Skip to main content

Surface Forces and Nanorheology of Molecularly Thin Films

  • Chapter
Nanotribology and Nanomechanics

Summary

In this chapter, we describe the static and dynamic normal forces that occur between surfaces in vacuum or liquids and the different modes of friction that can be observed between (i) bare surfaces in contact (dry or interfacial friction), (ii) surfaces separated by a thin liquid film (lubricated friction), and (iii) surfaces coated with organic monolayers (boundary friction).

Experimental methods suitable for measuring normal surface forces, adhesion and friction (lateral or shear) forces of different magnitude at the molecular level are described. We explain the molecular origin of van der Waals, electrostatic, solvation and polymer mediated interactions, and basic models for the contact mechanics of adhesive and nonadhesive elastically deforming bodies. The effects of interaction forces, molecular shape, surface structure and roughness on adhesion and friction are discussed.

Simple models for the contributions of the adhesion force and external load to interfacial friction are illustrated with experimental data on both unlubricated and lubricated systems, as measured with the surface forces apparatus. We discuss rate-dependent adhesion (adhesion hysteresis) and how this is related to friction. Some examples of the transition from wearless friction to friction with wear are shown.

Lubrication in different lubricant thickness regimes is described together with explanations of nanorheological concepts. The occurrence of and transitions between smooth and stick—slip sliding in various types of dry (unlubricated and solid boundary lubricated) and liquid lubricated systems are discussed based on recent experimental results and models for stick—slip involving memory distance and dilatency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. B. Lodge. Techniques for the measurement of forces between solids. Adv. Colloid Interface Sci., 19:27–73, 1983.

    CAS  Google Scholar 

  2. J. N. Israelachvili. Intermolecular and Surface Forces. Academic Press, 2nd edition, 1991.

    Google Scholar 

  3. P. F. Luckham and B. A. de L. Costello. Recent developments in the measurement of interparticle forces. Adv. Colloid Interface Sci., 44:183–240, 1993.

    CAS  Google Scholar 

  4. P. M. Claesson, T. Ederth, V. Bergeron, and M. W. Rutland. Techniques for measuring surface forces. Adv. Colloid Interface Sci., 67:119–183, 1996.

    CAS  Google Scholar 

  5. V. S. J. Craig. An historical review of surface force measurement techniques. Colloids Surf. A, 129–130:75–94, 1997.

    Google Scholar 

  6. J. N. Israelachvili and G. E. Adams. Measurements of forces between two mica surfaces in aqueous electrolyte solutions in the range 0–100 nm. J. Chem. Soc. Faraday Trans. I, 74:975–1001, 1978.

    CAS  Google Scholar 

  7. G. Binnig, C. F. Quate, and C. Gerber. Atomic force microscope. Phys. Rev. Lett., 56:930–933, 1986.

    Google Scholar 

  8. W. A. Ducker, T. J. Senden, and R.M. Pashley. Direct measurement of colloidal forces using an atomic force microscope. Nature, 353:239–241, 1991.

    CAS  Google Scholar 

  9. E. Meyer, R. M. Overney, K. Dransfeld, and T. Gyalog. Nanoscience: Friction and Rheology on the Nanometer Scale. World Scientific, 1998.

    Google Scholar 

  10. J. N. Israelachvili. Surface Forces and Microrheology of Molecularly Thin Liquid Films, pages 267–319. CRC Press, 1995.

    Google Scholar 

  11. J. N. Israelachvili. Measurements of the viscosity of thin fluid films between two surfaces with and without adsorbed polymers. Colloid Polym. Sci., 264:1060–1065, 1986.

    CAS  Google Scholar 

  12. J. P. Montfort and G. Hadziioannou. Equilibrium and dynamic behavior of thin films of a perfluorinated polyether. J. Chem. Phys., 88:7187–7196, 1988.

    CAS  Google Scholar 

  13. A. Dhinojwala and S. Granick. Surface forces in the tapping mode: Solvent permeability and hydrodynamic thickness of adsorbed polymer brushes. Macromolecules, 30:1079–1085, 1997.

    CAS  Google Scholar 

  14. B. V. Derjaguin. Untersuchungen über die reibung und adhäsion, iv. theorie des anhaftens kleiner teilchen. Kolloid Z., 69:155–164, 1934.

    Google Scholar 

  15. K. L. Johnson, K. Kendall, and A. D. Roberts. Surface energy and the contact of elastic solids. Proc. R. Soc. London A, 324:301–313, 1971.

    CAS  Google Scholar 

  16. J. N. Israelachvili and P. M. McGuiggan. Adhesion and short-range forces between surfaces. part 1: New apparatus for surface force measurements. J. Mater. Res., 5:2223–2231, 1990.

    CAS  Google Scholar 

  17. J. N. Israelachvili. Thin film studies using multiple-beam interferometry. J. Colloid Interface Sci., 44:259–272, 1973.

    CAS  Google Scholar 

  18. Y. L. Chen, T. Kuhl, and J. Israelachvili. Mechanism of cavitation damage in thin liquid films: Collapse damage vs. inception damage. Wear, 153:31–51, 1992.

    CAS  Google Scholar 

  19. M. Heuberger, G. Luengo, and J. Israelachvili. Topographic information from multiple beam interferometry in the surface forces apparatus. Langmuir, 13:3839–3848, 1997.

    CAS  Google Scholar 

  20. R. M. Pashley. Dlvo and hydration forces between mica surfaces in Li+, Na+, K+, and Cs+ electrolyte solutions: A correlation of double-layer and hydration forces with surface cation exchange properties. J. Colloid Interface Sci., 83:531–546, 1981.

    CAS  Google Scholar 

  21. R. M. Pashley. Hydration forces between mica surfaces in electrolyte solution. Adv. Colloid Interface Sci., 16:57–62, 1982.

    CAS  Google Scholar 

  22. R. G. Horn, D. T. Smith, and W. Haller. Surface forces and viscosity of water measured between silica sheets. Chem. Phys. Lett., 162:404–408, 1989.

    CAS  Google Scholar 

  23. R. G. Horn, D. R. Clarke, and M. T. Clarkson. Direct measurements of surface forces between sapphire crystals in aqueous solutions. J. Mater. Res., 3:413–416, 1988.

    CAS  Google Scholar 

  24. W. W. Merrill, A. V. Pocius, B. V. Thakker, and M. Tirrell. Direct measurement of molecular level adhesion forces between biaxially oriented solid polymer films. Langmuir, 7:1975–1980, 1991.

    CAS  Google Scholar 

  25. J. Klein. Forces between mica surfaces bearing adsorbed macromolecules in liquid media. J. Chem. Soc. Faraday Trans. I, 79:99–118, 1983.

    CAS  Google Scholar 

  26. S. S. Patel and M. Tirrell. Measurement of forces between surfaces in polymer fluids. Annu. Rev. Phys. Chem., 40:597–635, 1989.

    CAS  Google Scholar 

  27. H. Watanabe and M. Tirrell. Measurements of forces in symmetric and asymmetric interactions between diblock copolymer layers adsorbed on mica. Macromolecules, 26:6455–6466, 1993.

    CAS  Google Scholar 

  28. T. L. Kuhl, D. E. Leckband, D. D. Lasic, and J. N. Israelachvili. Modulation and modeling of interaction forces between lipid bilayers exposing terminally grafted polymer chains, pages 73–91. CRC Press, 1995.

    Google Scholar 

  29. J. Klein. Shear, friction, and lubrication forces between polymer-bearing surfaces. Annu. Rev. Mater. Sci., 26:581–612, 1996.

    CAS  Google Scholar 

  30. M. Ruths, D. Johannsmann, J. Rühe, and W. Knoll. Repulsive forces and relaxation on compression of entangled, polydisperse polystyrene brushes. Macromolecules, 33:3860–3870, 2000.

    CAS  Google Scholar 

  31. C. A. Helm, J. N. Israelachvili, and P. M. McGuiggan. Molecular mechanisms and forces involved in the adhesion and fusion of amphiphilic bilayers. Science, 246:919–922, 1989.

    CAS  Google Scholar 

  32. Y. L. Chen, C. A. Helm, and J. N. Israelachvili. Molecular mechanisms associated with adhesion and contact angle hysteresis of monolayer surfaces. J. Phys. Chem., 95:10736–10747, 1991.

    CAS  Google Scholar 

  33. D. E. Leckband, J. N. Israelachvili, F.-J. Schmitt, and W. Knoll. Long-range attraction and molecular rearrangements in receptor-ligand interactions. Science, 255:1419–1421, 1992.

    CAS  Google Scholar 

  34. J. Peanasky, H. M. Schneider, S. Granick, and C. R. Kessel. Self-assembled monolayers on mica for experiments utilizing the surface forces apparatus. Langmuir, 11:953–962, 1995.

    CAS  Google Scholar 

  35. C. J. Coakley and D. Tabor. Direct measurement of van der waals forces between solids in air. J. Phys. D, 11:L77–L82, 1978.

    CAS  Google Scholar 

  36. J. L. Parker and H. K. Christenson. Measurements of the forces between a metal surface and mica across liquids. J. Chem. Phys., 88:8013–8014, 1988.

    CAS  Google Scholar 

  37. C. P. Smith, M. Maeda, L. Atanasoska, H. S. White, and D. J. McClure. Ultrathin platinum films on mica and the measurement of forces at the platinum/water interface. J. Phys. Chem., 92:199–205, 1988.

    CAS  Google Scholar 

  38. S. J. Hirz, A. M. Homola, G. Hadziioannou, and C. W. Frank. Effect of substrate on shearing properties of ultrathin polymer films. Langmuir, 8:328–333, 1992.

    CAS  Google Scholar 

  39. J. M. Levins and T. K. Vanderlick. Reduction of the roughness of silver films by the controlled application of surface forces. J. Phys. Chem., 96:10405–10411, 1992.

    CAS  Google Scholar 

  40. S. Steinberg, W. Ducker, G. Vigil, C. Hyukjin, C. Frank, M. Z. Tseng, D. R. Clarke, and J. N. Israelachvili. Van der waals epitaxial growth of α-alumina nanocrystals on mica. Science, 260:656–659, 1993.

    CAS  Google Scholar 

  41. G. Vigil, Z. Xu, S. Steinberg, and J. Israelachvili. Interactions of silica surfaces. J. Colloid Interface Sci., 165:367–385, 1994.

    CAS  Google Scholar 

  42. M. Ruths, M. Heuberger, V. Scheumann, J. Hu, and W. Knoll. Confinement-induced film thickness transitions in liquid crystals between two alkanethiol monolayers on gold. Langmuir, 17:6213–6219, 2001.

    CAS  Google Scholar 

  43. J. Van Alsten and S. Granick. Molecular tribometry of ultrathin liquid films. Phys. Rev. Lett., 61:2570–2573, 1988.

    Google Scholar 

  44. J. Van Alsten and S. Granick. Shear rheology in a confined geometry: Polysiloxane melts. Macromolecules, 23:4856–4862, 1990.

    CAS  Google Scholar 

  45. A. M. Homola, J. N. Israelachvili, M. L. Gee, and P. M. McGuiggan. Measurements of and relation between the adhesion and friction of two surfaces separated by molecularly thin liquid films. J. Tribol., 111:675–682, 1989.

    Article  CAS  Google Scholar 

  46. J. Klein and E. Kumacheva. Simple liquids confined to molecularly thin layers. i. confinement-induced liquid-to-solid phase transitions. J. Chem. Phys., 108:6996–7009, 1998.

    CAS  Google Scholar 

  47. G. Luengo, F.-J. Schmitt, R. Hill, and J. Israelachvili. Thin film rheology and tribology of confined polymer melts: Contrasts with bulk properties. Macromolecules, 30:2482–2494, 1997.

    CAS  Google Scholar 

  48. E. Kumacheva. Interfacial friction measurements in surface force apparatus. Prog. Surf. Sci., 58:75–120, 1998.

    CAS  Google Scholar 

  49. A. L. Weisenhorn, P. K. Hansma, T. R. Albrecht, and C. F. Quate. Forces in atomic force microscopy in air and water. Appl. Phys. Lett., 54:2651–2653, 1989.

    Google Scholar 

  50. G. Meyer and N. M. Amer. Simultaneous measurement of lateral and normal forces with an optical-beam-deflection atomic force microscope. Appl. Phys. Lett., 57:2089–2091, 1990.

    CAS  Google Scholar 

  51. E. L. Florin, V. T. Moy, and H. E. Gaub. Adhesion forces between individual ligand-receptor pairs. Science, 264:415–417, 1994.

    CAS  Google Scholar 

  52. G. U. Lee, D. A. Kidwell, and R. J. Colton. Sensing discrete streptavidin—biotin interactions with atomic force microscopy. Langmuir, 10:354–357, 1994.

    CAS  Google Scholar 

  53. D. Leckband and J. Israelachvili. Intermolecular forces in biology. Quart. Rev. Biophys., 34:105–267, 2001.

    Article  CAS  Google Scholar 

  54. C. M. Mate, G. M. McClelland, R. Erlandsson, and S. Chiang. Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett., 59:1942–1945, 1987.

    CAS  Google Scholar 

  55. R. W. Carpick and M. Salmeron. Scratching the surface: Fundamental investigations of tribology with atomic force microscopy. Chem. Rev., 97:1163–1194, 1997.

    CAS  Google Scholar 

  56. J. P. Cleveland, S. Manne, D. Bocek, and P. K. Hansma. A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev. Sci. Instrum., 64:403–405, 1993.

    CAS  Google Scholar 

  57. J. E. Sader, J. W. M. Chon, and P. Mulvaney. Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instrum., 70:3967–3969, 1999.

    CAS  Google Scholar 

  58. Y. Liu, T. Wu, and D. F. Evans. Lateral force microscopy study on the shear properties of self-assembled monolayers of dialkylammonium surfactant on mica. Langmuir, 10:2241–2245, 1994.

    CAS  Google Scholar 

  59. C. Neto and V. S. J. Craig. Colloid probe characterization: Radius and roughness determination. Langmuir, 17:2097–2099, 2001.

    CAS  Google Scholar 

  60. R. G. Horn and J. N. Israelachvili. Molecular organization and viscosity of a thin film of molten polymer between two surfaces as probed by force measurements. Macromolecules, 21:2836–2841, 1988.

    CAS  Google Scholar 

  61. R. G. Horn, S. J. Hirz, G. Hadziioannou, C. W. Frank, and J. M. Catala. A reevaluation of forces measured across thin polymer films: Nonequilibrium and pinning effects. J. Chem. Phys., 90:6767–6774, 1989.

    CAS  Google Scholar 

  62. O. I. Vinogradova, H.-J. Butt, G. E. Yakubov, and F. Feuillebois. Dynamic effects on force measurements. i. viscous drag on the atomic force microscope cantilever. Rev. Sci. Instrum., 72:2330–2339, 2001.

    CAS  Google Scholar 

  63. E. Evans and D. Needham. Physical properties of surfactant bilayer membranes: Thermal transitions, elasticity, rigidity, cohesion, and colloidal interactions. J. Phys. Chem., 91:4219–4228, 1987.

    CAS  Google Scholar 

  64. E. Evans and D. Needham. Attraction between lipid bilayer membranes in concentrated solutions of nonadsorbing polymers: Comparison of mean-field theory with measurements of adhesion energy. Macromolecules, 21:1822–1831, 1988.

    CAS  Google Scholar 

  65. S. E. Chesla, P. Selvaraj, and C. Zhu. Measuring two-dimensional receptor-ligand binding kinetics by micropipette. Biophys. J., 75:1553–1572, 1998.

    CAS  Google Scholar 

  66. E. Evans, K. Ritchie, and R. Merkel. Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces. Biophys. J., 68:2580–2587, 1995.

    CAS  Google Scholar 

  67. D. M. LeNeveu, R. P. Rand, and V. A. Parsegian. Measurements of forces between lecithin bilayers. Nature, 259:601–603, 1976.

    CAS  Google Scholar 

  68. A. Homola and A. A. Robertson. A compression method for measuring forces between colloidal particles. J. Colloid Interface Sci., 54:286–297, 1976.

    CAS  Google Scholar 

  69. V. A. Parsegian, N. Fuller, and R. P. Rand. Measured work of deformation and repulsion of lecithin bilayers. Proc. Nat. Acad. Sci. USA, 76:2750–2754, 1979.

    CAS  Google Scholar 

  70. R. P. Rand and V. A. Parsegian. Hydration forces between phospholipid bilayers. Biochim. Biophys. Acta, 988:351–376, 1989.

    CAS  Google Scholar 

  71. S. Leikin, V. A. Parsegian, D. C. Rau, and R. P. Rand. Hydration forces. Annu. Rev. Phys. Chem., 44:369–395, 1993.

    CAS  Google Scholar 

  72. S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable. Experimental observation of optically trapped atoms. Phys. Rev. Lett., 57:314–317, 1986.

    CAS  Google Scholar 

  73. A. Ashkin. Optical trapping and manipulation of neutral particles using lasers. Proc. Nat. Acad. Sci. USA, 94:4853–4860, 1997.

    CAS  Google Scholar 

  74. K. Visscher, S. P. Gross, and S. M. Block. Construction of multiple-beam optical traps with nanometer-resolution positioning sensing. IEEE J. Sel. Top. Quantum Electron., 2:1066–1076, 1996.

    CAS  Google Scholar 

  75. D. C. Prieve and N. A. Frej. Total internal reflection microscopy: A quantitative tool for the measurement of colloidal forces. Langmuir, 6:396–403, 1990.

    CAS  Google Scholar 

  76. J. Rädler and E. Sackmann. On the measurement of weak repulsive and frictional colloidal forces by reflection interference contrast microscopy. Langmuir, 8:848–853, 1992.

    Google Scholar 

  77. P. Bongrand, C. Capo, J.-L. Mege, and A.-M. Benoliel. Use of hydrodynamic flows to study cell adhesion, pages 125–156. CRC Press, 1988.

    Google Scholar 

  78. G. Kaplanski, C. Farnarier, O. Tissot, A. Pierres, A.-M. Benoliel, A.-C. Alessi, S. Kaplanski, and P. Bongrand. Granulocyte-endothelium initial adhesion: Analysis of transient binding events mediated by E-selectin in a laminar shear flow. Biophys. J., 64:1922–1933, 1993.

    CAS  Google Scholar 

  79. H. B. G. Casimir and D. Polder. The influence of retardation on the london—van der waals forces. Phys. Rev., 73:360–372, 1948.

    CAS  Google Scholar 

  80. H. C. Hamaker. The london—van der waals attraction between spherical particles. Physica, 4:1058–1072, 1937.

    CAS  Google Scholar 

  81. E. M. Lifshitz. The theory of molecular attraction forces between solid bodies. Sov. Phys. JETP (English translation), 2:73–83, 1956.

    Google Scholar 

  82. I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii. The general theory of van der waals forces. Adv. Phys., 10:165–209, 1961.

    Google Scholar 

  83. H. W. Fox and W. A. Zisman. The spreading of liquids on low-energy surfaces. iii. hydrocarbon surfaces. J. Colloid Sci., 7:428–442, 1952.

    CAS  Google Scholar 

  84. B. V. Derjaguin and V. P. Smilga. Electrostatic component of the rolling friction force moment. Wear, 7:270–281, 1964.

    Google Scholar 

  85. R. G. Horn and D. T. Smith. Contact electrification and adhesion between dissimilar materials. Science, 256:362–364, 1992.

    CAS  Google Scholar 

  86. R. Budakian and S. J. Putterman. Correlation between charge transfer and stick—slip friction at a metal—insulator interface. Phys. Rev. Lett., 85:1000–1003, 2000.

    CAS  Google Scholar 

  87. M. Grätzel. Photoelectrochemical cells. Nature, 414:338–344, 2001.

    Google Scholar 

  88. R. M. German. Sintering Theory and Practice. Wiley, 1996.

    Google Scholar 

  89. R. Budakian and S. J. Putterman. Time scales for cold welding and the origins of stick—slip friction. Phys. Rev. B, 65:235429/1–5, 2002.

    CAS  Google Scholar 

  90. U. Landman, W. D. Luedtke, N. A. Burnham, and R. J. Colton. Atomistic mechanisms and dynamics of adhesion, nanoindentation, and fracture. Science, 248:454–461, 1990.

    CAS  Google Scholar 

  91. U. Landman, W. D. Luedtke, and E. M. Ringer. Molecular dynamics simulations of adhesive contact formation and friction. NATO Science Ser. E, 220:463–510, 1992.

    CAS  Google Scholar 

  92. W. D. Luedtke and U. Landman. Solid and liquid junctions. Comput. Mater. Sci., 1:1–24, 1992.

    CAS  Google Scholar 

  93. U. Landman and W. D. Luedtke. Interfacial junctions and cavitation. MRS Bull., 18:36–44, 1993.

    CAS  Google Scholar 

  94. B. Bhushan, J. N. Israelachvili, and U. Landman. Nanotribology: Friction, wear and lubrication at the atomic scale. Nature, 374:607–616, 1995.

    CAS  Google Scholar 

  95. M. R. Sørensen, K. W. Jacobsen, and P. Stoltze. Simulations of atomic-scale sliding friction. Phys. Rev. B, 53:2101–2113, 1996.

    Google Scholar 

  96. A. Meurk, P. F. Luckham, and L. Bergström. Direct measurement of repulsive and attractive van der waals forces between inorganic materials. Langmuir, 13:3896–3899, 1997.

    CAS  Google Scholar 

  97. E. J. W. Verwey and J. T. G. Overbeek. Theory of the Stability of Lyophobic Colloids. Elsevier, 1st edition, 1948.

    Google Scholar 

  98. D. Y. C. Chan, R. M. Pashley, and L. R. White. A simple algorithm for the calculation of the electrostatic repulsion between identical charged surfaces in electrolyte. J. Colloid Interface Sci., 77:283–285, 1980.

    CAS  Google Scholar 

  99. B. Derjaguin and L. Landau. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim. URSS, 14:633–662, 1941.

    Google Scholar 

  100. D. Chan, T. W. Healy, and L. R. White. Electrical double layer interactions under regulation by surface ionization equilibriums — dissimilar amphoteric surfaces. J. Chem. Soc. Faraday Trans. 1, 72:2844–2865, 1976.

    CAS  Google Scholar 

  101. G. S. Manning. Limiting laws and counterion condensation in polyelectrolyte solutions. i. colligative properties. J. Chem. Phys., 51:924–933, 1969.

    CAS  Google Scholar 

  102. L. Guldbrand, V. Jönsson, H. Wennerström, and P. Linse. Electrical double-layer forces: A monte carlo study. J. Chem. Phys., 80:2221–2228, 1984.

    CAS  Google Scholar 

  103. H. Wennerström, B. Jönsson, and P. Linse. The cell model for polyelectrolyte systems. exact statistical mechanical relations, monte carlo simulations, and the poisson—boltzmann approximation. J. Chem. Phys., 76:4665–4670, 1982.

    Google Scholar 

  104. J. Marra. Effects of counterion specificity on the interactions between quaternary ammonium surfactants in monolayers and bilayers. J. Phys. Chem., 90:2145–2150, 1986.

    CAS  Google Scholar 

  105. J. Marra. Direct measurement of the interaction between phosphatidylglycerol bilayers in aqueous-electrolyte solutions. Biophys. J., 50:815–825, 1986.

    Article  CAS  Google Scholar 

  106. R. G. Horn and J. N. Israelachvili. Direct measurement of structural forces between two surfaces in a nonpolar liquid. J. Chem. Phys., 75:1400–1411, 1981.

    CAS  Google Scholar 

  107. H. K. Christenson, D. W. R. Gruen, R. G. Horn, and J. N. Israelachvili. Structuring in liquid alkanes between solid surfaces: Force measurements and mean-field theory. J. Chem. Phys., 87:1834–1841, 1987.

    CAS  Google Scholar 

  108. M. L. Gee and J. N. Israelachvili. Interactions of surfactant monolayers across hydrocarbon liquids. J. Chem. Soc. Faraday Trans., 86:4049–4058, 1990.

    CAS  Google Scholar 

  109. J. N. Israelachvili, S. J. Kott, M. L. Gee, and T. A. Witten. Forces between mica surfaces across hydrocarbon liquids: Effects of branching and polydispersity. Macromolecules, 22:4247–4253, 1989.

    CAS  Google Scholar 

  110. I. K. Snook and W. van Megen. Solvation forces in simple dense fluids i. J. Chem. Phys., 72:2907–2913, 1980.

    CAS  Google Scholar 

  111. W. J. van Megen and I. K. Snook. Solvation forces in simple dense fluids ii. effect of chemical potential. J. Chem. Phys., 74:1409–1411, 1981.

    Google Scholar 

  112. R. Kjellander and S. Marcelja. Perturbation of hydrogen bonding in water near polar surfaces. Chem. Phys. Lett., 120:393–396, 1985.

    CAS  Google Scholar 

  113. P. Tarazona and L. Vicente. A model for the density oscillations in liquids between solid walls. Mol. Phys., 56:557–572, 1985.

    CAS  Google Scholar 

  114. D. Henderson and M. Lozada-Cassou. A simple theory for the force between spheres immersed in a fluid. J. Colloid Interface Sci., 114:180–183, 1986.

    CAS  Google Scholar 

  115. J. E. Curry and J. H. Cushman. Structure in confined fluids: Phase separation of binary simple liquid mixtures. Tribol. Lett., 4:129–136, 1998.

    CAS  Google Scholar 

  116. M. Schoen, T. Gruhn, and D. J. Diestler. Solvation forces in thin films confined between macroscopically curved substrates. J. Chem. Phys., 109:301–311, 1998.

    CAS  Google Scholar 

  117. F. Porcheron, B. Rousseau, M. Schoen, and A. H. Fuchs. Structure and solvation forces in confined alkane films. Phys. Chem. Chem. Phys., 3:1155–1159, 2001.

    CAS  Google Scholar 

  118. H. K. Christenson. Forces between solid surfaces in a binary mixture of non-polar liquids. Chem. Phys. Lett., 118:455–458, 1985.

    CAS  Google Scholar 

  119. H. K. Christenson and R. G. Horn. Solvation forces measured in non-aqueous liquids. Chem. Scr., 25:37–41, 1985.

    CAS  Google Scholar 

  120. J. Israelachvili. Solvation forces and liquid structure, as probed by direct force measurements. Acc. Chem. Res., 20:415–421, 1987.

    CAS  Google Scholar 

  121. H. K. Christenson. Non-dlvo forces between surfaces — solvation, hydration and capillary effects. J. Disp. Sci. Technol., 9:171–206, 1988.

    CAS  Google Scholar 

  122. L. J. D. Frink and F. van Swol. Solvation forces between rough surfaces. J. Chem. Phys., 108:5588–5598, 1998.

    CAS  Google Scholar 

  123. J. Gao, W. D. Luedtke, and U. Landman. Structures, solvation forces and shear of molecular films in a rough nano-confinement. Tribol. Lett., 9:3–13, 2000.

    CAS  Google Scholar 

  124. H. E. Stanley and J. Teixeira. Interpretation of the unusual behavior of H2O and D2O at low temperatures: Tests of a percolation model. J. Chem. Phys., 73:3404–3422, 1980.

    CAS  Google Scholar 

  125. H. van Olphen. An Introduction to Clay Colloid Chemistry. Wiley, 2nd edition, 1977.

    Google Scholar 

  126. U. Del Pennino, E. Mazzega, S. Valeri, A. Alietti, M. F. Brigatti, and L. Poppi. Interlayer water and swelling properties of monoionic montmorillonites. J. Colloid Interface Sci., 84:301–309, 1981.

    Google Scholar 

  127. B. E. Viani, P. F. Low, and C. B. Roth. Direct measurement of the relation between interlayer force and interlayer distance in the swelling of montmorillonite. J. Colloid Interface Sci., 96:229–244, 1983.

    CAS  Google Scholar 

  128. R. G. Horn. Surface forces and their action in ceramic materials. J. Am. Ceram. Soc., 73:1117–1135, 1990.

    CAS  Google Scholar 

  129. B. V. Velamakanni, J. C. Chang, F. F. Lange, and D. S. Pearson. New method for efficient colloidal particle packing via modulation of repulsive lubricating hydration forces. Langmuir, 6:1323–1325, 1990.

    CAS  Google Scholar 

  130. R. R. Lessard and S. A. Zieminski. Bubble coalescence and gas transfer in aqueous electrolytic solutions. Ind. Eng. Chem. Fundam., 10:260–269, 1971.

    CAS  Google Scholar 

  131. J. Israelachvili and R. Pashley. The hydrophobic interaction is long range, decaying exponentially with distance. Nature, 300:341–342, 1982.

    CAS  Google Scholar 

  132. R. M. Pashley, P. M. McGuiggan, B. W. Ninham, and D. F. Evans. Attractive forces between uncharged hydrophobic surfaces: Direct measurements in aqueous solutions. Science, 229:1088–1089, 1985.

    CAS  Google Scholar 

  133. P. M. Claesson, C. E. Blom, P. C. Herder, and B. W. Ninham. Interactions between water-stable hydrophobic langmuir—blodgett monolayers on mica. J. Colloid Interface Sci., 114:234–242, 1986.

    CAS  Google Scholar 

  134. Ya. I. Rabinovich and B. V. Derjaguin. Interaction of hydrophobized filaments in aqueous electrolyte solutions. Colloids Surf., 30:243–251, 1988.

    CAS  Google Scholar 

  135. J. L. Parker, D. L. Cho, and P. M. Claesson. Plasma modification of mica: Forces between fluorocarbon surfaces in water and a nonpolar liquid. J. Phys. Chem., 93:6121–6125, 1989.

    CAS  Google Scholar 

  136. H. K. Christenson, J. Fang, B. W. Ninham, and J. L. Parker. Effect of divalent electrolyte on the hydrophobic attraction. J. Phys. Chem., 94:8004–8006, 1990.

    CAS  Google Scholar 

  137. K. Kurihara, S. Kato, and T. Kunitake. Very strong long range attractive forces between stable hydrophobic monolayers of a polymerized ammonium surfactant. Chem. Lett., pages 1555–1558, 1990.

    Google Scholar 

  138. Y. H. Tsao, D. F. Evans, and H. Wennerstrom. Long-range attractive force between hydrophobic surfaces observed by atomic force microscopy. Science, 262:547–550, 1993.

    CAS  Google Scholar 

  139. Ya. I. Rabinovich and R.-H. Yoon. Use of atomic force microscope for the measurements of hydrophobic forces between silanated silica plate and glass sphere. Langmuir, 10:1903–1909, 1994.

    CAS  Google Scholar 

  140. V. S. J. Craig, B. W. Ninham, and R. M. Pashley. Study of the long-range hydrophobic attraction in concentrated salt solutions and its implications for electrostatic models. Langmuir, 14:3326–3332, 1998.

    CAS  Google Scholar 

  141. P. Kékicheff and O. Spalla. Long-range electrostatic attraction between similar, chargeneutral walls. Phys. Rev. Lett., 75:1851–1854, 1995.

    Google Scholar 

  142. H. K. Christenson and P. M. Claesson. Direct measurements of the force between hydrophobic surfaces in water. Adv. Colloid Interface Sci., 91:391–436, 2001.

    CAS  Google Scholar 

  143. P. Attard. Nanobubbles and the hydrophobic attraction. Adv. Colloid Interface Sci., 104:75–91, 2003.

    CAS  Google Scholar 

  144. M. Hato. Attractive forces between surfaces of controlled “hydrophobicity” across water: A possible range of “hydrophobic interactions” between macroscopic hydrophobic surfaces across water. J. Phys. Chem., 100:18530–18538, 1996.

    CAS  Google Scholar 

  145. H. K. Christenson, P. M. Claesson, J. Berg, and P. C. Herder. Forces between fluorocarbon surfactant monolayers: Salt effects on the hydrophobic interaction. J. Phys. Chem., 93:1472–1478, 1989.

    CAS  Google Scholar 

  146. N. I. Christou, J. S. Whitehouse, D. Nicholson, and N. G. Parsonage. A monte carlo study of fluid water in contact with structureless walls. Faraday Symp. Chem. Soc., 16:139–149, 1981.

    Google Scholar 

  147. B. Jönsson. Monte carlo simulations of liquid water between two rigid walls. Chem. Phys. Lett., 82:520–525, 1981.

    Google Scholar 

  148. S. Marcelja, D. J. Mitchell, B. W. Ninham, and M. J. Sculley. Role of solvent structure in solution theory. J. Chem. Soc. Faraday Trans. II, 73:630–648, 1977.

    CAS  Google Scholar 

  149. D. W. R. Gruen and S. Marcelja. Spatially varying polarization in water: A model for the electric double layer and the hydration force. J. Chem. Soc. Faraday Trans. 2, 79:225–242, 1983.

    CAS  Google Scholar 

  150. B. Jönsson and H. Wennerström. Image-charge forces in phospholipid bilayer systems. J. Chem. Soc. Faraday Trans. 2, 79:19–35, 1983.

    Google Scholar 

  151. D. Schiby and E. Ruckenstein. The role of the polarization layers in hydration forces. Chem. Phys. Lett., 95:435–438, 1983.

    CAS  Google Scholar 

  152. A. Luzar, D. Bratko, and L. Blum. Monte carlo simulation of hydrophobic interaction. J. Chem. Phys., 86:2955–2959, 1987.

    CAS  Google Scholar 

  153. P. Attard and M. T. Batchelor. A mechanism for the hydration force demonstrated in a model system. Chem. Phys. Lett., 149:206–211, 1988.

    CAS  Google Scholar 

  154. K. Leung and A. Luzar. Dynamics of capillary evaporation. ii. free energy barriers. J. Chem. Phys., 113:5845–5852, 2000.

    CAS  Google Scholar 

  155. D. Bratko, R. A. Curtis, H. W. Blanch, and J. M. Prausnitz. Interaction between hydrophobic surfaces with metastable intervening liquid. J. Chem. Phys., 115:3873–3877, 2001.

    CAS  Google Scholar 

  156. P. G. de Gennes. Polymers at an interface. 2. interaction between two plates carrying adsorbed polymer layers. Macromolecules, 15:492–500, 1982.

    Google Scholar 

  157. J. M. H. M. Scheutjens and G. J. Fleer. Interaction between two adsorbed polymer layers. Macromolecules, 18:1882–1900, 1985.

    CAS  Google Scholar 

  158. E. A. Evans. Force between surfaces that confine a polymer solution: Derivation from self-consistent field theories. Macromolecules, 22:2277–2286, 1989.

    CAS  Google Scholar 

  159. H. J. Ploehn. Compression of polymer interphases. Macromolecules, 27:1627–1636, 1994.

    CAS  Google Scholar 

  160. S. Asakura and F. Oosawa. Interaction between particles suspended in solutions of macromolecules. J. Polym. Sci., 33:183–192, 1958.

    CAS  Google Scholar 

  161. J. F. Joanny, L. Leibler, and P. G. de Gennes. Effects of polymer solutions on colloid stability. J. Polym. Sci. Polym. Phys., 17:1073–1084, 1979.

    CAS  Google Scholar 

  162. B. Vincent, P. F. Luckham, and F. A. Waite. The effect of free polymer on the stability of sterically stabilized dispersions. J. Colloid Interface Sci., 73:508–521, 1980.

    CAS  Google Scholar 

  163. R. I. Feigin and D. H. Napper. Stabilization of colloids by free polymer. J. Colloid Interface Sci., 74:567–571, 1980.

    CAS  Google Scholar 

  164. P. G. de Gennes. Polymer solutions near an interface. 1. adsorption and depletion layers. Macromolecules, 14:1637–1644, 1981.

    Google Scholar 

  165. P. G. de Gennes. Polymers at an interface; a simplified view. Adv. Colloid Interface Sci., 27:189–209, 1987.

    Google Scholar 

  166. H. J. Taunton, C. Toprakcioglu, L. J. Fetters, and J. Klein. Interactions between surfaces bearing end-adsorbed chains in a good solvent. Macromolecules, 23:571–580, 1990.

    CAS  Google Scholar 

  167. J. Klein and P. Luckham. Forces between two adsorbed poly(ethylene oxide) layers immersed in a good aqueous solvent. Nature, 300:429–431, 1982.

    CAS  Google Scholar 

  168. J. Klein and P. F. Luckham. Long-range attractive forces between two mica surfaces in an aqueous polymer solution. Nature, 308:836–837, 1984.

    CAS  Google Scholar 

  169. P. F. Luckham and J. Klein. Forces between mica surfaces bearing adsorbed homopolymers in good solvents. J. Chem. Soc. Faraday Trans., 86:1363–1368, 1990.

    CAS  Google Scholar 

  170. S. Alexander. Adsorption of chain molecules with a polar head. a scaling description. J. Phys. (France), 38:983–987, 1977.

    CAS  Google Scholar 

  171. P. G. de Gennes. Conformations of polymers attached to an interface. Macromolecules, 13:1069–1075, 1980.

    Google Scholar 

  172. S. T. Milner, T. A. Witten, and M. E. Cates. Theory of the grafted polymer brush. Macromolecules, 21:2610–2619, 1988.

    CAS  Google Scholar 

  173. S. T. Milner, T. A. Witten, and M. E. Cates. Effects of polydispersity in the end-grafted polymer brush. Macromolecules, 22:853–861, 1989.

    CAS  Google Scholar 

  174. E. B. Zhulina, O. V. Borisov, and V. A. Priamitsyn. Theory of steric stabilization of colloid dispersions by grafted polymers. J. Colloid Interface Sci., 137:495–511, 1990.

    CAS  Google Scholar 

  175. J. Klein, E. Kumacheva, D. Mahalu, D. Perahia, and L. J. Fetters. Reduction of frictional forces between solid surfaces bearing polymer brushes. Nature, 370:634–636, 1994.

    CAS  Google Scholar 

  176. J. N. Israelachvili and H. Wennerström. Hydration or steric forces between amphiphilic surfaces? Langmuir, 6:873–876, 1990.

    CAS  Google Scholar 

  177. J. N. Israelachvili and H. Wennerström. Entropic forces between amphiphilic surfaces in liquids. J. Phys. Chem., 96:520–531, 1992.

    CAS  Google Scholar 

  178. M. K. Granfeldt and S. J. Miklavic. A simulation study of flexible zwitterionic monolayers. interlayer interaction and headgroup conformation. J. Phys. Chem., 95:6351–6360, 1991.

    CAS  Google Scholar 

  179. R. G. Horn, J. N. Israelachvili, and F. Pribac. Measurement of the deformation and adhesion of solids in contact. J. Colloid Interface Sci., 115:480–492, 1987.

    CAS  Google Scholar 

  180. L. R. Fisher and J. N. Israelachvili. Direct measurements of the effect of meniscus forces on adhesion: A study of the applicability of macroscopic thermodynamics to microscopic liquid interfaces. Colloids Surf., 3:303–319, 1981.

    CAS  Google Scholar 

  181. H. K. Christenson. Adhesion between surfaces in unsaturated vapors — a reexamination of the influence of meniscus curvature and surface forces. J. Colloid Interface Sci., 121:170–178, 1988.

    CAS  Google Scholar 

  182. H. Hertz. Über die berührung fester elastischer körper. J. Reine Angew. Math., 92:156–171, 1881.

    Google Scholar 

  183. H. M. Pollock, D. Maugis, and M. Barquins. The force of adhesion between solid surfaces in contact. Appl. Phys. Lett., 33:798–799, 1978.

    Google Scholar 

  184. B.V. Derjaguin, V. M. Muller, and Yu. P. Toporov. Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci., 53:314–326, 1975.

    CAS  Google Scholar 

  185. V. M. Muller, V. S. Yushchenko, and B. V. Derjaguin. On the influence of molecular forces on the deformation of an elastic sphere and its sticking to a rigid plane. J. Colloid Interface Sci., 77:91–101, 1980.

    CAS  Google Scholar 

  186. V. M. Muller, B. V. Derjaguin, and Y. P. Toporov. On 2 methods of calculation of the force of sticking of an elastic sphere to a rigid plane. Colloids Surf., 7:251–259, 1983.

    CAS  Google Scholar 

  187. D. Maugis. Adhesion of spheres: The jkr—dmt transition using a dugdale model. J. Colloid Interface Sci., 150:243–269, 1992.

    CAS  Google Scholar 

  188. V. Mangipudi, M. Tirrell, and A. V. Pocius. Direct measurement of molecular level adhesion between poly(ethylene terephthalate) and polyethylene films: Determination of surface and interfacial energies. J. Adh. Sci. Technol., 8:1251–1270, 1994.

    CAS  Google Scholar 

  189. H. K. Christenson. Surface deformations in direct force measurements. Langmuir, 12:1404–1405, 1996.

    CAS  Google Scholar 

  190. M. Barquins and D. Maugis. Fracture mechanics and the adherence of viscoelastic bodies. J. Phys. D: Appl Phys., 11:1989–2023, 1978.

    Google Scholar 

  191. J. A. Greenwood and J. B. P. Williamson. Contact of nominally flat surfaces. Proc. R. Soc. London A, 295:300–319, 1966.

    CAS  Google Scholar 

  192. B. N. J. Persson. Elastoplastic contact between randomly rough surfaces. Phys. Rev. Lett., 87:116101/1–4, 2001.

    CAS  Google Scholar 

  193. K. N. G. Fuller and D. Tabor. The effect of surface roughness on the adhesion of elastic solids. Proc. R. Soc. London A, 345:327–342, 1975.

    Google Scholar 

  194. D. Maugis. On the contact and adhesion of rough surfaces. J. Adh. Sci. Technol., 10:161–175, 1996.

    CAS  Google Scholar 

  195. B. N. J. Persson and E. Tosatti. The effect of surface roughness on the adhesion of elastic solids. J. Chem. Phys., 115:5597–5610, 2001.

    CAS  Google Scholar 

  196. P. M. McGuiggan and J. N. Israelachvili. Adhesion and short-range forces between surfaces. part ii: Effects of surface lattice mismatch. J. Mater. Res., 5:2232–2243, 1990.

    CAS  Google Scholar 

  197. P. M. McGuiggan and J. Israelachvili. Measurements of the effects of angular lattice mismatch on the adhesion energy between two mica surfaces in water. Mat. Res. Soc. Symp. Proc., 138:349–360, 1989.

    Google Scholar 

  198. C. L. Rhykerd, Jr., M. Schoen, D. J. Diestler, and J. H. Cushman. Epitaxy in simple classical fluids in micropores and near-solid surfaces. Nature, 330:461–463, 1987.

    CAS  Google Scholar 

  199. M. Schoen, D. J. Diestler, and J. H. Cushman. Fluids in micropores. ii. structure of a simple classical fluid in a slit-pore. J. Chem. Phys., 87:5464–5476, 1987.

    CAS  Google Scholar 

  200. M. Schoen, C. L. Rhykerd, Jr., D. J. Diestler, and J. H. Cushman. Shear forces in molecularly thin films. Science, 245:1223–1225, 1989.

    CAS  Google Scholar 

  201. P. A. Thompson and M. O. Robbins. Origin of stick—slip motion in boundary lubrication. Science, 250:792–794, 1990.

    CAS  Google Scholar 

  202. K. K. Han, J. H. Cushman, and D. J. Diestler. Grand canonical monte carlo simulations of a stockmayer fluid in a slit micropore. Mol. Phys., 79:537–545, 1993.

    CAS  Google Scholar 

  203. M. Ruths and S. Granick. Influence of alignment of crystalline confining surfaces on static forces and shear in a liquid crystal, 4′-n-pentyl-4-cyanobiphenyl (5cb). Langmuir, 16:8368–8376, 2000.

    CAS  Google Scholar 

  204. A. D. Berman. Dynamics of molecules at surfaces, 1996.

    Google Scholar 

  205. F. P. Bowden and D. Tabor. The Friction and Lubrication of Solids. Clarendon, 1971.

    Google Scholar 

  206. J. A. Greenwood and K. L. Johnson. The mechanics of adhesion of viscoelastic solids. Phil. Mag. A, 43:697–711, 1981.

    CAS  Google Scholar 

  207. D. Maugis. Subcritical crack growth, surface energy, fracture toughness, stick—slip and embrittlement. J. Mater. Sci., 20:3041–3073, 1985.

    CAS  Google Scholar 

  208. F. Michel and M. E. R. Shanahan. Kinetics of the jkr experiment. C. R. Acad. Sci. II (Paris), 310:17–20, 1990.

    Google Scholar 

  209. E. Barthel and S. Roux. Velocity dependent adherence: An analytical approach for the jkr and dmt models. Langmuir, 16:8134–8138, 2000.

    CAS  Google Scholar 

  210. M. Ruths and S. Granick. Rate-dependent adhesion between polymer and surfactant monolayers on elastic substrates. Langmuir, 14:1804–1814, 1998.

    CAS  Google Scholar 

  211. H. Yoshizawa, Y. L. Chen, and J. Israelachvili. Fundamental mechanisms of interfacial friction. 1: relation between adhesion and friction. J. Phys. Chem., 97:4128–4140, 1993.

    CAS  Google Scholar 

  212. N. Maeda, N. Chen, M. Tirrell, and J. N. Israelachvili. Adhesion and friction mechanisms of polymer-on-polymer surfaces. Science, 297:379–382, 2002.

    CAS  Google Scholar 

  213. C. A. Miller and P. Neogi. Interfacial Phenomena: Equilibrium and Dynamic Effects. Dekker, 1985.

    Google Scholar 

  214. J. Israelachvili and A. Berman. Irreversibility, energy dissipation, and time effects in intermolecular and surface interactions. Israel J. Chem., 35:85–91, 1995.

    CAS  Google Scholar 

  215. A. N. Gent and A. J. Kinloch. Adhesion of viscoelastic materials to rigid substrates. iii. energy criterion for failure. J. Polym. Sci. A-2, 9:659–668, 1971.

    CAS  Google Scholar 

  216. A. N. Gent. Adhesion and strength of viscoelastic solids. is there a relationship between adhesion and bulk properties? Langmuir, 12:4492–4496, 1996.

    CAS  Google Scholar 

  217. H.R. Brown. The adhesion between polymers. Annu. Rev. Mater. Sci., 21:463–489, 1991.

    Article  CAS  Google Scholar 

  218. M. Deruelle, M. Tirrell, Y. Marciano, H. Hervet, and L. Léger. Adhesion energy between polymer networks and solid surfaces modified by polymer attachment. Faraday Discuss., 98:55–65, 1995.

    Google Scholar 

  219. J. Van Alsten and S. Granick. The origin of static friction in ultrathin liquid films. Langmuir, 6:876–880, 1990.

    Google Scholar 

  220. S. Granick. Motions and relaxations of confined liquids. Science, 253:1374–1379, 1991.

    CAS  Google Scholar 

  221. H.-W. Hu, G. A. Carson, and S. Granick. Relaxation time of confined liquids under shear. Phys. Rev. Lett., 66:2758–2761, 1991.

    CAS  Google Scholar 

  222. H. W. Hu and S. Granick. Viscoelastic dynamics of confined polymer melts. Science, 258:1339–1342, 1992.

    CAS  Google Scholar 

  223. M. L. Gee, P. M. McGuiggan, J. N. Israelachvili, and A. M. Homola. Liquid to solidlike transitions of molecularly thin films under shear. J. Chem. Phys., 93:1895–1906, 1990.

    CAS  Google Scholar 

  224. J. Israelachvili, M. Gee, P. McGuiggan, P. Thompson, and M. Robbins. Melting-freezing transitions in molecularly thin liquid films during shear, 1990.

    Google Scholar 

  225. J. Israelachvili, P. McGuiggan, M. Gee, A. Homola, M. Robbins, and P. Thompson. Liquid dynamics in molecularly thin films. J. Phys.: Condens. Matter, 2:SA89–SA98, 1990.

    CAS  Google Scholar 

  226. J. Klein and E. Kumacheva. Confinement-induced phase transitions in simple liquids. Science, 269:816–819, 1995.

    CAS  Google Scholar 

  227. A. L. Demirel and S. Granick. Glasslike transition of a confined simple fluid. Phys. Rev. Lett., 77:2261–2264, 1996.

    CAS  Google Scholar 

  228. D. Dowson. History of Tribology. Professional Engineering Publishing, 2nd edition, 1998.

    Google Scholar 

  229. D. Tabor. The role of surface and intermolecular forces in thin film lubrication. Tribol. Ser., 7:651–682, 1982.

    Article  CAS  Google Scholar 

  230. M. J. Sutcliffe, S.R. Taylor, and A. Cameron. Molecular asperity theory of boundary friction. Wear, 51:181–192, 1978.

    CAS  Google Scholar 

  231. G. M. McClelland. Friction at weakly interacting interfaces, pages 1–16. Springer, 1989.

    Google Scholar 

  232. D.H. Buckley. The metal-to-metal interface and its effect on adhesion and friction. J. Colloid Interface Sci., 58:36–53, 1977.

    CAS  Google Scholar 

  233. J. N. Israelachvili, Y.-L. Chen, and H. Yoshizawa. Relationship between adhesion and friction forces. J. Adh. Sci. Technol., 8:1231–1249, 1994.

    CAS  Google Scholar 

  234. A. Berman and J. Israelachvili. Control and minimization of friction via surface modification. NATO ASI Ser. E: Appl. Sci., 330:317–329, 1997.

    CAS  Google Scholar 

  235. V. Zaloj, M. Urbakh, and J. Klafter. Modifying friction by manipulating normal response to lateral motion. Phys. Rev. Lett., 82:4823–4826, 1999.

    CAS  Google Scholar 

  236. A. Dhinojwala, S. C. Bae, and S. Granick. Shear-induced dilation of confined liquid films. Tribol. Lett., 9:55–62, 2000.

    CAS  Google Scholar 

  237. L. M. Qian, G. Luengo, and E. Perez. Thermally activated lubrication with alkanes: The effect of chain length. Europhys. Lett., 61:268–274, 2003.

    CAS  Google Scholar 

  238. A. M. Homola, J.N. Israelachvili, P. M. McGuiggan, and M. L. Gee. Fundamental experimental studies in tribology: The transition from “interfacial” friction of undamaged molecularly smooth surfaces to “normal” friction with wear. Wear, 136:65–83, 1990.

    CAS  Google Scholar 

  239. B. J. Briscoe, D. C. B. Evans, and D. Tabor. The influence of contact pressure and saponification on the sliding behavior of steric acid monolayers. J. Colloid Interface Sci., 61:9–13, 1977.

    CAS  Google Scholar 

  240. M. Urbakh, L. Daikhin, and J. Klafter. Dynamics of confined liquids under shear. Phys. Rev. E, 51:2137–2141, 1995.

    CAS  Google Scholar 

  241. M. G. Rozman, M. Urbakh, and J. Klafter. Origin of stick—slip motion in a driven two-wave potential. Phys. Rev. E, 54:6485–6494, 1996.

    CAS  Google Scholar 

  242. M. G. Rozman, M. Urbakh, and J. Klafter. Stick—slip dynamics as a probe of frictional forces. Europhys. Lett., 39:183–188, 1997.

    CAS  Google Scholar 

  243. B. V. Derjaguin. Molekulartheorie der äußeren reibung. Z. Physik, 88:661–675, 1934.

    Google Scholar 

  244. B. V. Derjaguin. Mechanical properties of the boundary lubrication layer. Wear, 128:19–27, 1988.

    Google Scholar 

  245. B. J. Briscoe and D. C. B. Evans. The shear properties of langmuir-blodgett layers. Proc. R. Soc. London A, 380:389–407, 1982.

    Article  CAS  Google Scholar 

  246. A. Berman, C. Drummond, and J. Israelachvili. Amontons’ law at the molecular level. Tribol. Lett., 4:95–101, 1998.

    CAS  Google Scholar 

  247. P. F. Luckham and S. Manimaaran. Investigating adsorbed polymer layer behaviour using dynamic surface force apparatuses — a review. Adv. Colloid Interface Sci., 73:1–46, 1997.

    Google Scholar 

  248. S. Yamada and J. Israelachvili. Friction and adhesion hysteresis of fluorocarbon surfactant monolayer-coated surfaces measured with the surface forces apparatus. J. Phys. Chem. B, 102:234–244, 1998.

    CAS  Google Scholar 

  249. G. Luengo, S. E. Campbell, V. I. Srdanov, F. Wudl, and J. N. Israelachvili. Direct measurement of the adhesion and friction of smooth C60 surfaces. Chem. Mater., 9:1166–1171, 1997.

    CAS  Google Scholar 

  250. L. Rapoport, Y. Bilik, Y. Feldman, M. Homyonfer, S. R. Cohen, and R. Tenne. Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature, 387:791–793, 1997.

    CAS  Google Scholar 

  251. J. Israelachvili, Y.-L. Chen, and H. Yoshizawa. Relationship between adhesion and friction forces, pages 261–279. VSP, 1995.

    Google Scholar 

  252. P. Berthoud, T. Baumberger, C. G’sell, and J.M. Hiver. Physical analysis of the stateand rate-dependent friction law: Static friction. Phys. Rev. B, 59:14313–14327, 1999.

    CAS  Google Scholar 

  253. A. Berman, S. Steinberg, S. Campbell, A. Ulman, and J. Israelachvili. Controlled microtribology of a metal oxide surface. Tribol. Lett., 4:43–48, 1998.

    CAS  Google Scholar 

  254. D. Y. C. Chan and R. G. Horn. The drainage of thin liquid films between solid surfaces. J. Chem. Phys., 83:5311–5324, 1985.

    CAS  Google Scholar 

  255. J. N. Israelachvili and S. J. Kott. Shear properties and structure of simple liquids in molecularly thin films: The transition from bulk (continuum) to molecular behavior with decreasing film thickness. J. Colloid Interface Sci., 129:461–467, 1989.

    CAS  Google Scholar 

  256. T. L. Kuhl, A. D. Berman, S. W. Hui, and J. N. Israelachvili. Part 1: Direct measurement of depletion attraction and thin film viscosity between lipid bilayers in aqueous polyethylene glycol solutions. Macromolecules, 31:8250–8257, 1998.

    CAS  Google Scholar 

  257. S. E. Campbell, G. Luengo, V. I. Srdanov, F. Wudl, and J. N. Israelachvili. Very low viscosity at the solid-liquid interface induced by adsorbed C60 monolayers. Nature, 382:520–522, 1996.

    CAS  Google Scholar 

  258. J. Klein, Y. Kamiyama, H. Yoshizawa, J. N. Israelachvili, G. H. Fredrickson, P. Pincus, and L. J. Fetters. Lubrication forces between surfaces bearing polymer brushes. Macromolecules, 26:5552–5560, 1993.

    CAS  Google Scholar 

  259. G. Luengo, J. Israelachvili, A. Dhinojwala, and S. Granick. Generalized effects in confined fluids: New friction map for boundary lubrication. Wear, 200:328–335, 1996.

    CAS  Google Scholar 

  260. E. Kumacheva and J. Klein. Simple liquids confined to molecularly thin layers. ii. shear and frictional behavior of solidified films. J. Chem. Phys., 108:7010–7022, 1998.

    CAS  Google Scholar 

  261. P. A. Thompson, G. S. Grest, and M. O. Robbins. Phase transitions and universal dynamics in confined films. Phys. Rev. Lett., 68:3448–3451, 1992.

    Google Scholar 

  262. Y. Rabin and I. Hersht. Thin liquid layers in shear: Non-newtonian effects. Physica A, 200:708–712, 1993.

    CAS  Google Scholar 

  263. P. A. Thompson, M. O. Robbins, and G. S. Grest. Structure and shear response in nanometer-thick films. Israel J. Chem., 35:93–106, 1995.

    CAS  Google Scholar 

  264. M. Urbakh, L. Daikhin, and J. Klafter. Sheared liquids in the nanoscale range. J. Chem. Phys., 103:10707–10713, 1995.

    CAS  Google Scholar 

  265. A. Subbotin, A. Semenov, E. Manias, G. Hadziioannou, and G. ten Brinke. Rheology of confined polymer melts under shear flow: Strong adsorption limit. Macromolecules, 28:1511–1515, 1995.

    CAS  Google Scholar 

  266. A. Subbotin, A. Semenov, E. Manias, G. Hadziioannou, and G. ten Brinke. Rheology of confined polymer melts under shear flow: Weak adsorption limit. Macromolecules, 28:3901–3903, 1995.

    CAS  Google Scholar 

  267. J. Huh and A. Balazs. Behavior of confined telechelic chains under shear. J. Chem. Phys., 113:2025–2031, 2000.

    CAS  Google Scholar 

  268. C. Drummond, J. Elezgaray, and P. Richetti. Behavior of adhesive boundary lubricated surfaces under shear: A new dynamic transition. Europhys. Lett., 58:503–509, 2002.

    CAS  Google Scholar 

  269. J. N. Israelachvili, P. M. McGuiggan, and A. M. Homola. Dynamic properties of molecularly thin liquid films. Science, 240:189–191, 1988.

    Google Scholar 

  270. A. M. Homola, H. V. Nguyen, and G. Hadziioannou. Influence of monomer architecture on the shear properties of molecularly thin polymer melts. J. Chem. Phys., 94:2346–2351, 1991.

    CAS  Google Scholar 

  271. M. Schoen, S. Hess, and D. J. Diestler. Rheological properties of confined thin films. Phys. Rev. E, 52:2587–2602, 1995.

    CAS  Google Scholar 

  272. G. M. McClelland and S. R. Cohen. Chemistry and Physics of Solid Surfaces VIII. Springer, 1990.

    Google Scholar 

  273. M. O. Robbins and P. A. Thompson. Critical velocity of stick—slip motion. Science, 253:916, 1991.

    Google Scholar 

  274. G. He, M. Müser, and M. Robbins. Adsorbed layers and the origin of static friction. Science, 284:1650–1652, 1999.

    CAS  Google Scholar 

  275. C. Drummond and J. Israelachvili. Dynamic phase transitions in confined lubricant fluids under shear. Phys. Rev. E., 63:041506/1–11, 2001.

    CAS  Google Scholar 

  276. J. D. Ferry. Viscoelastic Properties of Polymers. Wiley, 3rd edition, 1980.

    Google Scholar 

  277. H. Yoshizawa and J. Israelachvili. Fundamental mechanisms of interfacial friction. 2: stick—slip friction of spherical and chain molecules. J. Phys. Chem., 97:11300–11313, 1993.

    CAS  Google Scholar 

  278. A. Ruina. Slip instability and state variable friction laws. J. Geophys. Res., 88:10359–10370, 1983.

    Article  Google Scholar 

  279. T. Baumberger, P. Berthoud, and C. Caroli. Physical analysis of the state-and rate-dependent friction law. ii. dynamic friction. Phys. Rev. B, 60:3928–3939, 1999.

    CAS  Google Scholar 

  280. J. Israelachvili, S. Giasson, T. Kuhl, C. Drummond, A. Berman, G. Luengo, J.-M. Pan, M. Heuberger, W. Ducker, and N. Alcantar. Some fundamental differences in the adhesion and friction of rough versus smooth surfaces. Tribol. Ser., 38:3–12, 2000.

    CAS  Google Scholar 

  281. C. Drummond and J. Israelachvili. Dynamic behavior of confined branched hydrocarbon lubricant fluids under shear. Macromolecules, 33:4910–4920, 2000.

    CAS  Google Scholar 

  282. E. Rabinowicz. Friction and Wear of Materials. Wiley, 2nd edition, 1995.

    Google Scholar 

  283. J. Peachey, J. Van Alsten, and S. Granick. Design of an apparatus to measure the shear response of ultrathin liquid films. Rev. Sci. Instrum., 62:463–473, 1991.

    CAS  Google Scholar 

  284. E. Rabinowicz. The intrinsic variables affecting the stick—slip process. Proc. Phys. Soc., 71:668–675, 1958.

    Google Scholar 

  285. T. Baumberger, F. Heslot, and B. Perrin. Crossover from creep to inertial motion in friction dynamics. Nature, 367:544–546, 1994.

    Google Scholar 

  286. F. Heslot, T. Baumberger, B. Perrin, B. Caroli, and C. Caroli. Creep, stick—slip, and dry-friction dynamics: Experiments and a heuristic model. Phys. Rev. E, 49:4973–4988, 1994.

    Google Scholar 

  287. J. Sampson, F. Morgan, D. Reed, and M. Muskat. Friction behavior during the slip portion of the stick—slip process. J. Appl. Phys., 14:689–700, 1943.

    CAS  Google Scholar 

  288. F. Heymann, E. Rabinowicz, and B. Rightmire. Friction apparatus for very low-speed sliding studies. Rev. Sci. Instrum., 26:56–58, 1954.

    Google Scholar 

  289. J. H. Dieterich. Time-dependent friction and the mechanics of stick—slip. Pure Appl. Geophys., 116:790–806, 1978.

    Google Scholar 

  290. J. H. Dieterich. Modeling of rock friction. 1. experimental results and constitutive equations. J. Geophys. Res., 84:2162–2168, 1979.

    Google Scholar 

  291. G.A. Tomlinson. A molecular theory of friction. Phil. Mag., 7:905–939, 1929.

    CAS  Google Scholar 

  292. J. M. Carlson and J. S. Langer. Mechanical model of an earthquake fault. Phys. Rev. A, 40:6470–6484, 1989.

    Google Scholar 

  293. B. N. J. Persson. Theory of friction: The role of elasticity in boundary lubrication. Phys. Rev. B, 50:4771–4786, 1994.

    CAS  Google Scholar 

  294. S. Nasuno, A. Kudrolli, and J. P. Gollub. Friction in granular layers: Hysteresis and precursors. Phys. Rev. Lett., 79:949–952, 1997.

    CAS  Google Scholar 

  295. P. Bordarier, M. Schoen, and A. Fuchs. Stick—slip phase transitions in confined solidlike films from an equilibrium perspective. Phys. Rev. E, 57:1621–1635, 1998.

    CAS  Google Scholar 

  296. J. M. Carlson and A. A. Batista. Constitutive relation for the friction between lubricated surfaces. Phys. Rev. E, 53:4153–4165, 1996.

    CAS  Google Scholar 

  297. A. D. Berman, W. A. Ducker, and J. N. Israelachvili. Origin and characterization of different stick-slip friction mechanisms. Langmuir, 12:4559–4563, 1996.

    CAS  Google Scholar 

  298. A. D. Berman, W. A. Ducker, and J. N. Israelachvili. Experimental and theoretical investigations of stick—slip friction mechanisms. NATOASI Ser. E: Appl. Sci., 311:51–67, 1996.

    CAS  Google Scholar 

  299. K G. McLaren and D. Tabor. Viscoelastic properties and the friction of solids. friction of polymers and influence of speed and temperature. Nature, 197:856–858, 1963.

    CAS  Google Scholar 

  300. K. A. Grosch. Viscoelastic properties and friction of solids. relation between friction and viscoelastic properties of rubber. Nature, 197:858–859, 1963.

    CAS  Google Scholar 

  301. J. Gao, W. D. Luedtke, and U. Landman. Friction control in thin-film lubrication. J. Phys. Chem. B, 102:5033–5037, 1998.

    CAS  Google Scholar 

  302. M. Heuberger, C. Drummond, and J. Israelachvili. Coupling of normal and transverse motions during frictional sliding. J. Phys. Chem. B, 102:5038–5041, 1998.

    CAS  Google Scholar 

  303. L. Bureau, T. Baumberger, and C. Caroli. Shear response of a frictional interface to a normal load modulation. Phys. Rev. E, 62:6810–6820, 2000.

    CAS  Google Scholar 

  304. J. P. Gao, W. D. Luedtke, and U. Landman. Structure and solvation forces in confined films: Linear and branched alkanes. J. Chem. Phys., 106:4309–4318, 1997.

    CAS  Google Scholar 

  305. J. Gao, W. D. Luedtke, and U. Landman. Layering transitions and dynamics of confined liquid films. Phys. Rev. Lett., 79:705–708, 1997.

    CAS  Google Scholar 

  306. J. Warnock, D. D. Awschalom, and M. W. Shafer. Orientational behavior of molecular liquids in restricted geometries. Phys. Rev. B, 34:475–478, 1986.

    CAS  Google Scholar 

  307. D. D. Awschalom and J. Warnock. Supercooled liquids and solids in porous glass. Phys. Rev. B, 35:6779–6785, 1987.

    CAS  Google Scholar 

  308. M. Hirano, K. Shinjo, R. Kaneko, and Y. Murata. Anisotropy of frictional forces in muscovite mica. Phys. Rev. Lett., 67:2642–2645, 1991.

    CAS  Google Scholar 

  309. T. Gyalog and H. Thomas. Friction between atomically flat surfaces. Europhys. Lett., 37:195–200, 1997.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ruths, M., Berman, A.D., Israelachvili, J.N. (2005). Surface Forces and Nanorheology of Molecularly Thin Films. In: Bhushan, B. (eds) Nanotribology and Nanomechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28248-3_9

Download citation

Publish with us

Policies and ethics