Skip to main content

Free-Standing Homing Endonucleases of T-even Phage: Freeloaders or Functionaries?

  • Chapter
Homing Endonucleases and Inteins

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 16))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bautz FA, Bautz EK (1967) Transformation in phage T4: minimal recognition length between donor and recipient DNA. Genetics 57:887–895

    PubMed  CAS  Google Scholar 

  • Belfort M, Derbyshire V, Cousineau B, Lambowitz A (2002) Mobile introns: pathways and proteins. In: Craig N, Craigie R, Gellert M, Lambowitz A (eds) Mobile DNA II. ASM Press, Washington, DC, pp 761–783

    Google Scholar 

  • Bell-Pedersen D, Quirk SM, Aubrey M, Belfort M (1989) A site-specific endonuclease and co-conversion of flanking exons associated with the mobile td intron of phage T4. Gene 82:119–126

    Article  PubMed  CAS  Google Scholar 

  • Belle A, Landthaler M, Shub DA (2002) Intronless homing: site-specific endonuclease SegF of bacteriophage T4 mediates localized marker exclusion analogous to homing endonucleases of group I introns. Genes Dev 16:351–362

    Article  PubMed  CAS  Google Scholar 

  • Carlson K, Kosturko L. D (1998) Endonuclease II of coliphage T4: a recombinase disguised as a restriction endonuclease? Mol Microbiol 27:671–676

    Article  PubMed  CAS  Google Scholar 

  • Carlson K, Wiberg JS (1983) In vivo cleavage of cytosine-containing bacteriophage T4 DNA to genetically distinct, discretely sized fragments. J Virol 48:18–30

    PubMed  CAS  Google Scholar 

  • Chevalier BS, Stoddard BL (2001) Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. Nucleic Acids Res 29:3757–3774

    Article  PubMed  CAS  Google Scholar 

  • Dalgaard JZ, Moser MJ, Hughey R, Mian IS (1997) Statistical modeling, phylogenetic analysis and structure prediction of a protein splicing domain common to inteins and hedgehog proteins. J Comput Biol 4:193–214

    Article  PubMed  CAS  Google Scholar 

  • Doolittle WF, Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284:601–603

    Article  PubMed  CAS  Google Scholar 

  • Eddy SR (1992) Introns in the T-even bacteriophages. University of Colorado, Boulder

    Google Scholar 

  • Edgell DR (2002) Selfish DNA: new abode for homing endonucleases. Curr Biol 12:R276–R278

    Article  PubMed  CAS  Google Scholar 

  • Edgell DR, Shub DA (2001) Related homing endonucleases I-BmoI and I-TevI use different strategies to cleave homologous recognition sites. Proc Natl Acad Sci USA 98:7898–7903

    Article  PubMed  CAS  Google Scholar 

  • Edgell DR, Belfort M, Shub DA (2000) Barriers to intron promiscuity in bacteria. J Bacteriol 182:5281–5289

    Article  PubMed  CAS  Google Scholar 

  • Edgell DR, Stanger MJ, Belfort M (2003) Importance of a single base pair for discrimination between intron-containing and intronless alleles by endonuclease I-BmoI. Curr Biol 13:973–978

    Article  PubMed  CAS  Google Scholar 

  • Goddard MR, Burt A (1999) Recurrent invasion and extinction of a selfish gene. Proc Natl Acad Sci USA 96:13880–13885

    Article  PubMed  CAS  Google Scholar 

  • Gogarten JP, Senejani AG, Zhaxybayeva O, Olendzenski L, Hilario E (2002) Inteins: structure, function, and evolution. Annu Rev Microbiol 56:263–287

    Article  PubMed  CAS  Google Scholar 

  • Gorbalenya AE (1994) Self-splicing group I and group II introns encode homologous (putative) DNA endonucleases of a new family. Protein Sci 3:1117–1120

    Article  PubMed  CAS  Google Scholar 

  • Huang YJ, Parker MM, Belfort M (1999) Role of exonucleolytic degradation in group I intron homing in phage T4. Genetics 153:1501–1512

    PubMed  CAS  Google Scholar 

  • Jurica MS, Stoddard BL (1999) Homing endonucleases: structure, function and evolution. Cell Mol Life Sci 55:1304–1326

    Article  PubMed  CAS  Google Scholar 

  • Kadyrov FA, Shlyapnikov MG, Kryukov VM (1997) A phage T4 site specific endonuclease, SegE, is responsible for a non-reciprocal genetic exchange between T-even-related phages. FEBS Lett 415:75–80

    Article  PubMed  CAS  Google Scholar 

  • Kowalski JC, Belfort M, Stapleton MA, Holpert M, Dansereau JT, Pietrokovski S, Baxter SM, Derbyshire V (1999) Configuration of the catalytic GIY-YIG domain of intron endonuclease I-TevI: coincidence of computational and molecular findings. Nucleic Acids Res 27:2115–2125

    Article  PubMed  CAS  Google Scholar 

  • Kutter E, Gachechiladze K, Poglazov A, Marusich E, Shneider M, Aronsson P, Napuli A, Porter D, Mesyanzhinov V (1995) Evolution of T4-related phages. Virus Genes 11:285–97

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Belle A, Shub DA, Belfort M, Edgell DR (2003) SegG endonuclease promotes marker exclusion and mediates co-conversion from a distant cleavage site. J Mol Biol 334:13–23

    Article  PubMed  CAS  Google Scholar 

  • Loayza D, Carpousis AJ, Krisch HM (1991) Gene 32 transcription and mRNA processing in T4-related bacteriophages. Mol Microbiol 5:715–725

    PubMed  CAS  Google Scholar 

  • Loizos N, Silva GH, Belfort M (1996) Intron-encoded endonuclease I-TevII binds across the minor groove and induces two distinct conformational changes in its DNA substrate. J Mol Biol 255:412–424

    Article  PubMed  CAS  Google Scholar 

  • Maté MJ, Kleanthous C (2004) Structure-based analysis of the metal-dependent mechanism of H-N-H endonucleases. J Biol Chem 279:34763–34769

    PubMed  Google Scholar 

  • Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Ruger W (2003) Bacteriophage T4 genome. Microbiol Mol Biol Rev 67:86–156

    PubMed  CAS  Google Scholar 

  • Parker MM, Belisle M, Belfort M (1999) Intron homing with limited exon homology. Illegitimate double-strand-break repair in intron acquisition by phage T4. Genetics 153:1513–1523

    PubMed  CAS  Google Scholar 

  • Pees E, de Groot B (1970) Partial exclusion of genes of bacteriophage T2 with T4-glucosylated DNA in crosses with bacteriophage T4. Genetica 41:541–550

    Article  PubMed  CAS  Google Scholar 

  • Pietrokovski S (2001) Intein spread and extinction in evolution. Trends Genet 17:465–472

    Article  PubMed  CAS  Google Scholar 

  • Pommer AJ, Cal S, Keeble AH, Walker D, Evans SJ, Kuhlmann UC, Cooper A, Connolly BA, Hemmings AM, Moore GR, James R, Kleanthous C (2001) Mechanism and cleavage specificity of the H-N-H endonuclease colicin E9. J Mol Biol 314:735–749

    Article  PubMed  CAS  Google Scholar 

  • Quirk SM, Bell-Pedersen D, Belfort M (1989a) Intron mobility in the T-even phages: high frequency inheritance of group I introns promoted by intron open reading frames. Cell 56:455–465

    Article  PubMed  CAS  Google Scholar 

  • Quirk SM, Bell-Pedersen D, Tomaschewski J, Ruger W, Belfort M (1989b) The inconsistent distribution of introns in the T-even phages indicates recent genetic exchanges. Nucleic Acids Res 17:301–315

    PubMed  CAS  Google Scholar 

  • Ray U, Bartenstein L, Drake JW (1972) Inactivation of bacteriophage T4 by ethyl methanesulfonate: influence of host and viral genotypes. J Virol 9:440–447

    PubMed  CAS  Google Scholar 

  • Repoila F, Tetart F, Bouet JY, Krisch HM (1994) Genomic polymorphism in the T-even bacteriophages. EMBO J 13:4181–4192

    PubMed  CAS  Google Scholar 

  • Russell RL, Huskey RJ (1974) Partial exclusion between T-even bacteriophages: an incipient genetic isolation mechanism. Genetics 78:989–1014

    PubMed  CAS  Google Scholar 

  • Sancar A (1996) DNA excision repair. Annu Rev Biochem 65:43–81

    Article  PubMed  CAS  Google Scholar 

  • Sandegren L, Sjoberg BM (2004) Distribution, sequence homology, and homing of group I introns among T-even-like bacteriophages: evidence for recent transfer of old introns. J Biol Chem 279:22218–22227

    Article  PubMed  CAS  Google Scholar 

  • Sharma M, Ellis RL, Hinton DM (1992) Identification of a family of bacteriophage T4 genes encoding proteins similar to those present in group I introns of fungi and phage. Proc Natl Acad Sci USA 89:6658–6662

    PubMed  CAS  Google Scholar 

  • Shen BW, Landthaler M, Shub DA, Stoddard BL (2004) DNA binding and cleavage by the HNH homing endonuclease I-HmuI. J Mol Biol 342:43–56

    Article  PubMed  CAS  Google Scholar 

  • Shub DA, Goodrich-Blair H, Eddy SR (1994) Amino acid sequence motif of group I intron endonucleases is conserved in open reading frames of group II introns. Trends Biochem Sci 19:402–404

    Article  PubMed  CAS  Google Scholar 

  • Singer BS, Gold L, Gauss P, Doherty DH (1982) Determination of the amount of homology required for recombination in bacteriophage T4. Cell 31:25–33

    Article  PubMed  CAS  Google Scholar 

  • Sitbon E, Pietrokovski S (2003) New types of conserved sequence domains in DNA-binding regions of homing endonucleases. Trends Biochem Sci 28:473–477

    Article  PubMed  CAS  Google Scholar 

  • Truglio JJ, Rhau B, Croteau DL, Wang L, Skorvaga M, Karakas E, Della Vecchia MJ, Wang H, VanHouten B, Kisker C (2005) Structural insights into the first incision reaction during nucleotide excision repair. EMBO J 24:885–894.

    Article  PubMed  CAS  Google Scholar 

  • Verhoeven EE, van Kesteren M, Moolenaar GF, Visse R, Goosen N (2000) Catalytic sites for 3′ and 5′ incision of Escherichia coli nucleotide excision repair are both located in UvrC. J Biol Chem 275:5120–5123

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Edgell, D.R. (2005). Free-Standing Homing Endonucleases of T-even Phage: Freeloaders or Functionaries?. In: Belfort, M., Wood, D.W., Stoddard, B.L., Derbyshire, V. (eds) Homing Endonucleases and Inteins. Nucleic Acids and Molecular Biology, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29474-0_9

Download citation

Publish with us

Policies and ethics