Skip to main content

Polypeptide chain termination and stop codon readthrough on eukaryotic ribosomes

  • Chapter
Reviews of Physiology Biochemistry and Pharmacology

Part of the book series: Reviews of Physiology, Biochemistry, and Pharmacology ((REVIEWS,volume 155))

Abstract

During protein translation, a variety of quality control checks ensure that the resulting polypeptides deviate minimally from their genetic encoding template. Translational fidelity is central in order to preserve the function and integrity of each cell. Correct termination is an important aspect of translational fidelity, and a multitude of mechanisms and players participate in this exquisitely regulated process. This review explores our current understanding of eukaryotic termination by highlighting the roles of the different ribosomal components as well as termination factors and ribosome-associated proteins, such as chaperones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alksne LE, Anthony RA, Liebman SW, Warner JR (1993) An accuracy center in the ribosome conserved over 2 billion years. Proc Natl Acad Sci USA 90:9538–9541

    PubMed  CAS  Google Scholar 

  • Allen KD, Wegrzyn RD, Chernova TA, Muller S, Newnam GP, Winslett PA, Wittich KB, Wilkinson KD, Chernoff YO (2004) Hsp70 chaperones as modulators of prion life cycle: novel effects of Ssa and Ssb on the Saccharomyces cerevisiae prion [PSI+]. Genetics 169:1227–1242

    PubMed  Google Scholar 

  • All-Robyn JA, Kelley-Geraghty D, Griffin E, Brown N, Liebman SW (1990) Isolation of omnipotent suppressors in an [eta+] yeast strain. Genetics 124:505–514

    PubMed  CAS  Google Scholar 

  • Altamura N, Groudinsky O, Dujardin G, Slonimski PP (1992) NAM7 nuclear gene encodes a novel member of a family of helicases with a Zn-ligand motif and is involved in mitochondrial functions in Saccharomyces cerevisiae. J Mol Biol 224:575–587

    PubMed  CAS  Google Scholar 

  • Amrani N, Ganesan R, Kervestin S, Mangus DA, Ghosh S, Jacobson A (2004) A faux 3′-UTR promotes aberrant termination and triggers nonsense-mediated mRNA decay. Nature 432:112–118

    PubMed  CAS  Google Scholar 

  • Anthony RA, Liebman SW (1995) Alterations in ribosomal protein RPS28 can diversely affect translational accuracy in Saccharomyces cerevisiae. Genetics 140:1247–1258

    PubMed  CAS  Google Scholar 

  • Arkov AL, Freistroffer DV, Ehrenberg M, Murgola EJ (1998) Mutations in RNAs of both ribosomal subunits cause defects in translation termination. EMBO J 17:1507–1514

    PubMed  CAS  Google Scholar 

  • Arkov AL, Freistroffer DV, Pavlov MY, Ehrenberg M, Murgola EJ (2000) Mutations in conserved regions of ribosomal RNAs decrease the productive association of peptide-chain release factors with the ribosome during translation termination. Biochimie 82:671–682

    PubMed  CAS  Google Scholar 

  • Atkin AL, Altamura N, Leeds P, Culbertson MR (1995) The majority of yeast UPF1 co-localizes with polyribosomes in the cytoplasm. Mol Biol Cell 6:611–625

    PubMed  CAS  Google Scholar 

  • Atkin AL, Schenkman LR, Eastham M, Dahlseid JN, Lelivelt MJ, Culbertson MR (1997) Relationship between yeast polyribosomes and Upf proteins required for nonsense mRNA decay. J Biol Chem 272:22163–22172

    PubMed  CAS  Google Scholar 

  • Bailleul PA, Newnam GP, Steenbergen JN, Chernoff YO (1999) Genetic study of interactions between the cytoskeletal assembly protein sla1 and prion-forming domain of the release factor Sup35 (eRF3) in Saccharomyces cerevisiae. Genetics 153:81–94

    PubMed  CAS  Google Scholar 

  • Baker KE, Parker R (2004) Nonsense-mediated mRNA decay: terminating erroneous gene expression. Curr Opin Cell Biol 16:293–299

    PubMed  CAS  Google Scholar 

  • Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) The complete atomic structure of the large ribosomal subunit at 2.4A resolution. Science 289:905–920

    PubMed  CAS  Google Scholar 

  • Barton-Davis ER, Cordier L, Shoturma DI, Leland SE, Sweeney HL (1999) Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice. J Clin Invest 104:375–381

    PubMed  CAS  Google Scholar 

  • Belgrader P, Cheng J, Maquat LE (1993) Evidence to implicate translation by ribosomes in the mechanism by which nonsense codons reduce the nuclear level of human triosephosphate isomerase mRNA. Proc Natl Acad Sci USA 90:482–486

    PubMed  CAS  Google Scholar 

  • Bertram G, Bell HA, Ritchie DW, Fullerton G, Stansfield I (2000) Terminating eukaryote translation: domain 1 of release factor eRF1 functions in stop codon recognition. RNA 6:1236–1247

    PubMed  CAS  Google Scholar 

  • Bidou L, Hatin I, Perez N, Allamand V, Panthier JJ, Rousset JP (2004) Premature stop codons involved in muscular dystrophies show a broad spectrum of read through efficiencies in response to gentamicin treatment. Gene Ther 11:619–627

    PubMed  CAS  Google Scholar 

  • Bilgin N, Ehrenberg M (1994) Mutations in 23S ribosomal RNA perturb transfer RNA selection and can lead to streptomycin dependence. J Mol Biol 235:813–824

    PubMed  CAS  Google Scholar 

  • Bilgin N, Ehrenberg M, Claesens F, Pahverk H (1998) Measurement of rate of protein synthesis in vitro. Preparation of Escherichia coli burst systems. Methods Mol Biol 77:243–256

    PubMed  CAS  Google Scholar 

  • Bonetti B, Fu L, Moon J, Bedwell DM (1995) The efficiency of translation termination is determined by a synergistic interplay between upstream and downstream sequences in Saccharomyces cerevisiae. J Mol Biol 251:334–345

    PubMed  CAS  Google Scholar 

  • Bradley ME, Bagriantsev S, Vishveshwara N, Liebman SW (2003) Guanidine reduces stop codon read-through caused by missense mutations in SUP35 or SUP45. Yeast 20:625–632

    PubMed  CAS  Google Scholar 

  • Buckingham RH, Grentzmann G, Kisselev L (1997) Polypeptide chain release factors. Mol Microbiol 24:449–456

    PubMed  CAS  Google Scholar 

  • Bulygin KN, Repkova MN, Ven’yaminova AG, Graifer DM, Karpova GG, Frolova LY, Kisselev LL (2002) Positioning of the mRNA stop signal with respect to polypeptide chain release factors and ribosomal proteins in 80S ribosomes. FEBS Lett 514:96–101

    PubMed  CAS  Google Scholar 

  • Cannone JJ, Subramanian S, Schnare MN, Collett JR, D’Souza LM, Du Y, Feng B, Lin N, Madabusi LV, Muller KM, Pande N, Shang Z, Yu N, Gutell RR (2002) The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 3:2

    PubMed  Google Scholar 

  • Carter AP, Clemons WM, Brodersen DE, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V (2000) Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407:340–348

    PubMed  CAS  Google Scholar 

  • Caskey CT, Beaudet AL, Scolnick EM, Rosman M (1971) Hydrolysis of fMet-tRNA by peptidyl transferase. Proc Natl Acad Sci USA 68:3163–3167

    PubMed  CAS  Google Scholar 

  • Chabelskaya S, Kiktev D, Inge-Vechtomov S, Philipe M, Zhouravleva G (2004) Nonsense mutations in the essential gene SUP35 of Saccharomyces cerevisiae are non-lethal. Mol Genet Genomics 272:297–307

    PubMed  CAS  Google Scholar 

  • Chacinska A, Szczesniak B, Kochneva-Pervukhova NV, Kushnirov VV, Ter-Avanesyan MD, Boguta M (2001) Ssb1 chaperone is a [PSI+] prion-curing factor. Curr Genet 39:62–67

    PubMed  CAS  Google Scholar 

  • Chavatte L, Seit-Nebi A, Dubovaya V, Favre A (2002) The invariant uridine of stop codons contacts the conserved NIKSR loop of human eRF1 in the ribosome. EMBO J 21:5302–5311

    PubMed  CAS  Google Scholar 

  • Chernoff YO, Vincent A, Liebman SW (1994) Mutations in eukaryotic 18S ribosomal RNA affect translational fidelity and resistance to aminoglycoside antibiotics. EMBO J 13:906–913

    PubMed  CAS  Google Scholar 

  • Chernoff YO, Newnam GP, Kumar J, Allen K, Zink AD (1999) Evidence for a protein mutator in yeast: role of the Hsp70-related chaperone ssb in formation, stability, and toxicity of the [PSI] prion. Mol Cell Biol 19:8103–8112

    PubMed  CAS  Google Scholar 

  • Chien P, Weissman JS, DePace AH (2004) Emerging principles of conformation-based prion inheritance. Annu Rev Biochem 73:617–656

    PubMed  CAS  Google Scholar 

  • Coller JM, Gray NK, Wickens MP (1998) mRNA stabilization by poly(A) binding protein is independent of poly(A) and requires translation. Genes Dev 12:3226–3235

    PubMed  CAS  Google Scholar 

  • Cosson B, Couturier A, Chabelskaya S, Kiktev D, Inge-Vechtomov S, Philippe M, Zhouravleva G (2002) Poly(A)-binding protein acts in translation termination via eukaryotic release factor 3 interaction and does not influence [PSI+] propagation. Mol Cell Biol 22:3301–3315

    PubMed  CAS  Google Scholar 

  • Craig EA, Eisenman HC, Hundley HA (2003) Ribosome-tethered molecular chaperones: the first line of defense against protein misfolding?. Curr Opin Microbiol 6:157–162

    PubMed  CAS  Google Scholar 

  • Cui Y, Dinman JD, Peltz SW (1996) Mof4-1 is an allele of the UPF1/IFS2 gene which affects both mRNA turnover and −1 ribosomal frameshifting efficiency. EMBO J 15:5726–5736

    PubMed  CAS  Google Scholar 

  • Czaplinski K, Weng Y, Hagan KW, Peltz SW (1995) Purification and characterization of the Upf1 protein: a factor involved in translation and mRNA degradation. RNA 1:610–623

    PubMed  CAS  Google Scholar 

  • Czaplinski K, Ruiz-Echevarria MJ, Paushkin SV, Han X, Weng Y, Perlick HA, Dietz HC, Ter-Avanesyan MD, Peltz SW (1998) The surveillance complex interacts with the translation release factors to enhance termination and degrade aberrant mRNAs. Genes Dev 12:1665–1677

    PubMed  CAS  Google Scholar 

  • Czaplinski K, Ruiz-Echevarria MJ, Gonzalez CI, Peltz SW (1999) Should we kill the messenger? The role of the surveillance complex in translation termination and mRNA turnover. Bioessays 21:685–696

    PubMed  CAS  Google Scholar 

  • Czaplinski K, Majlesi N, Banerjee T, Peltz SW (2000) Mtt1 is a Upf1-like helicase that interacts with the translation termination factors and whose overexpression can modulate termination efficiency. RNA 6:730–743

    PubMed  CAS  Google Scholar 

  • Davies J, Gorini L, Davis BD (1965) Misreading of RNA codewords induced by aminoglycoside antibiotics. Mol Pharmacol 1:93–106

    PubMed  CAS  Google Scholar 

  • Davis BD (1987) Mechanism of bactericidal action of aminoglycosides. Microbiol Rev 51:341–350

    PubMed  CAS  Google Scholar 

  • Davis BD, Chen LL, Tai PC (1986) Misread protein creates membrane channels: an essential step in the bactericidal action of aminoglycosides. Proc Natl Acad Sci USA 83:6164–6168

    PubMed  CAS  Google Scholar 

  • Dean N (1995) Yeast glycosylation mutants are sensitive to aminoglycosides. Proc Natl Acad Sci USA 92:1287–1291

    PubMed  CAS  Google Scholar 

  • DePace AH, Santoso A, Hillner P, Weissman JS (1998) A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion. Cell 93:1241–1252

    PubMed  CAS  Google Scholar 

  • Didichenko SA, Ter-Avanesyan MD, Smirnov VN (1991) Ribosome-bound EF-1 alpha-like protein of yeast Saccharomyces cerevisiae. Eur J Biochem 198:705–711

    PubMed  CAS  Google Scholar 

  • Dong H, Kurland CG (1995) Ribosome mutants with altered accuracy translate with reduced processivity. J Mol Biol 248:551–561

    PubMed  CAS  Google Scholar 

  • Doudna JA, Rath VL (2002) Structure and function of the eukaryotic ribosome: the next frontier. Cell 109:153–156

    PubMed  CAS  Google Scholar 

  • Dresios J, Derkatch IL, Liebman SW, Synetos D (2000) Yeast ribosomal protein L24 affects the kinetics of protein synthesis and ribosomal protein L39 improves translational accuracy, while mutants lacking both remain viable. Biochemistry 39:7236–7244

    PubMed  CAS  Google Scholar 

  • Dresios J, Panopoulos P, Frantziou CP, Synetos D (2001) Yeast ribosomal protein deletion mutants possess altered peptidyltransferase activity and different sensitivity to cycloheximide. Biochemistry 40:8101–8108

    PubMed  CAS  Google Scholar 

  • Dube P, Bacher G, Stark H, Mueller F, Zemlin F, van Heel M, Brimacombe R (1998) Correlation of the expansion segments in mammalian rRNA with the fine structure of the 80 S ribosome; a cryoelectron microscopic reconstruction of the rabbit reticulocyte ribosome at 21 A resolution. J Mol Biol 279:403–421

    PubMed  CAS  Google Scholar 

  • Eaglestone SS, Cox BS, Tuite MF (1999) Translation termination efficiency can be regulated in Saccharomyces cerevisiae by environmental stress through a prion-mediated mechanism. EMBO J 18:1974–1981

    PubMed  CAS  Google Scholar 

  • Eurwilaichitr L, Graves FM, Stansfield I, Tuite MF (1999) The C-terminus of eRF1 defines a functionally important domain for translation termination in Saccharomyces cerevisiae. Mol Microbiol 32:485–496

    PubMed  CAS  Google Scholar 

  • Eustice DC, Wakem LP, Wilhelm JM, Sherman F (1986) Altered 40S ribosomal subunits in omnipotent suppressors of yeast. J Mol Biol 188:207–214

    PubMed  CAS  Google Scholar 

  • Fast R, Eberhard TH, Ruusala T, Kurland CG (1987) Does streptomycin cause an error catastrophe?. Biochimie 69:131–136

    PubMed  CAS  Google Scholar 

  • Fourmy D, Recht MI, Blanchard SC, Puglisi JD (1996) Structure of the A site of Escherichia coli 16S ribosomal RNA complexed with an aminoglycoside antibiotic. Science 274:1367–1371

    PubMed  CAS  Google Scholar 

  • Fourmy D, Recht MI, Puglisi JD (1998) Binding of neomycin-class aminoglycoside antibiotics to the A-site of 16S rRNA. J Mol Biol 277:347–362

    PubMed  CAS  Google Scholar 

  • Fourmy D, Yoshizawa S, Puglisi JD (1998) Paromomycin binding induces a local conformational change in the A-site of 16S rRNA. J Mol Biol 277:333–345

    PubMed  CAS  Google Scholar 

  • Frolova L, Le Goff X, Rasmussen HH, Cheperegin S, Drugeon G, Kress M, Arman I, Haenni AL, Celis JE, Philippe M (1994) A highly conserved eukaryotic protein family possessing properties of polypeptide chain release factor. Nature 372:701–703

    PubMed  CAS  Google Scholar 

  • Frolova L, Le Goff X, Zhouravleva G, Davydova E, Philippe M, Kisselev L (1996) Eukaryotic polypeptide chain release factor eRF3 is an eRF1-and ribosome-dependent guanosine triphosphatase. RNA 2:334–341

    PubMed  CAS  Google Scholar 

  • Frolova LY, Simonsen JL, Merkulova TI, Litvinov DY, Martensen PM, Rechinsky VO, Camonis JH, Kisselev LL, Justesen J (1998) Functional expression of eukaryotic polypeptide chain release factors 1 and 3 by means of baculovirus/insect cells and complex formation between the factors. Eur J Biochem 256:36–44

    PubMed  CAS  Google Scholar 

  • Frolova LY, Tsivkovskii RY, Sivolobova GF, Oparina NY, Serpinsky OI, Blinov VM, Tatkov SI, Kisselev LL (1999) Mutations in the highly conserved GGQ motif of class 1 polypeptide release factors abolish ability of human eRF1 to trigger peptidyl-tRNA hydrolysis. RNA 5:1014–1020

    PubMed  CAS  Google Scholar 

  • Frolova L, Seit-Nebi A, Kisselev L (2002) Highly conserved NIKS tetrapeptide is functionally essential in eukaryotic translation termination factor eRF1. RNA 8:129–136

    PubMed  CAS  Google Scholar 

  • Gabashvili IS, Agrawal RK, Grassucci R, Squires CL, Dahlberg AE, Frank J (1999) Major rearrangements in the 70S ribosomal 3D structure caused by a conformational switch in 16S ribosomal RNA. EMBO J 18:6501–6507

    PubMed  CAS  Google Scholar 

  • Gabashvili IS, Gregory ST, Valle M, Grassucci R, Worbs M, Wahl MC, Dahlberg AE, Frank J (2001) The polypeptide tunnel system in the ribosome and its gating in erythromycin resistance mutants of L4 and L22. Mol Cell 8:181–188

    PubMed  CAS  Google Scholar 

  • Gabashvili IS, Whirl-Carrillo M, Bada M, Banatao DR, Altman RB (2003) Ribosomal dynamics inferred from variations in experimental measurements. RNA 9:1301–1307

    PubMed  CAS  Google Scholar 

  • Gautschi M, Lilie H, Fünfschilling U, Mun A, Ross S, Lithgow T, Rücknagel P, Rospert S (2001) RAC, a stable ribosome-associated complex in yeast formed by the DnaK-DnaJ homologs Ssz1p and zuotin. Proc Natl Acad Sci USA 98:3762–3767

    PubMed  CAS  Google Scholar 

  • Gautschi M, Mun A, Ross S, Rospert S (2002) A functional chaperone triad on the yeast ribosome. Proc Natl Acad Sci USA 99:4209–4214

    PubMed  CAS  Google Scholar 

  • Gautschi M, Just S, Mun A, Ross S, Rücknagel P, Dubaquié Y, Ehrenhofer-Murray A, Rospert S (2003) The yeast Na-acetyltransferase NatA is quantitatively anchored to the ribosome and interacts with nascent polypeptides. Mol Cell Biol 23:7403–7414

    PubMed  CAS  Google Scholar 

  • Goff SP (2004) Genetic reprogramming by retroviruses: enhanced suppression of translational termination. Cell Cycle 3:123–125

    PubMed  CAS  Google Scholar 

  • Goldberg AL (1972) Degradation of abnormal proteins in Escherichia coli (protein breakdown-protein structure-mistranslation-amino acid analogs-puromycin). Proc Natl Acad Sci USA 69:422–426

    PubMed  CAS  Google Scholar 

  • Goldberg AL (2003) Protein degradation and protection against misfolded or damaged proteins. Nature 426:895–899

    PubMed  CAS  Google Scholar 

  • Gonzalez CI, Bhattacharya A, Wang W, Peltz SW (2001) Nonsense-mediated mRNA decay in Saccharomyces cerevisiae. Gene 274:15–25

    PubMed  CAS  Google Scholar 

  • Gorini L, Kataja E (1964) Phenotypic repair by streptomycin of defective genotypes in E. coli. Proc Natl Acad Sci USA 51:487–493

    PubMed  CAS  Google Scholar 

  • Gozalbo D, Hohmann S (1990) Nonsense suppressors partially revert the decrease of the mRNA level of a nonsense mutant allele in yeast. Curr Genet 17:77–79

    PubMed  CAS  Google Scholar 

  • Gray NK, Coller JM, Dickson KS, Wickens M (2000) Multiple portions of poly(A)-binding protein stimulate translation in vivo. EMBO J 19:4723–4733

    PubMed  CAS  Google Scholar 

  • Gromadski KB, Rodnina MV (2004) Kinetic determinants of high-fidelity tRNA discrimination on the ribosome. Mol Cell 13:191–200

    PubMed  CAS  Google Scholar 

  • Harger JW, Dinman JD (2004) Evidence against a direct role for the Upf proteins in frameshifting or nonsense codon readthrough. RNA 10:1721–1729

    PubMed  CAS  Google Scholar 

  • Harms J, Schluenzen F, Zarivach R, Bashan A, Gat S, Agmon I, Bartels H, Franceschi F, Yonath A (2001) High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 107:679–688

    PubMed  CAS  Google Scholar 

  • Hawthorne DC, Leupold U (1974) Suppressors in yeast. Curr Top Microbiol Immunol 64:1–47

    PubMed  CAS  Google Scholar 

  • He F, Jacobson A (2001) Upf1p, Nmd2p, and Upf3p regulate the decapping and exonucleolytic degradation of both nonsense-containing mRNAs and wild-type mRNAs. Mol Cell Biol 21:1515–1530

    PubMed  CAS  Google Scholar 

  • He F, Li X, Spatrick P, Casillo R, Dong S, Jacobson A (2003) Genome-wide analysis of mRNAs regulated by the nonsense-mediated and 5′ to 3′ mRNA decay pathways in yeast. Mol Cell 12:1439–1452

    PubMed  CAS  Google Scholar 

  • Heurgue-Hamard V, Champ S, Mora L, Merkoulova-Rainon T, Kisselev LL, Buckingham RH (2005) The glutamine residue of the conserved GGQ motif in Saccharomyces cerevisiae release factor eRF1 is methylated by the product of the YDR140w gene. J Biol Chem 280:2439–2445

    PubMed  CAS  Google Scholar 

  • Hoshino S, Hosoda N, Araki Y, Kobayashi T, Uchida N, Funakoshi Y, Katada T (1999) Novel function of the eukaryotic polypeptide-chain releasing factor 3 (eRF3/GSPT) in the mRNA degradation pathway. Biochemistry (Mosc) 64:1367–1372

    PubMed  CAS  Google Scholar 

  • Hoshino S, Imai M, Kobayashi T, Uchida N, Katada T (1999) The eukaryotic polypeptide chain releasing factor (eRF3/GSPT) carrying the translation termination signal to the 3′-poly(A) tail of mRNA. J Biol Chem 274:16677–16680

    PubMed  CAS  Google Scholar 

  • Hosoda N, Kobayashi T, Uchida N, Funakoshi Y, Kikuchi Y, Hoshino S, Katada T (2003) Translation termination factor eRF3 mediates mRNA decay through the regulation of deadenylation. J Biol Chem 278:38287–38291

    PubMed  CAS  Google Scholar 

  • Howard MT, Anderson CB, Fass U, Khatri S, Gesteland RF, Atkins JF, Flanigan KM (2004) Readthrough of dystrophin stop codon mutations induced by aminoglycosides. Ann Neurol 55:422–426

    PubMed  CAS  Google Scholar 

  • Hundley H, Eisenman H, Walter W, Evans T, Hotokezaka Y, Wiedmann M, Craig E (2002) The in vivo function of the ribosome-associated Hsp70, Ssz1, does not require its putative peptide-binding domain. Proc Natl Acad Sci USA 99:4203–4208

    PubMed  CAS  Google Scholar 

  • Inge-Vechtomov S, Zhouravleva G, Philippe M (2003) Eukaryotic release factors (eRFs) history. Biol Cell 95:195–209

    PubMed  CAS  Google Scholar 

  • Ito K, Ebihara K, Nakamura Y (1998) The stretch of C-terminal acidic amino acids of translational release factor eRF1 is a primary binding site for eRF3 of fission yeast. RNA 4:958–972

    PubMed  CAS  Google Scholar 

  • Ito K, Frolova L, Seit-Nebi A, Karamyshev A, Kisselev L, Nakamura Y (2002) Omnipotent decoding potential resides in eukaryotic translation termination factor eRF1 of variant-code organisms and is modulated by the interactions of amino acid sequences within domain 1. Proc Natl Acad Sci USA 99:8494–8499

    PubMed  CAS  Google Scholar 

  • Jerinic O, Joseph S (2000) Conformational changes in the ribosome induced by translational miscoding agents. J Mol Biol 304:707–713

    PubMed  CAS  Google Scholar 

  • Jones DL, Petty J, Hoyle DC, Hayes A, Ragni E, Popolo L, Oliver SG, Stateva LI (2003) Transcriptome profiling of a Saccharomyces cerevisiae mutant with a constitutively activated Ras/cAMP pathway. Physiol Genomics 16:107–118

    PubMed  CAS  Google Scholar 

  • Kandl KA, Munshi R, Ortiz PA, Andersen GR, Kinzy TG, Adams AE (2002) Identification of a role for actin in translational fidelity in yeast. Mol Genet Genomics 268:10–18

    PubMed  CAS  Google Scholar 

  • Kapp LD, Lorsch JR (2004) The molecular mechanics of eukaryotic translation. Annu Rev Biochem 73:657–704

    PubMed  CAS  Google Scholar 

  • Karimi R, Ehrenberg M (1994) Dissociation rate of cognate peptidyl-tRNA from the A-site of hyper-accurate and error-prone ribosomes. Eur J Biochem 226:355–360

    PubMed  CAS  Google Scholar 

  • Karimi R, Ehrenberg M (1996) Dissociation rates of peptidyl-tRNA from the P-site of E.coli ribosomes. EMBO J 15:1149–1154

    PubMed  CAS  Google Scholar 

  • Karzai AW, Roche ED, Sauer RT (2000) The SsrA-SmpB system for protein tagging, directed degradation and ribosome rescue. Nat Struct Biol 7:449–455

    PubMed  CAS  Google Scholar 

  • Keeling KM, Bedwell DM (2002) Clinically relevant aminoglycosides can suppress disease-associated premature stop mutations in the IDUA and P53 cDNAs in a mammalian translation system. J Mol Med 80:367–376

    PubMed  CAS  Google Scholar 

  • Keeling KM, Lanier J, Du M, Salas-Marco J, Gao L, Kaenjak-Angeletti A, Bedwell DM (2004) Leaky termination at premature stop codons antagonizes nonsense-mediated mRNA decay in S. cerevisiae. RNA 10:691–703

    PubMed  CAS  Google Scholar 

  • Kim SY, Craig EA (2005) Broad sensitivity of Saccharomyces cerevisiae lacking ribosome-associated chaperone Ssb or Zuo1 to cations, including aminoglycosides. Eukaryot Cell 4:82–89

    PubMed  CAS  Google Scholar 

  • Kisselev L, Ehrenberg M, Frolova L (2003) Termination of translation: interplay of mRNA, rRNAs and release factors?. EMBO J 22:175–182

    PubMed  CAS  Google Scholar 

  • Klaholz BP, Pape T, Zavialov AV, Myasnikov AG, Orlova EV, Vestergaard B, Ehrenberg M, van Heel M (2003) Structure of the Escherichia coli ribosomal termination complex with release factor 2. Nature 421:90–94

    PubMed  CAS  Google Scholar 

  • Klaholz BP, Myasnikov AG, Van Heel M (2004) Visualization of release factor 3 on the ribosome during termination of protein synthesis. Nature 427:862–865

    PubMed  CAS  Google Scholar 

  • Kobayashi T, Funakoshi Y, Hoshino SI, Katada T (2004) The GTP-binding release factor eRF3 as a key mediator coupling translation termination to mRNA decay. J Biol Chem 279:45693–45700

    PubMed  CAS  Google Scholar 

  • Kong C, Ito K, Walsh MA, Wada M, Liu Y, Kumar S, Barford D, Nakamura Y, Song H (2004) Crystal structure and functional analysis of the eukaryotic class II release factor eRF3 from S. pombe. Mol Cell 14:233–245

    PubMed  CAS  Google Scholar 

  • Kurland CG (1992) Translational accuracy and the fitness of bacteria. Annu Rev Genet 26:29–50

    PubMed  CAS  Google Scholar 

  • Kurland C, Huges D, Ehrenberg M (1996) Limitations of translational accuracy. In: Neidhardt FC (ed) Escherichia coli and salmonella. Reviews of Physiology, Biochemistry and Pharmacology. ASM, Washington D.C.

    Google Scholar 

  • Kushnirov VV, Kryndushkin DS, Boguta M, Smirnov VN, Ter-Avanesyan MD (2000) Chaperones that cure yeast artificial [PSI+] and their prion-specific effects. Curr Biol 10:1443–1446

    PubMed  CAS  Google Scholar 

  • Lai C-H, Chun HH, Nahas SA, Mitui M, Gamo KM, Du L, Gatti RA (2004) Correction of ATM gene function by aminoglycoside-induced read-through of premature termination codons. Proc Natl Acad Sci USA 101:15676–15681

    PubMed  CAS  Google Scholar 

  • Lee SI, Umen JG, Varmus HE (1995) A genetic screen identifies cellular factors involved in retroviral-1 frameshifting. Proc Natl Acad Sci USA 92:6587–6591

    PubMed  CAS  Google Scholar 

  • Leeds P, Peltz SW, Jacobson A, Culbertson MR (1991) The product of the yeast UPF1 gene is required for rapid turnover of mRNAs containing a premature translational termination codon. Genes Dev 5:2303–2314

    PubMed  CAS  Google Scholar 

  • Leeds P, Wood JM, Lee BS, Culbertson MR (1992) Gene products that promote mRNA turnover in Saccharomyces cerevisiae. Mol Cell Biol 12:2165–2177

    PubMed  CAS  Google Scholar 

  • Lelivelt MJ, Culbertson MR (1999) Yeast Upf proteins required for RNA surveillance affect global expression of the yeast transcriptome. Mol Cell Biol 19:6710–6719

    PubMed  CAS  Google Scholar 

  • Lenk R, Ransom L, Kaufmann Y, Penman S (1977) A cytoskeletal structure with associated polyribosomes obtained from HeLa cells. Cell 10:67–78

    PubMed  CAS  Google Scholar 

  • Liao S, Lin J, Do H, Johnson AE (1997) Both lumenal and cytosolic gating of the aqueous ER translocon pore are regulated from inside the ribosome during membrane protein integration. Cell 90:31–41

    PubMed  CAS  Google Scholar 

  • Liebman SW, Sherman F (1976) Inhibition of growth by amber suppressors in yeast. Genetics 82:233–249

    PubMed  CAS  Google Scholar 

  • Liebman SW, Chernoff YO, Liu R (1995) The accuracy center of a eukaryotic ribosome. Biochem Cell Biol 73:1141–1149

    PubMed  CAS  Google Scholar 

  • Liu R, Liebman SW (1996) A translational fidelity mutation in the universally conserved sarcin/ricin domain of 25S yeast ribosomal RNA. RNA 2:254–263

    PubMed  CAS  Google Scholar 

  • Lodmell JS, Dahlberg AE (1997) A conformational switch in Escherichia coli 16S ribosomal RNA during decoding of messenger RNA. Science 277:1262–1267

    PubMed  CAS  Google Scholar 

  • Lykke-Andersen J (2004) Making structural sense of nonsense-mediated decay. Nat Struct Mol Biol 11:305–306

    PubMed  CAS  Google Scholar 

  • Lynch SR, Puglisi JD (2001) Structural origins of aminoglycoside specificity for prokaryotic ribosomes. J Mol Biol 306:1037–1058

    PubMed  CAS  Google Scholar 

  • Lynch SR, Puglisi JD (2001) Structure of a eukaryotic decoding region A-site RNA. J Mol Biol 306:1023–1035

    PubMed  CAS  Google Scholar 

  • Ma B, Nussinov R (2004) Release factors eRF1 and RF2: a universal mechanism controls the large conformational changes. J Biol Chem 279:53875–53885

    PubMed  CAS  Google Scholar 

  • Maderazo AB, He F, Mangus DA, Jacobson A (2000) Upf1p control of nonsense mRNA translation is regulated by Nmd2p and Upf3p. Mol Cell Biol 20:4591–4603

    PubMed  CAS  Google Scholar 

  • Mangus DA, Evans MC, Jacobson A (2003) Poly(A)-binding proteins: multifunctional scaffolds for the posttranscriptional control of gene expression. Genome Biol 4:223

    PubMed  Google Scholar 

  • Maquat LE (2002) Molecular biology. Skiing toward nonstop mRNA decay. Science 295:2221–2222

    PubMed  CAS  Google Scholar 

  • Masurekar M, Palmer E, Ono BI, Wilhelm JM, Sherman F (1981) Misreading of the ribosomal suppressor SUP46 due to an altered 40S subunit in yeast. J Mol Biol 147:381–390

    PubMed  CAS  Google Scholar 

  • Melancon P, Tapprich WE, Brakier-Gingras L (1992) Single-base mutations at position 2,661 of Escherichia coli 23S rRNA increase efficiency of translational proofreading. J Bacteriol 174:7896–7901

    PubMed  CAS  Google Scholar 

  • Morgan DG, Menetret JF, Radermacher M, Neuhof A, Akey IV, Rapoport TA, Akey CW (2000) A comparison of the yeast and rabbit 80S ribosome reveals the topology of the nascent chain exit tunnel, inter-subunit bridges and mammalian rRNA expansion segments. J Mol Biol 301:301–321

    PubMed  CAS  Google Scholar 

  • Moskalenko SE, Chabelskaya SV, Inge-Vechtomov SG, Philippe M, Zhouravleva GA (2003) Viable nonsense mutants for the essential gene SUP45 of Saccharomyces cerevisiae. BMC Mol Biol 4:2

    PubMed  Google Scholar 

  • Mulet JM, Leube MP, Kron SJ, Rios G, Fink GR, Serrano R (1999) A novel mechanism of ion homeostasis and salt tolerance in yeast: the Hal4 and Hal5 protein kinases modulate the Trk1-Trk2 potassium transporter. Mol Cell Biol 19:3328–3337

    PubMed  CAS  Google Scholar 

  • Nakamura Y, Ito K (2003) Making sense of mimic in translation termination. Trends Biochem Sci 28:99–105

    PubMed  CAS  Google Scholar 

  • Namy O, Hatin I, Rousset JP (2001) Impact of the six nucleotides downstream of the stop codon on translation termination. EMBO Rep 2:787–793

    PubMed  CAS  Google Scholar 

  • Namy O, Duchateau-Nguyen G, Rousset JP (2002) Translational readthrough of the PDE2 stop codon modulates cAMP levels in Saccharomyces cerevisiae. Mol Microbiol 43:641–652

    PubMed  CAS  Google Scholar 

  • Namy O, Hatin I, Stahl G, Liu H, Barnay S, Bidou L, Rousset JP (2002) Gene overexpression as a tool for identifying new trans-acting factors involved in translation termination in Saccharomyces cerevisiae. Genetics 161:585–594

    PubMed  CAS  Google Scholar 

  • Namy O, Duchateau-Nguyen G, Hatin I, Hermann-Le Denmat S, Termier M, Rousset JP (2003) Identification of stop codon readthrough genes in Saccharomyces cerevisiae. Nucleic Acids Res 31:2289–2296

    PubMed  CAS  Google Scholar 

  • Negrutskii BS, Stapulionis R, Deutscher MP (1994) Supramolecular organization of the mammalian translation system. Proc Natl Acad Sci USA 91:964–968

    PubMed  CAS  Google Scholar 

  • Nelson RJ, Ziegelhoffer T, Nicolet C, Werner-Washburne M, Craig EA (1992) The translation machinery and 70 kd heat shock protein cooperate in protein synthesis. Cell 71:97–105

    PubMed  CAS  Google Scholar 

  • Nissen P, Hansen J, Ban N, Moore PB, Steitz TA (2000) The structural basis of ribosome activity in peptide bond synthesis. Science 289:920–930

    PubMed  CAS  Google Scholar 

  • Ogle JM, Brodersen DE, Clemons Jr WM, Tarry MJ, Carter AP, Ramakrishnan V (2001) Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292:897–902

    PubMed  CAS  Google Scholar 

  • Ogle JM, Murphy FV, Tarry MJ, Ramakrishnan V (2002) Selection of tRNA by the ribosome requires a transition from an open to a closed form. Cell 111:721–732

    PubMed  CAS  Google Scholar 

  • Ogle JM, Carter AP, Ramakrishnan V (2003) Insights into the decoding mechanism from recent ribosome structures. Trends Biochem Sci 28:259–266

    PubMed  CAS  Google Scholar 

  • Orlova M, Yueh A, Leung J, Goff SP (2003) Reverse transcriptase of Moloney murine leukemia virus binds to eukaryotic release factor 1 to modulate suppression of translational termination. Cell 115:319–331

    PubMed  CAS  Google Scholar 

  • Palmer E, Wilhelm JM, Sherman F (1979) Phenotypic suppression of nonsense mutants in yeast by aminoglycoside antibiotics. Nature 277:148–150

    PubMed  CAS  Google Scholar 

  • Panopoulos P, Dresios J, Synetos D (2004) Biochemical evidence of translational infidelity and decreased peptidyltransferase activity by a sarcin/ricin domain mutation of yeast 25S rRNA. Nucleic Acids Res 32:5398–5408

    PubMed  CAS  Google Scholar 

  • Paushkin SV, Kushnirov VV, Smirnov VN, Ter-Avanesyan MD (1997) Interaction between yeast Sup45p (eRF1) and Sup35p (eRF3) polypeptide chain release factors: implications for prion-dependent regulation. Mol Cell Biol 17:2798–2805

    PubMed  CAS  Google Scholar 

  • Pfund C, Lopez-Hoyo N, Ziegelhoffer T, Schilke BA, Lopez-Buesa P, Walter WA, Wiedmann M, Craig EA (1998) The molecular chaperone Ssb from Saccharomyces cerevisiae is a component of the ribosomenascent chain complex. EMBO J 17:3981–3989

    PubMed  CAS  Google Scholar 

  • Piepersberg W, Noseda V, Bock A (1979) Bacterial ribosomes with two ambiguity mutations: effects of translational fidelity, on the response to aminoglycosides and on the rate of protein synthesis. Mol Gen Genet 171:23–34

    PubMed  CAS  Google Scholar 

  • Polacek N, Gomez MJ, Ito K, Xiong L, Nakamura Y, Mankin A (2003) The critical role of the universally conserved A2602 of 23S ribosomal RNA in the release of the nascent peptide during translation termination. Mol Cell 11:103–112

    PubMed  CAS  Google Scholar 

  • Puglisi JD, Blanchard KD, Dahlquist RGE, Eason RG, Fourmy D, Lynch SR, Recht MI, Yoshizawa S (2000) Aminoglycoside antibiotics and decoding. In: Garrett RA, Douthwaite SR, Liljas A, Matheson PB, Moore PB, Noller HF (eds) The ribosome: structure, function, antibiotics, and cellular interactions. ASM, Washington D.C., 419–429

    Google Scholar 

  • Rakwalska M, Rospert S (2004) The ribosome-bound chaperones RAC and Ssb1/2p are required for accurate translation in Saccharomyces cerevisiae. Mol Cell Biol 24:9186–9197

    PubMed  CAS  Google Scholar 

  • Rawat UB, Zavialov AV, Sengupta J, Valle M, Grassucci RA, Linde J, Vestergaard B, Ehrenberg M, Frank J (2003) A cryo-electron microscopic study of ribosome-bound termination factor RF2. Nature 421:87–90

    PubMed  CAS  Google Scholar 

  • Recht MI, Douthwaite S, Puglisi JD (1999) Basis for prokaryotic specificity of action of aminoglycoside antibiotics. EMBO J 18:3133–3138

    PubMed  CAS  Google Scholar 

  • Rodnina MV, Wintermeyer W (2001) Fidelity of aminoacyl-tRNA selection on the ribosome: kinetic and structural mechanisms. Annu Rev Biochem 70:415–435

    PubMed  CAS  Google Scholar 

  • Rodnina MV, Wintermeyer W (2001) Ribosome fidelity: tRNA discrimination, proofreading and induced fit. Trends Biochem Sci 26:124–130

    PubMed  CAS  Google Scholar 

  • Rodnina MV, Daviter T, Gromadski K, Wintermeyer W (2002) Structural dynamics of ribosomal RNA during decoding on the ribosome. Biochimie 84:745–754

    PubMed  CAS  Google Scholar 

  • Rospert S (2004) Ribosome function: how to govern the fate of a nascent polypeptide. Curr Biol 14:R386–R388

    PubMed  CAS  Google Scholar 

  • Rospert S, Gautschi M, Rakwalska M, Raue U (2005) Ribosome-bound proteins acting on newly synthesized polypeptide chains. In: Buchner J, Kiefhaber T (eds) Handbook in protein folding. Wiley-VCH, Weinheim

    Google Scholar 

  • Ruiz-Echevarria MJ, Yasenchak JM, Han X, Dinman JD, Peltz SW (1998) The upf3 protein is a component of the surveillance complex that monitors both translation and mRNA turnover and affects viral propagation. Proc Natl Acad Sci USA 95:8721–8726

    PubMed  CAS  Google Scholar 

  • Sachs AB, Davis RW (1990) Translation initiation and ribosomal biogenesis: involvement of a putative rRNA helicase and RPL46. Science 247:1077–1079

    PubMed  CAS  Google Scholar 

  • Salas-Marco J, Bedwell DM (2004) GTP hydrolysis by eRF3 facilitates stop codon decoding during eukaryotic translation termination. Mol Cell Biol 24:7769–7778

    PubMed  CAS  Google Scholar 

  • Saltzman L, Apirion D (1976) Binding of erythromycin to the 50S ribosomal subunit is affected by alterations in the 30S ribosomal subunit. Mol Gen Genet 143:301–306

    PubMed  CAS  Google Scholar 

  • Sangkuhl K, Schulz A, Rompler H, Yun J, Wess J, Schöneberg T (2004) Aminoglycoside-mediated rescue of a disease-causing nonsense mutation in the V2 vasopressin receptor gene in vitro and in vivo. Hum Mol Genet 13:893–903

    PubMed  CAS  Google Scholar 

  • Schroeder R, Waldsich C, Wank H (2000) Modulation of RNA function by aminoglycoside antibiotics. EMBO J 19:1–9

    PubMed  CAS  Google Scholar 

  • Schulz A, Sangkuhl K, Lennert T, Wigger M, Price DA, Nuuja A, Gruters A, Schultz G, Schöneberg T (2002) Aminoglycoside pretreatment partially restores the function of truncated V(2) vasopressin receptors found in patients with nephrogenic diabetes insipidus. J Clin Endocrinol Metab 87:5247–5257

    PubMed  CAS  Google Scholar 

  • Seit-Nebi A, Frolova L, Justesen J, Kisselev L (2001) Class-1 translation termination factors: invariant GGQ minidomain is essential for release activity and ribosome binding but not for stop codon recognition. Nucleic Acids Res 29:3982–3987

    PubMed  CAS  Google Scholar 

  • Simonson AB, Lake JA (2002) The transorientation hypothesis for codon recognition during protein synthesis. Nature 416:281–285

    PubMed  CAS  Google Scholar 

  • Singh A, Ursic D, Davies J (1979) Phenotypic suppression and misreading Saccharomyces cerevisiae. Nature 277:146–148

    PubMed  CAS  Google Scholar 

  • Smith MW, Meskauskas A, Wang P, Sergiev PV, Dinman JD (2001) Saturation mutagenesis of 5S rRNA in Saccharomyces cerevisiae. Mol Cell Biol 21:8264–8275

    PubMed  CAS  Google Scholar 

  • Song JM, Liebman SW (1989) Mutations in ADE3 reduce the efficiency of the omnipotent suppressor sup45-2. Curr Genet 16:315–321

    PubMed  CAS  Google Scholar 

  • Song H, Mugnier P, Das AK, Webb HM, Evans DR, Tuite MF, Hemmings BA, Barford D (2000) The crystal structure of human eukaryotic release factor eRF1—mechanism of stop codon recognition and peptidyltRNA hydrolysis. Cell 100:311–321

    PubMed  CAS  Google Scholar 

  • Spahn CM, Prescott CD (1996) Throwing a spanner in the works: antibiotics and the translation apparatus. J Mol Med 74:423–439

    PubMed  CAS  Google Scholar 

  • Spahn CM, Beckmann R, Eswar N, Penczek PA, Sali A, Blobel G, Frank J, Helmers J (2001) Structure of the 80S ribosome from Saccharomyces cerevisiae—tRNA-ribosome and subunit-subunit interactions architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell 107:373–386

    PubMed  CAS  Google Scholar 

  • Spiegel AM, Weinstein LS (2004) Inherited diseases involving g proteins and g protein-coupled receptors. Annu Rev Med 55:27–39

    PubMed  CAS  Google Scholar 

  • Stansfield I, Tuite MF (1994) Polypeptide chain termination in Saccharomyces cerevisiae. Curr Genet 25:385–395

    PubMed  CAS  Google Scholar 

  • Stansfield I, Akhmaloka, Grant GM, Tuite MF (1992) Ribosomal association of the yeast SAL4 (SUP45) gene product: implications for its role in translation fidelity and termination. Mol Microbiol 6:3469–3478

    PubMed  CAS  Google Scholar 

  • Stansfield I, Akhmaloka, Tuite MF (1995) A mutant allele of the SUP45 (SAL4) gene of Saccharomyces cerevisiae shows temperature-dependent allosuppressor and omnipotent suppressor phenotypes. Curr Genet 27:417–426

    PubMed  CAS  Google Scholar 

  • Stansfield I, Jones KM, Kushnirov VV, Dagkesamanskaya AR, Poznyakovski AI, Paushkin SV, Nierras CR, Cox BS, Ter-Avanesyan MD, Tuite MF (1995) The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae. EMBO J 14:4365–4373

    PubMed  CAS  Google Scholar 

  • Stansfield I, Eurwilaichitr L, Akhmaloka, Tuite MF (1996) Depletion in the levels of the release factor eRF1 causes a reduction in the efficiency of translation termination in yeast. Mol Microbiol 20:1135–1143

    PubMed  CAS  Google Scholar 

  • Stansfield I, Kushnirov VV, Jones KM, Tuite MF (1997) A conditional-lethal translation termination defect in a sup45 mutant of the yeast Saccharomyces cerevisiae. Eur J Biochem 245:557–563

    PubMed  CAS  Google Scholar 

  • Stark H (2002) Three-dimensional electron cryomicroscopy of ribosomes. Curr Protein Pept Sci 3:79–91

    PubMed  CAS  Google Scholar 

  • Synetos D, Frantziou CP, Alksne LE (1996) Mutations in yeast ribosomal proteins S28 and S4 affect the accuracy of translation and alter the sensitivity of the ribosomes to paromomycin. Biochim Biophys Acta 1309:156–166

    PubMed  Google Scholar 

  • Tapprich WE, Dahlberg AE (1990) A single base mutation at position 2,661 in E. coli 23S ribosomal RNA affects the binding of ternary complex to the ribosome. EMBO J 9:2649–2655

    PubMed  CAS  Google Scholar 

  • Tarun Jr SZ, Sachs AB (1996) Association of the yeast poly(A) tail binding protein with translation initiation factor eIF-4G. EMBO J 15:7168–7177

    PubMed  CAS  Google Scholar 

  • Tarun Jr SZ, Wells SE, Deardorff JA, Sachs AB (1997) Translation initiation factor eIF4G mediates in vitro poly(A) tail-dependent translation. Proc Natl Acad Sci USA 94:9046–9051

    PubMed  CAS  Google Scholar 

  • Ter-Avanesyan MD, Kushnirov VV, Dagkesamanskaya AR, Didichenko SA, Chernoff YO, Inge-Vechtomov SG, Smirnov VN (1993) Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein. Mol Microbiol 7:683–692

    PubMed  CAS  Google Scholar 

  • Tok JB, Bi L (2003) Aminoglycoside and its derivatives as ligands to target the ribosome. Curr Top Med Chem 3:1001–1019

    PubMed  CAS  Google Scholar 

  • True HL, Lindquist SL (2000) A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 407:477–483

    PubMed  CAS  Google Scholar 

  • True HL, Berlin I, Lindquist SL (2004) Epigenetic regulation of translation reveals hidden genetic variation to produce complex traits. Nature 431:184–187

    PubMed  CAS  Google Scholar 

  • Tuite MF (2000) Yeast prions and their prion-forming domain. Cell 100:289–292

    PubMed  CAS  Google Scholar 

  • Uchida N, Hoshino S, Imataka H, Sonenberg N, Katada T (2002) A novel role of the mammalian GSPT/eRF3 associating with poly(A)-binding protein in Cap/Poly(A)-dependent translation. J Biol Chem 277:50286–50292

    PubMed  CAS  Google Scholar 

  • Urakov VN, Valouev IA, Lewitin EI, Paushkin SV, Kosorukov VS, Kushnirov VV, Smirnov VN, Ter-Avanesyan MD (2001) Itt1p, a novel protein inhibiting translation termination in Saccharomyces cerevisiae. BMC Mol Biol 2:9–18

    PubMed  CAS  Google Scholar 

  • Valouev IA, Kushnirov VV, Ter-Avanesyan MD (2002) Yeast polypeptide chain release factors eRF1 and eRF3 are involved in cytoskeleton organization and cell cycle regulation. Cell Motil Cytoskelet 52:161–173

    CAS  Google Scholar 

  • Valouev IA, Urakov VN, Kochneva-Pervukhova NV, Smirnov VN, Ter-Avanesyan MD (2004) Translation termination factors function outside of translation: yeast eRF1 interacts with myosin light chain, Mlc1p, to effect cytokinesis. Mol Microbiol 53:687–696

    PubMed  CAS  Google Scholar 

  • van Hoof A, Frischmeyer PA, Dietz HC, Parker R (2002) Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science 295:2262–2264

    PubMed  Google Scholar 

  • Vasudevan S, Peltz SW, Wilusz CJ (2002) Non-stop decay—a new mRNA surveillance pathway. Bioessays 24:785–788

    PubMed  CAS  Google Scholar 

  • Velichutina IV, Dresios J, Hong JY, Li C, Mankin A, Synetos D, Liebman SW (2000) Mutations in helix 27 of the yeast Saccharomyces cerevisiae 18S rRNA affect the function of the decoding center of the ribosome. RNA 6:1174–1184

    PubMed  CAS  Google Scholar 

  • Velichutina IV, Hong JY, Mesecar AD, Chernoff YO, Liebman SW (2001) Genetic interaction between yeast Saccharomyces cerevisiae release factors and the decoding region of 18S rRNA. J Mol Biol 305:715–727

    PubMed  CAS  Google Scholar 

  • Vicens Q, Westhof E (2003) RNA as a drug target: the case of aminoglycosides. Chembiochem 4:1018–1023

    PubMed  CAS  Google Scholar 

  • Wakem LP, Sherman F (1990) Isolation and characterization of omnipotent suppressors in the yeast Saccharomyces cerevisiae. Genetics 124:515–522

    PubMed  CAS  Google Scholar 

  • Wang W, Czaplinski K, Rao Y, Peltz SW (2001) The role of Upf proteins in modulating the translation read-through of nonsense-containing transcripts. EMBO J 20:880–890

    PubMed  CAS  Google Scholar 

  • Wells SE, Hillner PE, Vale RD, Sachs AB (1998) Circularization of mRNA by eukaryotic translation initiation factors. Mol Cell 2:135–140

    PubMed  CAS  Google Scholar 

  • Weng Y, Czaplinski K, Peltz SW (1996) Identification and characterization of mutations in the UPF1 gene that affect nonsense suppression and the formation of the Upf protein complex but not mRNA turnover. Mol Cell Biol 16:5491–5506

    PubMed  CAS  Google Scholar 

  • Weng Y, Czaplinski K, Peltz SW (1996) Genetic and biochemical characterization of mutations in the ATPase and helicase regions of the Upf1 protein. Mol Cell Biol 16:5477–5490

    PubMed  CAS  Google Scholar 

  • Wickner RB, Edskes HK, Roberts BT, Baxa U, Pierce MM, Ross ED, Brachmann A (2004) Prions: proteins as genes and infectious entities. Genes Dev 18:470–485

    PubMed  CAS  Google Scholar 

  • Williams I, Richardson J, Starkey A, Stansfield I (2004) Genome-wide prediction of stop codon readthrough during translation in the yeast Saccharomyces cerevisiae. Nucleic Acids Res 32:6605–6616

    PubMed  CAS  Google Scholar 

  • Wilson DN, Nierhaus KH (2003) The ribosome through the looking glass. Angew Chem Int Ed Engl 42:3464–3486

    PubMed  CAS  Google Scholar 

  • Wimberly BT, Guymon R, McCutcheon JP, White SW, Ramakrishnan V (1999) A detailed view of a ribosomal active site: the structure of the L11-RNA complex. Cell 97:491–502

    PubMed  CAS  Google Scholar 

  • Wimberly BT, Brodersen DE, Clemons Jr WM, Morgan-Warren RJ, Carter AP, Vonrhein C, Hartsch T, Ramakrishnan V (2000) Structure of the 30S ribosomal subunit. Nature 407:327–339

    PubMed  CAS  Google Scholar 

  • Wintermeyer W, Peske F, Beringer M, Gromadski KB, Savelsbergh A, Rodnina MV (2004) Mechanisms of elongation on the ribosome: dynamics of a macromolecular machine. Biochem Soc Trans 32:733–737

    PubMed  CAS  Google Scholar 

  • Withey JH, Friedman DI (2002) The biological roles of trans-translation. Curr Opin Microbiol 5:154–159

    PubMed  CAS  Google Scholar 

  • Woolhead CA, McCormick PJ, Johnson AE (2004) Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins. Cell 116:725–736

    PubMed  CAS  Google Scholar 

  • Wormington M (2003) Zero tolerance for nonsense: nonsense-mediated mRNA decay uses multiple degradation pathways. Mol Cell 12:536–538

    PubMed  CAS  Google Scholar 

  • Yan W, Schilke B, Pfund C, Walter W, Kim S, Craig EA (1998) Zuotin, a ribosome-associated DnaJ molecular chaperone. EMBO J 17:4809–4817

    PubMed  CAS  Google Scholar 

  • Yoshizawa S, Fourmy D, Puglisi JD (1998) Structural origins of gentamicin antibiotic action. EMBO J 17:6437–6448

    PubMed  CAS  Google Scholar 

  • Yun J, Schöneberg T, Liu J, Schulz A, Ecelbarger CA, Promeneur D, Nielsen S, Sheng H, Grinberg A, Deng C, Wess J (2000) Generation and phenotype of mice harboring a nonsense mutation in the V2 vasopressin receptor gene. J Clin Invest 106:1361–1371

    PubMed  CAS  Google Scholar 

  • Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Earnest TN, Cate JH, Noller HF (2001) Crystal structure of the ribosome at 5.5A resolution. Science 292:883–896

    PubMed  CAS  Google Scholar 

  • Zhouravleva G, Frolova L, Le Goff X, Le Guellec R, Inge-Vechtomov S, Kisselev L, Philippe M (1995) Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. EMBO J 14:4065–4072

    PubMed  CAS  Google Scholar 

  • Zuk D, Belk JP, Jacobson A (1999) Temperature-sensitive mutations in the Saccharomyces cerevisiae MRT4, GRC5, SLA2 and THS1 genes result in defects in mRNA turnover. Genetics 153:35–47

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag

About this chapter

Cite this chapter

Rospert, S., Rakwalska, M., Dubaquié, Y. (2005). Polypeptide chain termination and stop codon readthrough on eukaryotic ribosomes. In: Amara, S.G., et al. Reviews of Physiology Biochemistry and Pharmacology. Reviews of Physiology, Biochemistry, and Pharmacology, vol 155. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28217-3_1

Download citation

Publish with us

Policies and ethics