Skip to main content

Horizontal Gene Transfer by Natural Transformation in Soil Environment

  • Chapter
Nucleic Acids and Proteins in Soil

Part of the book series: Soil Biology ((SOILBIOL,volume 8))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amabile-Cuevas CF, Chicurel ME (1992) Bacterial plasmids and gene flux. Cell 70:189–199

    Article  PubMed  CAS  Google Scholar 

  • Ando T, Xu Q, Torres M, Kusugami K, Israel DA, Blaser MJ (2000) Restriction-modification system differences in Helicobacter pylori are a barrier to interstrain plasmid transfer. Mol Microbiol 37:1052–1065

    Article  PubMed  CAS  Google Scholar 

  • Aras RA, Small AJ, Ando T, Blaser MJ (2002) Helicobacter pylori interstrain restriction modification diversity prevents genome subversion by chromosomal DNA from competing strains. Nucl Acids Res 30:5391–5397

    Article  PubMed  CAS  Google Scholar 

  • Arber W(2000) Genetic variation: molecular mechanisms and impact on microbial evolution. FEMS Microbiol Rev 24:1–7

    Google Scholar 

  • Baur B, Hanselmann K, Schlimme W, Jenni B (1996) Genetic transformation in freshwater: Escherichia coli is able to develop natural competence. Appl Environ Microbiol 62:3673–3678

    PubMed  CAS  Google Scholar 

  • Bauer F, Hertel C, Hammes WP (1999) Transformation of Escherichia coli in foodstuffs. Syst Appl Microbiol 22:161–168

    PubMed  CAS  Google Scholar 

  • Berndt C, Meier P, Wackernagel W (2003) DNA restriction is a barrier to natural transformation in Pseudomonas stutzeri JM300. Microbiology 149:895–901

    Article  PubMed  CAS  Google Scholar 

  • Bertolla F, Simonet P (1999) Horizontal gene transfers in the environment: natural transformation as a putative process for gene transfers between transgenic plants and microorganisms. Res Microbiol 150:375–384

    Article  PubMed  CAS  Google Scholar 

  • Bertolla F, Van Gijsegem F, Nesme X, Simonet P (1997) Conditions for natural transformation of Ralstonia solanacearum. Appl Environ Microbiol 63:4965–4968

    PubMed  CAS  Google Scholar 

  • Bertolla F, Brito B, Frostegård A, Nesme X, Simonet P (1999) During infection of its host, the plant pathogen Ralstonia solanacearum naturally develops a state of competence and exchanges genetic material. Mol Plant Microbe Interact 12:467–472

    CAS  Google Scholar 

  • Bhatt A, Kieser HM, Melton RE, Kieser T (2002) Plasmid transfer from Streptomyces to Mycobacterium smegmatis by spontaneous transformation. Mol Microbiol 43:135–146

    Article  PubMed  CAS  Google Scholar 

  • Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD, Sorokin A (2001) The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 11:731–753

    Article  PubMed  CAS  Google Scholar 

  • Brinkman FS, Blanchard JL, Cherkasov A, Av-Gay Y, Greberg H, Brunham RC, Fernandez RC, Finlay BB, Otto SP, Ouellette BF, Keeling PJ, Rose AM, Hancock RE, Jones SJ, Greberg H (2002) Evidence that plant-like genes in Chlamydia species reflect an ancestral relationship between Chlamydiaceae, cyanobacteria, and the chloroplast. Genome Res 12:1159–1167

    Article  PubMed  CAS  Google Scholar 

  • Brochier C, Bapteste E, Moreira D, Philippe H (2002) Eubacterial phylogeny based on translational apparatus proteins. Trends Genet 18:1–5

    Article  PubMed  CAS  Google Scholar 

  • Brown JR (2003) Ancient horizontal gene transfer. Nature Rev 4:121–132

    Article  CAS  Google Scholar 

  • Brown JR, Doolittle WF (1999) Gene descent, duplication, and horizontal transfer in the evolution of glutamyl-and glutaminyl-tRNA synthetases. J Mol Evol 49:485–495

    Article  PubMed  CAS  Google Scholar 

  • Carlson CA, Pierson LS, Rosen JJ, Ingraham JL (1983) Pseudomonas stutzeri and related species undergo natural transformation. J Bacteriol 153:93–99

    PubMed  CAS  Google Scholar 

  • Ceccherini M, Pote J, Kay E, Van VT, Marechal J, Pietramellara G, Nannipieri P, Vogel TM, Simonet P (2003) Degradation and transformability of DNA from transgenic leaves. Appl Environ Microbiol 69:673–678

    Article  PubMed  CAS  Google Scholar 

  • Cérémonie H, Buret F, Simonet P, Vogel TM (2004) Isolation of lightning-competent soil bacteria. Appl Environ Microbiol 70:6342–6346

    Article  PubMed  CAS  Google Scholar 

  • Chen I, Dubnau D (2003) DNA transport during transformation. Front Biosci 8:s544–556

    PubMed  CAS  Google Scholar 

  • Claverys JP, Martin B (2003) Bacterial “competence” genes: signatures of active transformation, or only remnants? Trends Microbiol 11:161–165

    Article  PubMed  CAS  Google Scholar 

  • Crecchio C, Stotzky G (1998) Binding of DNA on humic acids: effect on transformation of Bacillus subtilis and resistance to DNase. Soil Biol Biochem 30:1061–1067

    Article  CAS  Google Scholar 

  • Daniell H, Datta R, Varma S, Gray S, Lee SB (1998) Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat Biotechnol 16:345–348

    Article  PubMed  CAS  Google Scholar 

  • Daubin V, Gouy M, Perriere G (2002) A phylogenomic approach to bacterial phylogeny: evidence of a core of genes sharing a common history. Genome Res 12:1080–1090

    Article  PubMed  CAS  Google Scholar 

  • Daubin V, Lerat E, Perriere G (2003) The source of laterally transferred genes in bacterial genomes. Genome Biol 4:R57

    Article  PubMed  Google Scholar 

  • Davidsen T, Rødland EA, Lagesen K, Seeberg E, Rognes T, Tønjum T (2004) Biased distribution of DNA uptake sequences towards genome maintenance genes. Nucleic Acids Res 32:1050–1058

    Article  PubMed  CAS  Google Scholar 

  • Davison J (1999) Genetic exchange between bacteria in the environment. Plasmid 42:73–91

    Article  PubMed  CAS  Google Scholar 

  • Dechesne A, Pallud C, Debouzie D, Flandrois JP, Vogel TM, Gaudet JP, Grundmann GL (2003) A novel method for characterizing the microscale 3D spatial distribution of bacteria in soil. Soil Biol Biochem 35:1537–1546

    Article  CAS  Google Scholar 

  • de Lipthay JR, Barkay T, Sorensen SJ (2001) Enhanced degradation of phenoxyacetic acid in soil by horizontal transfer of the tfdA gene encoding a 2,4-dichlorophenoxyacetic acid dioxygenase. FEMS Microbiol Ecol 35:75–84

    PubMed  Google Scholar 

  • Demanèche S, Bertolla F, Buret F, Nalin R, Sailland A, Auriol P, Vogel TM, Simonet P (2001a) Laboratory-scale evidence for lightning-mediated gene transfer in soil. Appl Environ Microbiol 67:3440–3444

    Article  PubMed  Google Scholar 

  • Demanèche S, Jocteur-Monrozier L, Quiquampoix H, Simonet P (2001b) Evaluation of biological and physical protection against nuclease degradation of clay-bound plasmid DNA. Appl Environ Microbiol 67:293–299

    Article  PubMed  Google Scholar 

  • Demanèche S, Kay E, Gourbiere F, Simonet P (2001c) Natural transformation of Pseudomonas fluorescens and Agrobacterium tumefaciens in soil. Appl Environ Microbiol 67:2617–2621

    Article  PubMed  Google Scholar 

  • Demanèche S, Jocteur-Monrozier L, Chapel JP, Simonet P (2002) Influence of plasmid conformations and replication or homologous replication-based integration mechanisms on natural transformation of Acinetobacter sp. Ann Microbiol 52:61–69

    Google Scholar 

  • Desaint S, Arrault S, Siblot S, Fournier JC (2003) Genetic transfer of the mcd gene in soil. J Appl Microbiol 95:102–108

    Article  PubMed  CAS  Google Scholar 

  • de Vries J, Wackernagel W(1998) Detection of nptII (kanamycin resistance) genes in genome of transgenic plants by marker-rescue transformation. Mol Gen Genet 257:606–613

    Article  PubMed  Google Scholar 

  • de Vries J, Wackernagel W (2002) Integration of foreignDNA during natural transformation of Acinetobacter sp. by homology-facilitated illegitimate recombination. Proc Natl Acad Sci 99:2094–2099

    Article  PubMed  CAS  Google Scholar 

  • de Vries J, Meier P, Wackernagel W (2001) The natural transformation of the soil bacteria Pseudomonas stutzeri and Acinetobacter sp. by transgenic plant DNA strictly depends on homologous sequences in the recipient cells. FEMS Microbiol Lett 195:211–215

    Article  PubMed  Google Scholar 

  • de Vries J, Heine M, Harms K, Wackernagel W(2003) Spread of recombinant DNA by roots and pollen of transgenic potato plants, identified by highly specific biomonitoring using natural transformation of an Acinetobacter sp. Appl Environ Microbiol 69:4455–4462

    Article  PubMed  CAS  Google Scholar 

  • de Vries J, Herzfeld T, Wackernagel W (2004) Transfer of plastid DNA from tobacco to the soil bacterium Acinetobacter sp. by natural transformation. Mol Microbiol 53:323–334

    Article  PubMed  CAS  Google Scholar 

  • Dobrindt U, Hacker J (1999) Plasmids, phages and pathogenicity islands in relation to bacterial protein toxins: impact on the evolution of microbes. In: Aloof JE, Freer JH (eds) The comprehensive sourcebook of bacterial protein toxins. Academic Press, pp 3–23

    Google Scholar 

  • Dobrindt U, Hacker J (2001) Whole genome plasticity in pathogenic bacteria. Curr Opin Microbiol 4:550–557

    Article  PubMed  CAS  Google Scholar 

  • Dröge M, Pühler A, Selbitschka W (1998) Horizontal gene transfer as a biosafety issue: a natural phenomenon of public concern. J Biotechnol 64:75–90

    Article  PubMed  Google Scholar 

  • Dröge M, Pühler A, Selbitschka W (1999) Horizontal gene transfer among bacteria in terrestrial and aquatic habitats as assessed by microcosm and field studies. Biol Fertil Soils 29:221–245

    Article  Google Scholar 

  • Dubnau D (1991) Genetic competence in Bacillus subtilis. Microbiol Rev 55:395–424

    PubMed  CAS  Google Scholar 

  • Dubnau D (1999) DNA uptake in bacteria. Annu Rev Microbiol 53:217–244

    Article  PubMed  CAS  Google Scholar 

  • Eisen JA (2000) Horizontal gene transfer among microbial genomes: new insights from complete genome analysis. Curr Opin Genet Dev 10:606–611

    Article  PubMed  CAS  Google Scholar 

  • Finkel SE, Kolter R (2001) DNA as a nutrient: novel role for bacterial competence gene homologs. J Bacteriol 183:6288–6293

    Article  PubMed  CAS  Google Scholar 

  • Flavell RB, Dart E, Fuchs RL, Fralay RT (1992) Selectable marker genes: safe for plants? Biotechnology 10:141–144

    Article  PubMed  CAS  Google Scholar 

  • Friedrich, A, Hartsch T, Averhoff B (2001) Natural transformation in mesophilic and thermophilic bacteria: identification and characterization of novel, closely related competence genes in Acinetobacter sp. strain BD413 and Thermus thermophilus HB27. Appl Environ Microbiol 67: 3140–3148

    Article  PubMed  CAS  Google Scholar 

  • Friedrich A, Prust C, Hartsch T, Henne A, Averhoff B (2002) Molecular analyses of the natural transformation machinery and identification of pilus structures in the extremely thermophilic bacterium Thermus thermophilus strain HB27. Appl Environ Microbiol 68:745–755

    Article  PubMed  CAS  Google Scholar 

  • Frostegård A, Courtois S, Ramisse V, Clerc S, Bernillon D, Le Gall F, Jeannin P, Nesme X, Simonet P (1999) Quantification of bias related to the extraction of DNA directly from soils. Appl Environ Microbiol 65:5409–5420

    PubMed  Google Scholar 

  • Fuchs P, Agostini H, Minton KW (1994) Defective transformation of chromosomal markers in DNA polymerase I mutants of the radioresistant bacterium Deinococcus radiodurans. Mutat Res 309:175–184

    PubMed  CAS  Google Scholar 

  • Gallori E, Bazzicalupo M, Dal Canto L, Fani R, Nannipieri P, Vettori C, Stotzky G (1994) Transformation of Bacillus subtilis by DNA bound on clay in non-sterile soil. FEMS Microbiol Ecol 15:119–126

    Article  CAS  Google Scholar 

  • Garcia-Vallvé S, Romeu A, Palau J (2000) Horizontal gene transfer in bacterial and archaeal complete genomes. Genome Res 10:1719–1725

    Article  PubMed  Google Scholar 

  • Garcia-Vallvé S, Guzman E, Montero MA, Romeu A (2003) HGT-DB: a database of putative horizontally transferred genes in prokaryotic complete genomes. Nucleic Acids Res 31:187–189

    Article  PubMed  CAS  Google Scholar 

  • Gebhard F, Smalla K (1998) Transformation of Acinetobacter sp. strain BD413 by transgenic sugar beet DNA. Appl Environ Microbiol 64:1550–1554

    PubMed  CAS  Google Scholar 

  • Gebhard F, Smalla K (1999) Monitoring field releases of genetically modified sugar beets for persistence of transgenic plant DNA and horizontal gene transfer. FEMS Microbiol Ecol 28:261–272

    Article  CAS  Google Scholar 

  • Grundmann GL, Debouzie D (2000) Geostatistical analysis of the distribution of NH +4 and NO 2 oxidizing bacteria and serotypes at the millimeter scale along a soil transect. FEMS Microbiol Eco 34:57–62

    CAS  Google Scholar 

  • Gupta S, Maiden MC (2001) Exploring the evolution of diversity in pathogen populations. Trends Microbiol 9:181–185

    Article  PubMed  CAS  Google Scholar 

  • Hofreuter D, Odenbreit S, Puls J, Schwan D, Haas R (2000) Genetic competence in Helicobacter pylori: mechanisms and biological implications. Res Microbiol 151:487–491

    Article  PubMed  CAS  Google Scholar 

  • Jain R, Rivera MC, Moore JE, Lake JA (2002) Horizontal gene transfer in microbial genome evolution. Theor Popul Biol 61:489–495

    Article  PubMed  Google Scholar 

  • Juni E, Heym GA, Newcomb RD (1988) Identification of Moraxella bovis by qualitative genetic transformation and nutritional assays. Appl Environ Microbiol 54:1304–1306

    PubMed  CAS  Google Scholar 

  • Kay E, Bertolla F, Vogel TM, Simonet P (2002a) Opportunistic colonization of Ralstonia solanacearum-infected plants by Acinetobacter sp. and its natural competence development. Microb Ecol 43:291–297

    Article  PubMed  CAS  Google Scholar 

  • Kay E, Vogel TM, Bertolla F, Nalin R, Simonet P (2002b) In situ transfer of antibiotic resistance genes from transgenic (transplastomic) tobacco plants to bacteria. Appl Environ Microbiol 68:3345–3351

    Article  PubMed  CAS  Google Scholar 

  • Kay E, Chabrillat G, Vogel TM, Simonet P (2003) Intergeneric transfer of chromosomal and conjugative plasmid genes between Ralstonia solanacearum and Acinetobacter sp. BD413. Mol Plant Microbe Interact 16:74–82

    PubMed  CAS  Google Scholar 

  • Khanna M, Stotzky G (1992) Transformation of Bacillus subtilis byDNA bound on montmorillonite and effect of DNase on the transforming ability of bound DNA. Appl Environ Microbiol 58:1930–1939

    PubMed  CAS  Google Scholar 

  • Koyama Y, Hoshino T, Tomizuka N, Furukawa K (1986) Genetic transformation of the extreme thermophile Thermus thermophilus and of other Thermus spp. J Bacteriol 166:338–340

    PubMed  CAS  Google Scholar 

  • Kriz P, Giorgini D, Musilek M, Larribe M, Taha MK (1999) Microevolution through DNA exchange among strains of Neisseria meningitidis isolated during an outbreak in the Czech Republic. Res Microbiol 150:273–280

    Article  PubMed  CAS  Google Scholar 

  • Kroer N, Barbay T, Sorensen S, Weber D (1998) Effect of root exudates and bacterial metabolic activity on conjugal gene transfer in the rhizosphere of a marsh plant. FEMS Microbiol Ecol 25:375–384

    Article  CAS  Google Scholar 

  • Kurland CG, Canback B, Berg OG (2003) Horizontal gene transfer: a critical view. Proc Natl Acad Sci 100:9658–9662

    Article  PubMed  CAS  Google Scholar 

  • Ladd JN, Forster RC, Nannipieri P, Oades JM (1996) Soil structure and biological activity. In: Stotzky G, Bollag JM (eds) Soil biochemistry, vol 9. Marcel Dekker, New York, pp 23–78

    Google Scholar 

  • Lorenz MG, Wackernagel W (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 58:563–602

    PubMed  CAS  Google Scholar 

  • Luke NR, Howlett AJ, Shao J, Campagnari AA (2004) Expression of type IV pili byMoraxella catarrhalis is essential for natural competence and is affected by iron limitation. Infect Immunol 72:6262–6270

    Article  CAS  Google Scholar 

  • Matic I, Taddei F, Radman M (1996) Genetic barriers among bacteria. Trends Microbiol 4:69–72

    Article  PubMed  CAS  Google Scholar 

  • Meier P, Berndt C, Weger N, Wackernagel W (2002) Natural transformation of Pseudomonas stutzeri by single-stranded DNA requires type IV pili, competence state and comA. FEMS Microbiol Lett 207:75–80

    Article  PubMed  CAS  Google Scholar 

  • Meier P, Wackernagel W (2003a) Mechanisms of homology-facilitated illegitimate recombination for foreign DNA acquisition in transformable Pseudomonas stutzeri. Mol Microbiol 48:1107–1108

    Article  PubMed  CAS  Google Scholar 

  • Meier P, Wackernagel W (2003b) Monitoring the spread of recombinant DNA from field plots with transgenic sugar beet plants by PCR and natural transformation of Pseudomonas stutzeri. Transgenic Res 12:293–304

    Article  PubMed  CAS  Google Scholar 

  • Michod RE, Wojciechowski MF, Hoelzer MA (1988) DNA repair and the evolution of transformation in the bacteriumBacillus subtilis. Genetics 118:31–39

    PubMed  CAS  Google Scholar 

  • Mongold JA (1992) DNA repair and the evolution of transformation in Haemophilus influenzae. Genetics 132:893–898

    PubMed  CAS  Google Scholar 

  • Nielsen KM (1998) Barriers to horizontal gene transfer by natural transformation in soil bacteria. APMIS Suppl 84:77–84

    PubMed  CAS  Google Scholar 

  • Nielsen KM, Van Elsas JD (2001) Stimulatory effects of compounds present in the rhizosphere on natural transformation of Acinetobacter sp. BD413 in soil. Soil Biol Biochem 33:345–357

    Article  CAS  Google Scholar 

  • Nielsen KM, Van Weerelt MD, Berg TN, Bones AM, Hagler AN, Van Elsas JD (1997) Natural transformation and availability of transforming DNA to Acinetobacter calcoaceticus in soil microcosms. Appl Environ Microbiol 63:1945–1952

    PubMed  CAS  Google Scholar 

  • Nielsen KM, Bones AM, Smalla K, Van Elsas JD (1998) Horizontal gene transfer from transgenic plants to terrestrial bacteria — a rare event? FEMS Microbiol Rev 22:79–103

    PubMed  CAS  Google Scholar 

  • Nielsen KM, Smalla K, Van Elsas JD (2000a) Natural transformation of Acinetobacter sp. strain BD413 with cell lysates of Acinetobacter sp., Pseudomonas fluorescens, and Burkholderia cepacia in soil microcosms. Appl Environ Microbiol 66:206–212

    Article  PubMed  CAS  Google Scholar 

  • Nielsen KM, Van Elsas JD, Smalla K (2000b) Transformation of Acinetobacter sp. strain BD413 (pFG4ΔnptII) with transgenic plant DNA in soil microcosms and effects of kanamycin on selection of transformants. Appl Environ Microbiol 66:1237–1242

    Article  PubMed  CAS  Google Scholar 

  • Nielsen KM, Van Elsas JD, Smalla K (2001) Dynamics, horizontal transfer and selection of novel DNA in bacterial populations in the phytosphere of transgenic plants. Ann Microbiol 51:79–94

    CAS  Google Scholar 

  • Norgard MV, Imaeda T (1978) Physiological factors involved in the transformation of Mycobacterium smegmatis. J Bacteriol 133:1254–1262

    PubMed  CAS  Google Scholar 

  • Normark BH, Normark S (2002) Evolution and spread of antibiotic resistance. J Intern Med 252:91–106

    Article  PubMed  CAS  Google Scholar 

  • Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304

    Article  PubMed  CAS  Google Scholar 

  • O’Connor M, Wopat A, Hanson RS (1977) Genetic transformation in Methylobacterium organophilum. J Gen Microbiol 98:265–272

    PubMed  CAS  Google Scholar 

  • Page WJ, Grant GA (1987) Effect of mineral iron on the development of transformation competence in Azotobacter vinelandii. FEMS Microbiol Lett 41:257–261

    Article  CAS  Google Scholar 

  • Paget E, Jocteur-Monrozier L, Simonet P (1992) Adsorption of DNA on clay minerals: protection against DNase I and influence on gene transfer. FEMS Microbiol Lett 97:31–40

    Article  CAS  Google Scholar 

  • Pallud C, Dechesne A, Gaudet JP, Debouzie D, Grundmann GL (2004) Modification of spatial distribution of 2,4-dichlorophenoxyacetic acid degrader microhabitats during growth in soil columns. Appl Environ Microbiol 70:2709–2716

    Article  PubMed  CAS  Google Scholar 

  • Palmen R, Vosman B, Buijsman P, Breek CK, Hellingwerf KJ (1993) Physiological characterization of natural transformation in Acinetobacter calcoaceticus. J Gen Microbiol 139:295–305

    PubMed  CAS  Google Scholar 

  • Paul JH (1999) Microbial gene transfer: an ecological perspective. J Mol Microbiol Biotechnol 1:45–50

    PubMed  CAS  Google Scholar 

  • Paul J, Thurmond JM, Frischer ME (1991) Gene transfer in marine water column and sediment microcosms by natural plasmid transformation. Appl Environ Microbiol 57:1509–1515

    PubMed  CAS  Google Scholar 

  • Poly F, Chenu C, Simonet P, Rouiller J, Jocteur-Monrozier L (2000) Differences between linear chromosomal and supercoiled plasmid DNA in their mechanisms and extent of adsorption on clay minerals. Langmuir 16:1233–1238

    Article  CAS  Google Scholar 

  • Redfield RJ (1993) Evolution of natural transformation: testing the DNA repair hypothesis in Bacillus subtilis and Haemophilus influenzae. Genetics 133:755–761

    PubMed  CAS  Google Scholar 

  • Redfield RJ, Schrag MR, Dean AM (1997) The evolution of bacterial transformation: sex with poor relations. Genetics 146:27–38

    PubMed  CAS  Google Scholar 

  • Romanowski G, Lorenz MG, Wackernagel W (1991) Adsorption of plasmid DNA to mineral surfaces and protection against DNase I. Appl Environ Microbiol 57:1057–1061

    PubMed  CAS  Google Scholar 

  • Romanowski G, Lorenz MG, Sayler G, Wackernagel W (1992) Persistence of free plasmid DNA in soil monitored by various methods, including a transformation assay. Appl Environ Microbiol 58:3012–3019

    PubMed  CAS  Google Scholar 

  • Romanowski G, Lorenz MG, Wackernagel W (1993) Use of polymerase chain reaction and electroporation of Escherichia coli to monitor the persistence of extracellular plasmid DNA introduced into natural soils. Appl Environ Microbiol 59:3438–3446

    PubMed  CAS  Google Scholar 

  • Rowe-Magnus DA, Mazel D (2001) Integrons: natural tools for bacterial genome evolution. Curr Opin Microbiol 4:565–569

    Article  PubMed  CAS  Google Scholar 

  • Scutt CP, Zubko E, Meyer P (2002) Techniques for the removal of marker genes from transgenic plants. Biochimie 84:1119–1126

    Article  PubMed  CAS  Google Scholar 

  • Sengelov G, Kowalchuk GA, Sorensen SJ (2000) Influence of fungal-bacterial interactions on bacterial conjugation in the residuesphere. FEMS Microbiol Ecol 31:39–45

    PubMed  CAS  Google Scholar 

  • Sengelov G, Kristensen KJ, Sorensen AH, Kroer N, Sorensen SJ (2001) Effect of genomic location on horizontal transfer of a recombinant gene cassette between Pseudomonas strains in the rhizosphere and spermosphere of barley seedlings. Curr Microbiol 42:160–167

    Article  PubMed  CAS  Google Scholar 

  • Sikorski J, Teschner N, Wackernagel W (2002) Highly different levels of natural transformation are associated with genomic subgroups within a local population of Pseudomonas stutzeri from soil. Appl Environ Microbiol 68:865–873

    Article  PubMed  CAS  Google Scholar 

  • Smeets LC, Kusters JG (2002) Natural transformation in Helicobacter pylori: DNA transport in an unexpected way. Trends Microbiol 10:159–162

    Article  PubMed  CAS  Google Scholar 

  • Smith HO, Gwinn ML, Salzberg SL (1999) DNA uptake signal sequences in naturally transformable bacteria. Res Microbiol 150:603–616

    Article  PubMed  CAS  Google Scholar 

  • Solomon JM, Grossman AD (1996) Who’s competent and when: regulation of natural genetic competence in bacteria. Trends Genet 12:150–155

    Article  PubMed  CAS  Google Scholar 

  • Stone BJ, Kwaik YA (1999) Natural competence for DNA transformation by Legionella pneumophila and its association with expression of type IV pili. J Bacteriol 181:1395–1402

    PubMed  CAS  Google Scholar 

  • Strätz M, Mau M, Timmis KN (1996) System to study horizontal gene exchange among microorganisms without cultivation of recipients. Mol Microbiol 22:207–215

    Article  PubMed  Google Scholar 

  • Taddei F, Vulic M, Radman M, Matic I (1997) Genetic variability and adaptation to stress. EXS 83:271–290

    PubMed  CAS  Google Scholar 

  • Timms-Wilson TM, Van Overbeek LS, Trevors JT, Bailey MJ, Van Elsas JD (2002) Quantification of gene transfer in soil and the phytosphere. In: Hurst CJ, Crawford RL, Knudsen GR, McInerney MJ, Stetzenbach LD (eds) Manual of environmental microbiology, 2nd edn. ASM Press, Washington, DC, pp 648–659

    Google Scholar 

  • Troxler J, Azelvandre P, Zala M, Défago G, Haas D (1997) Conjugative transfer of chromosomal genes between fluorescent pseudomonads in the rhizosphere of the wheat. FEMS Microbiol Ecol 63:213–219

    CAS  Google Scholar 

  • Tsen SD, Fang SS, Chen MJ, Chien JY, Lee CC, Tsen DH (2002) Natural plasmid transformation in Escherichia coli. J Biomed Sci 9:246–252

    PubMed  CAS  Google Scholar 

  • Van Elsas JD, Trevors JT, Starodub ME (1988) Bacterial conjugation between pseudomonads in the rhizosphere of wheat. FEMS Microbiol Ecol 54:299–306

    Article  Google Scholar 

  • Vogel J, Normand P, Thioulouse J, Nesme X, Grundmann GL (2003) Relationship between spatial and genetic distance in Agrobacterium spp. in 1 cubic centimeter of soil. Appl Environ Microbiol 69:1482–1487

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Taylor DE (1990) Natural transformation in Campylobacter species. J Bacteriol 172:949–955

    PubMed  CAS  Google Scholar 

  • Widmer F, Seidler RJ, Watrud LS (1996) Sensitive detection of transgenic plant marker gene persistence in soil microcosms. Mol Ecol 5:603–613

    CAS  Google Scholar 

  • Widmer F, Seidler RJ, Donegan KK, Reed GL (1997) Quantification of transgenic plant marker gene persistence in the field. Mol Ecol 6:1–7

    Article  CAS  Google Scholar 

  • Wiesner RS, Hendrixson DR, DiRita VJ (2003) Natural transformation of Campylobacter jejuni requires components of a type II secretion system. J Bacteriol 185:5408–5418 (Erratum: J Bacteriol 185:6493)

    Article  PubMed  CAS  Google Scholar 

  • Woegerbauer M, Jenni B, Thalhammer F, Graninger W, Burgmann H (2002) Natural genetic transformation of clinical isolates of Escherichia coli in urine and water. Appl Environ Microbiol 68:440–443

    Article  PubMed  CAS  Google Scholar 

  • Woese C (2000) Interpreting the universal phylogenetic tree. Proc Natl Acad Sci 97:8392–8396

    Article  PubMed  CAS  Google Scholar 

  • Worrell VE, Nagle DP Jr, McCarthy D, Eisenbraun A (1988) Genetic transformation system in the archaebacterium Methanobacterium thermoautotrophicum Marburg. J Bacteriol 170:653–656

    PubMed  CAS  Google Scholar 

  • Yankofsky SA, Gurevich R, Grimland N, Stark AA (1983) Genetic transformation of obligately chemolithotrophic thiobacilli. J Bacteriol 153:652–657

    PubMed  CAS  Google Scholar 

  • Yin X, Stotzky G (1997) Gene transfer among bacteria in natural environments. Adv Appl Microbiol 45:153–212

    Article  PubMed  CAS  Google Scholar 

  • Yoshihara S, Geng X, Okamoto S, Yura K, Murata T, Go M, Ohmori M, Ikeuchi M (2001) Mutational analysis of genes involved in pilus structure, motility and transformation competency in the unicellular motile cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 42:63–73

    Article  PubMed  CAS  Google Scholar 

  • Young DM, Ornston LN (2001) Functions of the mismatch repair gene mutS fromAcinetobacter sp. strain ADP1. J Bacteriol 183:6822–6831

    Article  PubMed  CAS  Google Scholar 

  • Ziebuhr W, Ohlsen K, Karch H, Korhonen T, Hacker J (1999) Evolution of bacterial pathogenesis. Cell Mol Life Sci 56:719–728

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mercier, A., Kay, E., Simonet, P. (2006). Horizontal Gene Transfer by Natural Transformation in Soil Environment. In: Nannipieri, P., Smalla, K. (eds) Nucleic Acids and Proteins in Soil. Soil Biology, vol 8. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-29449-X_15

Download citation

Publish with us

Policies and ethics