Skip to main content

The Impact of Temporal Gravity Variations on GOCE Gravity Field Recovery

  • Chapter
Observation of the Earth System from Space

Summary

Since the main goal of the GOCE mission is the derivation of a static gravity field, significant temporal gravity changes from mass redistributions in the System Earth have to be removed from the measurement data in a dealiasing step. Furthermore, a method for gravity field recovery has to be developed, which is capable to process different kinds of data simultaneously. The effects of different mass redistribution systems, like atmosphere, oceans or hydrology, are investigated in terms of geoid and gravity gradients. Main focus is laid on hydrology effects, since global models of the continental water storage turned out to be rather inconsistent, compared to models of the other systems. However, they may benefit from the newly available GRACE gravity field models. It is shown that all time variable gravity effects are small compared with the gradiometer performance; nevertheless it is recommended to use the data from geophysical models and from monthly GRACE gravity field solutions to diminish aliasing effects in the GOCE measurements. In order to simplify the assimilation of gradiometric and satellite-to-satellite-tracking data (e.g. also from GRACE), a method for gravity field recovery has been developed, which is capable to handle the gradiometric data directly in the gradiometer reference frame. It benefits from a filter algorithm based on colored noise for the decorrelation of the gradients and applies powerful parallelization techniques. A high degree gravity field is recovered from simulated SGG data by this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrikosov O, Schwintzer P (2004) Recovery of the Earth’s gravity field from GOCE satellite gravity gradiometry: a case study. In: GOCE, the geoid and oceanography. ESA-SP569, ESA Publications Division, ESTEC, Nordwijk

    Google Scholar 

  • Alenia Spazio S.p.A. (2001) Performance requirement and budgets for the gradiometric mission. Technical note GO-TN-AI-0027, Turin

    Google Scholar 

  • Cunningham LE (1970) On the computation of the spherical harmonic terms needed during numerical integration of the orbital motion of an artificial satellite. Celestial Mechanics, 2:207–216

    Article  Google Scholar 

  • Chapman S, Bartels J (1940) Geomagnetism. Vol. II, Oxford University Press, New York

    Google Scholar 

  • Ditmar P, Klees R (2002) A method to compute the Earth’s gravity field from SGG/SST data to be acquired by the GOCE satellite. Delft University Press

    Google Scholar 

  • Ditmar P, Klees R, Kostenko F (2003) Fast and accurate computation of spherical harmonic coefficients from satellite gravity gradiometry data. J Geod, 76:690–705

    Article  Google Scholar 

  • Döll P, Kaspar F, Lehner B (2003) A global hydrological model for deriving water availability indicators: model tuning and validation. J Hydrol 270:105–134

    Article  Google Scholar 

  • Eanes R, Bettadpur S (1995) The CSR 3.0 global ocean tide model. Tech Memo CSR-TM-95-06, Center for Space Research, University of Texas, Austin

    Google Scholar 

  • ESA (1999) Gravity field and steady-state ocean circulation Mission, Reports for mission selection, ESA SP-1233(1)

    Google Scholar 

  • Fan Y, van den Dool H (2004) The CPC global monthly soil moisture data set at 1/2 degree resolution for 1948-present. J Geophys Res 109, D10102, doi:1029/2003JD004345

    Article  Google Scholar 

  • Flechtner F (2003) AOD1B product description document. GRACE project documentation, JPL 327-750, Rev. 1.0, JPL, Pasadena, Ca.

    Google Scholar 

  • Han SC, Jekeli C, Shum CK (2004) Time-variable aliasing effects of ocean tides, atmosphere, and continental water mass on monthly mean GRACE gravity field. J Geophys Res 109, B 04403, doi:10.1029/2003/JB002501

    Article  Google Scholar 

  • Huang J, van den Dool HM, Georgakakos KP (1996) Analysis of model-calculated soil moisture over the United States (1931–1993) and applications to long-range temperature forecasts. J Climate 9:1350–1362

    Article  Google Scholar 

  • Jarecki F, Müller J, Petrovic S, Schwintzer P (2005) Temporal gravity variations in GOCE gradiometric data. In: Jekeli C, Bastos L, Fernandes J (eds) Gravity, geoid and space missions GGSM04 IAG International Symposium Porto, Portugal August 30–September 3, 2004. International Association of Geodesy symposia series, vol. 129, Springer, Berlin Heidelberg New York (in print)

    Google Scholar 

  • Klees R, Ditmar P, Broersen P (2003) How to handle colored observation noise in large least-squares problems. J Geod, 76:629–640

    Article  Google Scholar 

  • Knudsen P (2003) Ocean tides in GRACE monthly averaged gravity fields. Space Science Reviews 108(1–2):261–270

    Article  Google Scholar 

  • Le Provost C (2002) FES2002 — A new version of the FES tidal solution series. Abstract Volume, Jason-1 Science Working Team Meeting, Biarritz, France

    Google Scholar 

  • Milly PCD, Shmakin AB (2002) Global modeling of land water and energy balances. Part I: The Land Dynamics (LaD) model. J Hydrometeorology 3(3):283–299

    Article  Google Scholar 

  • Müller J (2003) GOCE gradients in various reference frames and their accuracies. Adv in Geosciences 1:33–38

    Article  Google Scholar 

  • Ray RD, Rowlands DD, Egbert GD (2003) Tidal models in a new era of satellite gravimetry. Space Science Reviews 108(1–2):271–282

    Article  Google Scholar 

  • Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng CJ, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin JK, Walker JP, Lohmann D, Toll D (2004) The Global Land Data Assimilation System. Bull Amer Meteor Soc 85(3):381–394

    Article  Google Scholar 

  • Rummel R, van Geldern M, Koop R, Scharma E, Sansò F, Brovelli M, Miggliaccio F, Sacerdote F (1993) Spherical harmonic analysis of satellite gravity gradiometry. Publ Geodesy, New series, No 39, Nederlands Geodetic Commission, Delft

    Google Scholar 

  • Sasgen I, Wolf D, Martinec Z, Klemann V, Hagedoorn J (2005) Geodetic signatures of glacial changes in Antarctica: rates of geoid-height change and radial displacement due to present and past ice-mass variations. Scientific Technical Report STR05/01, GFZ Potsdam

    Google Scholar 

  • Schmidt R, Schwintzer P, Flechtner F, Reigber Ch, Güntner A, Döll P, Ramillien G, Cazenave A, Petrovic S, Jochmann H, Wünsch J (2005) GRACE observations of changes in continental water storage. Global and Planetary Change 48(4):259–273 (scheduled)

    Google Scholar 

  • Thompson PF, Bettadpur SV, Tapley BD (2004) Impact of short period, non-tidal, temporal mass variability on GRACE gravity anomalies. Geophys Res Lett 31, L06619, doi:10.1029/2003GL019285

    Article  Google Scholar 

  • Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res, 103(B12):30205–30229

    Article  Google Scholar 

  • Wahr J, Swenson S, Zlotnicki V, Velicogna I (2004) Time-variable gravity from GRACE: First results. Geophys Res Lett 31(11), L11501, doi:10.1029/2004GL019779

    Article  Google Scholar 

  • Wünsch J, Schwintzer P, Petrovic S (2005) Comparison of two different ocean tide models especially with respect to the GRACE satellite mission. Scientific Technical Report STR05/08, GFZ Potsdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Abrikosov, O., Jarecki, F., Müller, J., Petrovic, S., Schwintzer, P. (2006). The Impact of Temporal Gravity Variations on GOCE Gravity Field Recovery. In: Flury, J., Rummel, R., Reigber, C., Rothacher, M., Boedecker, G., Schreiber, U. (eds) Observation of the Earth System from Space. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29522-4_18

Download citation

Publish with us

Policies and ethics