Skip to main content

GIY-YIG Homing Endonucleases — Beads on a String

  • Chapter
Homing Endonucleases and Inteins

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 16))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aravind L, Walker DR, Koonin EV (1999) Conserved domains in DNA repair proteins and evolution of repair systems. Nucleic Acids Res 27:1223–1242

    PubMed  CAS  Google Scholar 

  • Belfort M, Perlman PS (1995) Mechanisms of intron mobility. J Biol Chem 270:30237–30240

    PubMed  CAS  Google Scholar 

  • Belfort M, Derbyshire V, Cousineau B, Lambowitz A (2002) Mobile introns: pathways and proteins. In: Craig N, Craigie R, Gellert M, Lambowitz A (eds) Mobile DNA II. ASM Press, Washington, DC, pp 761–783

    Google Scholar 

  • Belle A, Landthaler M, Shub DA (2002) Intronless homing: site-specific endonuclease SegF of bacteriophage T4 mediates localized marker exclusion analogous to homing endonucleases of group I introns. Genes Dev 16:351–362

    Article  PubMed  CAS  Google Scholar 

  • Bryk M, Quirk SM, Mueller JE, Loizos N, Lawrence C, Belfort M (1993) The td intron endonuclease makes extensive sequence tolerant contacts across the minor groove of its DNA target. EMBO J 12:2141–2149

    PubMed  CAS  Google Scholar 

  • Bryk M, Belisle M, Mueller JE, Belfort M (1995) Selection of a remote cleavage site by I-TevI, the td intron-encoded endonuclease. J Mol Biol 247:197–210

    Article  PubMed  CAS  Google Scholar 

  • Bujnicki JM, Radlinska M, Rychlewski L (2001) Polyphyletic evolution of type II restriction enzymes revisited: two independent sources of second-hand folds revealed. Trends Biochem Sci 26:9–11

    Article  PubMed  CAS  Google Scholar 

  • Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, Darst SA (2001) Structural mechanism for rifamycin inhibition of bacterial DNA polymerase. Cell 104:901–912

    Article  PubMed  CAS  Google Scholar 

  • Cummings DJ, Michel F, McNally KL (1989) DNA sequence analysis of the 24.5 kilobase pair cytochrome oxidase subunit I mitochondrial gene from Podospora anserina: a gene with sixteen introns. Curr Genet 16:381–406

    PubMed  CAS  Google Scholar 

  • Dean AB, Stanger MJ, Dansereau JT, Van Roey P, Derbyshire V, Belfort M (2002) Zinc finger as distance determinant in the flexible linker of intron endonuclease I-TevI. Proc Natl Acad Sci USA 99:8554–8561

    PubMed  CAS  Google Scholar 

  • Derbyshire V, Kowalski JC, Dansereau JT, Hauer CR, Belfort M (1997) Two-domain structure of the td intron-encoded endonuclease I-TevI correlates with the two-domain configuration of the homing site. J Mol Biol 265:494–506

    Article  PubMed  CAS  Google Scholar 

  • Edgell DR, Shub DA (2001) Related homing endonucleases I-BmoI and I-TevI use different strategies to cleave homologous recognition sites. Proc Natl Acad Sci USA 98:7898–7903

    Article  PubMed  CAS  Google Scholar 

  • Edgell DR, Derbyshire V, van Roey P, LaBonne S, Stanger MJ, Li Z, Boyd TM, Shub DA, Belfort M (2004a) Intron endonuclease I-TevI also functions as a transcriptional auto-repressor. Nat Struct Mol Biol 11:936–944

    Article  PubMed  CAS  Google Scholar 

  • Edgell DR, Stanger MJ, Belfort M (2004b) Coincidence of cleavage sites of intron endonuclease I-TevI and critical sequences of the host thymidylate synthase gene. J Mol Biol 343:1231–1241

    Article  PubMed  CAS  Google Scholar 

  • Galburt EA, Chevalier B, Tang W, Jurica MS, Flick KE, Monnat RJ Jr, Stoddard BL (1999) A novel endonuclease mechanism directly visualized for I-PpoI. Nat Struct Biol 6:1096–1099

    Article  PubMed  CAS  Google Scholar 

  • Gott JM, Zeeh A, Bell-Pedersen D, Ehrenman K, Belfort M, Shub DA (1988) Genes within genes: independent expression of phage T4 intron open reading frames and the genes in which they reside. Genes Dev 2:1791–1799

    PubMed  CAS  Google Scholar 

  • Henikoff S, Henikoff JG, Alford WJ, Pietrokovski S (1995) Automated construction and graphical presentation of protein blocks from unaligned sequences. Gene 163:17–26

    Article  Google Scholar 

  • Kadyrov FA, Shlyapnikov MG, Kryukov VM (1997) A phage T4 site-specific endonuclease, SegE, is responsible for a non-reciprocal genetic exchange between T-even-related phages. FEBS Lett 415:75–80

    Article  PubMed  CAS  Google Scholar 

  • Kowalski JC, Belfort M, Stapleton MA, Holpert M, Dansereau JT, Pietrokovski S, Baxter SM, Derbyshire V (1999) Configuration of the catalytic domain of intron endonuclease I-TevI: coincidence of computational and molecular findings. Nucleic Acids Res 27:2115–2125

    Article  PubMed  CAS  Google Scholar 

  • Kuhlmann UC, Moore GR, James R, Kleanthous C, Hemmings AM (1999) Structural parsimony in endonuclease active sites: should the number of homing endonuclease families be redefined? FEBS Lett 463:1–2

    PubMed  CAS  Google Scholar 

  • Lin J-J, Sancar A (1992) Active site of (A)BC excinuclease. I. Evidence for 5′ incision by UvrC through a catalytic site involving Asp399, Asp438, Asp466 and His538 residues. J Biol Chem 267:17688–17692

    PubMed  CAS  Google Scholar 

  • Liu Q, Belle A, Shub DA, Belfort M, Edgell DR (2003) SegG endonuclease promotes marker exclusion and mediates co-conversion from a distant cleavage site. J Mol Biol 334:13–23

    Article  PubMed  CAS  Google Scholar 

  • Michel F, Dujon B (1986) Genetic exchanges between bacteriophage T4 and filamentous fungi? Cell 46:323

    Article  PubMed  CAS  Google Scholar 

  • Moolenaar GF, Uiterkamp RS, Zwijnenburg DA, Goosen N (1998) The C-terminal region of the Escherichia coli UvrC protein, which is homologous to the C-terminal region of the human ERCC1 protien, is involved in DNA binding and 5′-incision. Nucleic Acids Res 26:462–468

    Article  PubMed  CAS  Google Scholar 

  • Moolenaar GF, van Rossum-Fikkert S, van Kesteren M, Goosen N (2002) Cho, a second endonuclease involved in Escherichia coli nucleotide excision repair. Proc Natl Acad Sci USA 99:1467–1472

    Article  PubMed  CAS  Google Scholar 

  • Mueller JE, Smith D, Bryk M, Belfort M (1995) Intron-encoded endonuclease I-TevI binds as a monomer to effect sequential cleavage via conformational changes in the td homing site. EMBO J 14:5724–5735

    PubMed  CAS  Google Scholar 

  • Sancar A (1996) DNA excision repair. Annu Rev Biochem 65:43–81

    Article  PubMed  CAS  Google Scholar 

  • Schneider TD, Stephens RM (1990) Sequence logos a new way to display consensus sequences. Nucleic Acids Res 18:6097–6100

    PubMed  CAS  Google Scholar 

  • Sharma M, Hinton DM (1994) Purification and characterization of the SegA protein of bacteriophage T4, an endonuclease related to proteins encoded by group I introns. J Bacteriol 176:6439–6448

    PubMed  CAS  Google Scholar 

  • Sharma M, Ellis RL, Hinton DM (1992) Identification of a family of bacteriophage T4 genes encoding proteins similar to those present in group I introns of fungi and phage. Proc Natl Acad Sci USA 89:6658–6662

    PubMed  CAS  Google Scholar 

  • Shen BW, Landthaler M, Shub DA, Stoddard BL (2004) DNA binding and cleavage by the HNH homing endonuclease I-HmuI. J Mol Biol 342:43–56

    Article  PubMed  CAS  Google Scholar 

  • Sitbon E, Pietrokovski S (2003) New types of conserved sequence domains in DNA-binding regions of homing endonucleases. Trends Biochem Sci 28:473–477

    Article  PubMed  CAS  Google Scholar 

  • Van Roey P, Waddling CA, Fox KM, Belfort M, Derbyshire V (2001) Intertwined structure of the DNA-binding domain of intron endonuclease I-TevI with its substrate. EMBO J 20:3631–3637

    PubMed  Google Scholar 

  • Van Roey P, Meehan L, Kowalski J, Belfort M, Derbyshire V (2002) Catalytic domain structure and hypothesis for function of GIY-YIG intron endonuclease I-TevI. Nat Struct Biol 9:806–811

    PubMed  Google Scholar 

  • Verhoeven EEA, van Kesteren M, Moolenaar GF, Visse R, Goosen N (2000) Catalytic sites for 3′ and 5′ incision of Escherichia coli nucleotide excision repair are both located in UvrC. J Biol Chem 275:5120–5123

    PubMed  CAS  Google Scholar 

  • Volff J-N, Hornung U, Schartl M (2001) Fish retroposons related to the Penelope element of Drosophila virilis define a new group of retrotransposable elements. Mol Genet Genom 265:711–720

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Van Roey, P., Derbyshire, V. (2005). GIY-YIG Homing Endonucleases — Beads on a String. In: Belfort, M., Wood, D.W., Stoddard, B.L., Derbyshire, V. (eds) Homing Endonucleases and Inteins. Nucleic Acids and Molecular Biology, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29474-0_5

Download citation

Publish with us

Policies and ethics