1224–1235

    CAS  PubMed  Google Scholar 

  • Platzer J, Engel J, Schrott-Fischer A, Stephan K, Bova S, Chen H, Zheng H, Striessnig J (2000) Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell 102:89–97

    Article  CAS  PubMed  Google Scholar 

  • Plotnikov AN, Sosunov EA, Qu J, Shlapakova IN, Anyukhovsky EP, Liu L, Janse MJ, Brink PR, Cohen IS, Robinson RB, Danilo PJ, Rosen MR (2004) Biological pacemaker implanted in canine left bundle branch provides ventricular escape rhythms that have physiologically acceptable rates. Circulation 109:506–512

    Article  PubMed  Google Scholar 

  • Potapova I, Plotnikov A, Lu Z, Danilo P Jr, Valiunas V, Qu J, Doronin S, Zuckerman J, Shlapakova IN, Gao J, Pan Z, Herron AJ, Robinson RB, Brink PR, Rosen MR, Cohen IS (2004) Human mesenchymal stem cells as a gene delivery system to create cardiac pacemakers. Circ Res 94:952–959

    Article  CAS  PubMed  Google Scholar 

  • Pourrier M, Zicha S, Ehrlich J, Han W, Nattel S (2003) Canine ventricular KCNE2 expression resides predominantly in Purkinje fibers. Circ Res 93:189–191

    Article  CAS  PubMed  Google Scholar 

  • Protas L, Robinson RB (2000) Mibefradil, an I(Ca,T) blocker, effectively blocks I(Ca,L) in rabbit sinus node cells. Eur J Pharmacol 401:27–30

    Article  CAS  PubMed  Google Scholar 

  • Protas L, DiFrancesco D, Robinson RB (2001) L-type, but not T-type calcium current changes during post-natal development in rabbit sino-atrial node. Am J Physiol 281:H1252–H1259

    CAS  Google Scholar 

  • Qu J, Barbuti A, Protas L, Santoro B, Cohen IS, Robinson RB (2001) HCN2 over-expression in newborn and adult ventricular myocytes: distinct effects on gating and excitability. Circ Res 89:e8–e14

    CAS  PubMed  Google Scholar 

  • Qu J, Plotnikov AN, Danilo PJ, Shlapakova I, Cohen IS, Robinson RB, Rosen MR (2003) Expression and function of a biological pacemaker in canine heart. Circulation 107:1106–1109

    Article  PubMed  Google Scholar 

  • Rigg L, Heath BM, Cui Y, Terrar DA (2000) Localisation and functional significance of ryanodine receptors during beta-adrenoceptor stimulation in the guinea-pig sino-atrial node. Cardiovasc Res 48:254–264

    Article  CAS  PubMed  Google Scholar 

  • Robinson RB, Siegelbaum SA (2003) Hyperpolarization-activated cation currents: from molecules to physiological function. Annu Rev Physiol 65:453–480

    Article  CAS  PubMed  Google Scholar 

  • Rosen MR, Brink PR, Cohen IS, Robinson RB (2004) Genes, stem cells and biological pacemakers. Cardiovasc Res 64:12–23

    Article  CAS  PubMed  Google Scholar 

  • Santoro B, Tibbs GR (1999) The HCN gene family: molecular basis of the hyperpolarization activated pacemaker channels. Ann N Y Acad Sci 868:741–764

    Article  CAS  PubMed  Google Scholar 

  • Santoro B, Grant SGN, Bartsch D, Kandel ER (1997) Interactive cloning with the SH3 domain of N-src identifies a new brain specific ion channel protein, with homology to Eag and cyclic nucleotide-gated channels. Proc Natl Acad Sci USA 94:14815–14820

    Article  CAS  PubMed  Google Scholar 

  • Santoro B, Liu DT, Yao H, Bartsch D, Kandel ER, Siegelbaum SA, Tibbs GR (1998) Identification of a gene encoding a hyperpolarization-activated pacemaker channel of brain. Cell 93:1–20

    Article  Google Scholar 

  • Satoh H (1995) Role of T-type Ca2+ channel inhibitors in the pacemaker depolarization in rabbit sino-atrial nodal cells. Gen Pharmacol 26:581–587

    CAS  PubMed  Google Scholar 

  • Schulze-Bahr E, Neu A, Friederich P, Kaupp UB, Breithardt G, Pongs O, Isbrandt D (2003) Pacemaker channel dysfunction in a patient with sinus node disease. J Clin Invest 111:1537–1545

    Article  CAS  PubMed  Google Scholar 

  • Shah AK, Cohen IS, Datyner NB (1987) Background K+ current in isolated canine cardiac Purkinje myocytes. Biophys J 52:519–526

    Article  CAS  PubMed  Google Scholar 

  • Shi W, Wymore R, Yu H, Wu J, Wymore RT, Pan Z, Robinson RB, Dixon JE, McKinnon D, Cohen IS (1999) Distribution and prevalence of hyperpolarization-activated cation channel (HCN) mRNA expression in cardiac tissues. Circ Res 85:e1–e6

    CAS  PubMed  Google Scholar 

  • Shi W, Yu H, Wu J, Zuckerman J, Wymore R, Dixon J, Robinson RB, McKinnon D, Cohen IS (2000) The distribution and prevalence of HCN isoforms in the canine heart and their relation to the voltage dependence of If. Biophys J 78:353A (abstr)

    Google Scholar 

  • Shinagawa Y, Satoh H, Noma A (2000) The sustained inward current and inward rectifier K+ current in pacemaker cells dissociated from rat sinoatrial node. J Physiol (Lond) 523:593–605

    Article  CAS  PubMed  Google Scholar 

  • Stieber J, Herrmann S, Feil S, Loster J, Feil R, Biel M, Hofmann F, Ludwig A (2003) The hyperpolarization-activated channel HCN4 is required for the generation of pacemaker action potentials in the embryonic heart. Proc Natl Acad Sci U S A 100:15235–15240

    Article  CAS  PubMed  Google Scholar 

  • Thollon C, Cambarrat C, Vian J, Prost JF, Peglion JL, Vilaine JP (1994) Electrophysiological effects of S 16257, a novel sino-atrial node modulator, on rabbit and guinea-pig cardiac preparations: comparison with UL-FS 49. Br J Pharmacol 112:37–42

    CAS  PubMed  Google Scholar 

  • Tseng G-N, Boyden PA (1989) Multiple types of Ca2+ currents in single canine Purkinje cells. Circ Res 65:1735–1750

    CAS  PubMed  Google Scholar 

  • Ueda K, Nakamura K, Hayashi T, Inagaki N, Takahashi M, Arimura T, Morita H, Higashiuesato Y, Hirano Y, Yasunami M, Takishita S, Yamashina A, Ohe T, Sunamori M, Hiraoka M, Kimura A (2004) Functional characterization of a trafficking-defective HCN4 mutation, D553N, associated with cardiac arrhythmia. J Biol Chem 279:27194–27198

    Article  CAS  PubMed  Google Scholar 

  • Vaca L, Stieber J, Zong X, Ludwig A, Hofmann F, Biel M (2000) Mutations in the S4 domain of a pacemaker channel alter its voltage dependence. FEBS Lett 479:35–40

    Article  CAS  PubMed  Google Scholar 

  • van Bogaert PP, Pittoors F (2003) Use-dependent blockade of cardiac pacemaker current (If) by cilobradine and zatebradine. Eur J Pharmacol 478:161–171

    Article  PubMed  CAS  Google Scholar 

  • Varro A, Balati B, Iost N, Takacs J, Virag L, Lathrop DA, Csaba L, Talosi L, Papp JG (2000) The role of the delayed rectifier component IKs in dog ventricular muscle and Purkinje fibre repolarization. J Physiol (Lond) 523:67–81

    Article  CAS  PubMed  Google Scholar 

  • Vassalle M (1995) Cardiovascular controversies: The pacemaker current, if, does not play an important role in regulating SA node pacemaker activity. Cardiovasc Res 30:309–310

    Article  CAS  PubMed  Google Scholar 

  • Vassalle M, Yu H, Cohen IS (1995) The pacemaker current in cardiac Purkinje myocytes. J Gen Physiol 106:559–578

    Article  CAS  PubMed  Google Scholar 

  • Vemana S, Pandey S, Larsson HP (2004) S4 Movement in a Mammalian HCN Channel. J Gen Physiol 123:21–32

    Article  CAS  PubMed  Google Scholar 

  • Verheijck EE, van Ginneken AC, Wilders R, Bouman LN (1999) Contribution of L-type Ca2+f current to electrical activity in sinoatrial nodal myocytes of rabbits. Am J Physiol 276:H1064–H1077

    CAS  PubMed  Google Scholar 

  • Vinogradova TM, Bogdanov KY, Lakatta EG (2002) beta-Adrenergic stimulation modulates ryanodine receptor Ca(2+) release during diastolic depolarization to accelerate pacemaker activity in rabbit sinoatrial nodal cells. Circ Res 90:73–79

    Article  CAS  PubMed  Google Scholar 

  • Wainger BJ, DeGennaro M, Santoro B, Siegelbaum SA, Tibbs GR (2001) Molecular mechanism of cAMP modulation of HCN pacemaker channels. Nature 411:805–810

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Chen S, Siegelbaum SA (2001) Regulation of hyperpolarization-activated HCN channel gating and cAMP modulation due to interactions of COOH terminus and core transmembrane regions. J Gen Physiol 118:237–250

    Article  CAS  PubMed  Google Scholar 

  • Wu JY, Cohen IS (1997) Tyrosine kinase inhibition reduces i(f) in rabbit sinoatrial node myocytes. Pflugers Arch 434:509–514

    Article  CAS  PubMed  Google Scholar 

  • Wu JY, Cohen IS, Gaudette G, Krukenkamp I, Zuckerman J, Yu H (1999) Is If the only pacemaker current in mammalian atrial myocytes? Biophys J 76:A306 (abstr)

    Google Scholar 

  • Wu JY, Yu H, Cohen IS (2000) Epidermal growth factor increases If in rabbit SA node cells by activating a tyrosine kinase. Biochim Biophys Acta 1463:15–19

    CAS  PubMed  Google Scholar 

  • Yamagihara K, Irisawa H (1980) Inward current activated during hyperpolarization in the rabbit sinoatrial node cell. Pflugers Arch 385:11–19

    Article  Google Scholar 

  • Yu H, Chang F, Cohen IS (1993a) Pacemaker current exists in ventricular myocytes. Circ Res 72:232–236

    CAS  PubMed  Google Scholar 

  • Yu H, Chang F, Cohen IS (1993b) Phosphatase inhibition by calyculin A increases if in canine Purkinje fibers and myocytes. Pflugers Arch 422:614–616

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Chang F, Cohen IS (1995) Pacemaker current if in adult cardiac ventricular myocytes. J Physiol (Lond) 485:469–483

    CAS  PubMed  Google Scholar 

  • Yu H, Wu J, Potapova I, Wymore RT, Holmes B, Zuckerman J, Pan Z, Wang H, Shi W, Robinson RB, El-Maghrabi R, Benjamin W, Dixon J, McKinnon D, Cohen IS, Wymore R (2001) MinK-related protein 1: A β subunit for the HCN ion channel subunit family enhances expression and speeds activation. Circ Res 88:e84–e87

    CAS  PubMed  Google Scholar 

  • Yu HG, Lu Z, Pan Z, Cohen IS (2004) Tyrosine kinase inhibition differentially regulates heterologously expressed HCN channels. Pflugers Arch 447:392–400

    Article  CAS  PubMed  Google Scholar 

  • Zagotta WN, Olivier NB, Black KD, Young EC, Olson R, Gouaux E (2003) Structural basis formodulation and agonist specificity of HCN pacemaker channels. Nature 425:200–205

    Article  CAS  PubMed  Google Scholar 

  • Zaza A, Robinson RB, DiFrancesco D (1996) Basal responses of the L-type Ca2+ and hyperpolarization-activated currents to autonomic agonists in the rabbit sino-atrial node. J Physiol (Lond) 491:347–355

    CAS  PubMed  Google Scholar 

  • Zhang H, Holden AV, Kodama I, Honjo H, Lei M, Varghese T, Boyett MR (2000) Mathematical models of action potentials in the periphery and center of the rabbit sinoatrial node. Am J Physiol Heart Circ Physiol 279:H397–H421

    CAS  PubMed  Google Scholar 

  • Zhang Z, Xu Y, Song H, Rodriguez J, Tuteja D, Namkung Y, Shin HS, Chiamvimonvat N (2002) Functional roles of Cav1.3 (α1D) calcium channel in sinoatrial nodes. Insight gained using gene-targeted null mutant mice. Circ Res 90:981–987

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cohen, I., Robinson, R. (2006). Pacemaker Current and Automatic Rhythms: Toward a Molecular Understanding. In: Basis and Treatment of Cardiac Arrhythmias. Handbook of Experimental Pharmacology, vol 171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29715-4_2

Download citation

Publish with us

Policies and ethics