Skip to main content

Diversity and Lignocellulolytic Activities of Cultured Microorganisms

  • Chapter
Intestinal Microorganisms of Termites and Other Invertebrates

Part of the book series: Soil Biology ((SOILBIOL,volume 6))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bakalidou A, Kämpfer P, Berchtold M, Kuhnigk T, König H (2002) Cellulosimicrobium variabile sp. nov., a cellulolytic bacterium from the hindgut of the termite Mastotermes darwiniensis. IJSEM 52:1185–1192

    PubMed  CAS  Google Scholar 

  • Bandi C, Sironi M, Damiani G, Magrassi L, Nalepa CA, Laudani U, Sacchi L (1995) The establishment of intracellular symbiosis in an ancestror of cockroaches and termites. Proc R Soc Lon B 259:293–299

    Article  CAS  Google Scholar 

  • Bandi C, Sironi M, Nalepa CA, Corona S, Sacchi L (1997) Phylogenetically distant intracellular symbionts in termites. Parasitologia 39:71–75

    CAS  Google Scholar 

  • Bauer S, Tholen A, Overmann J, Brune A (2000) Characterization of abundance and diversity of lactic acid bacteria in the hindgut of wood-and soil-feeding termites by molecular and culture-dependent techniques. Arch Microbiol 173:126–137

    Article  PubMed  CAS  Google Scholar 

  • Beckwith TD, Rose EJ (1929) Cellulose digestion by organisms from the termite gut. Proc Soc Exp Biol Med 27:4–6

    CAS  Google Scholar 

  • Berchtold M, König H (1995) Phylogenetic position of two uncultivated trichomonads Pentatrichomonoides scroa Kirby and Metadevescovina extranea Kirby from the hindgut of the termite Mastotermes darwiniensis Froggatt. System Appl Microbiol 18:567–573

    Google Scholar 

  • Berchtold M, König H (1996) Phylogenetic analysis and in situ identi. cation of uncultivated spirochetes from the hindgut of the termite Mastotermes darwiniensis. System Appl Microbiol 19:66–73

    Google Scholar 

  • Berchtold M, Ludwig W, König H (1994) 16S rDNA sequence and phylogenetic position of an uncultivated spirochete from the hindgut of the termite Mastotermes darwiniensis Froggatt. FEMS Microbiol Lett 123:269–274

    Article  PubMed  CAS  Google Scholar 

  • Berchtold M, Breunig A, König H (1995) Culture and phylogenetic characterization of Trichomitus trypanoides Duboscque & Grassè 1924, n. comb.: a trichomonad flagellate isolated from the hindgut of the termite Reticulitermes santonensis Feytaud. J Eukar Microbiol 42:388–391

    CAS  Google Scholar 

  • Berchtold M, Chatzinotas A, Schönhuber W, Brune A, Amann R, Hahn D, König H (1999) Differential enumeration and in situ localization of microorganisms in the hindgut of the lower termite Mastotermes darwiniensis. Arch Microbiol 172: 407–416

    Article  PubMed  CAS  Google Scholar 

  • Bignell DE, Anderson JM (1980) Determination of pH and oxygen status in the guts of lower and higher termites. J Insect Physiol 26:183–188

    Article  CAS  Google Scholar 

  • Bignell DE, Oskarsson H, Anderson JM (1980a) Specialization of the hindgut wall for the attachment of symbiotic microorganisms in a termite-Procubitermes aburiensis (Isoptera, Termitidae, Termitinae). Zoomorphol 96:103–112

    Google Scholar 

  • Bignell DE, Oskarsson H, Anderson JM (1980b) Distribution and abundance of bacteria in the gut of a soil-feeding termite Procubitermes aburiensis (Termitidae, Termitinae). J Gen Microbiol 117:393–403

    PubMed  CAS  Google Scholar 

  • Boga HI, Ludwig W, Brune A (2003) Sporomusa aerivorans sp. nov., an oxygen-reducing homoacetogenic bacterium from the gut of a soil-feeding termite. Int J Syst Evol Microbiol 53:1397–404

    Article  PubMed  CAS  Google Scholar 

  • Braumann A, Koenig JF, Dutreix J, Garcia JL (1990) Characterization of two sulfate-reducing bacteria from the gut of the soil-feeding termite, Cubitermes speciosus. Antonie van Leeuwenhoek 58:271–275

    Google Scholar 

  • Braumann A, Kane MD, Labat M, Breznak JA (1992) Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science 257:1384–1386

    Google Scholar 

  • Braumann A, Dore J, Eggleton P, Bignell D, Breznak JA, Kane MD (2001) Molecular phylogenetic profiling of prokaryote communities in guts of termites with different feeding habits. FEMS Microbiol Ecol 35:27–36

    Google Scholar 

  • Breznak J A (1982) Intestinal microbiota of termites and other xylophagous insects. Annu Rev Microbiol 36:323–343

    Article  PubMed  CAS  Google Scholar 

  • Breznak JA (1984) Biochemical aspects of symbiosis between termites and their intestinal microbiota. In:Anderson JM, Rayner ADM, Walton DWH. (eds. ). Invertebrate Microbial Interactions. Cambridge University Press. Cambridge pp 173–203

    Google Scholar 

  • Breznak JA, Pankratz HS (1977) In situ morphology of the gut microbiota of wood-eating termites [Reticulitermes flavipes (Kollar) and Coptotermes formosanus (Shiraki)]. Appl Environ Microbiol 33:406–426

    PubMed  CAS  Google Scholar 

  • Breznak JA, Switzer JM (1986) Acetate synthesis from H2 plus CO2 by termite gut microbes. Appl Environ Microbiol 52:623–630

    PubMed  CAS  Google Scholar 

  • Breznak JA, Blum JS (1991) Mixotrophy of the termite gut acetogen, Sporomusa termitida. Arch Microbiol 156:105–110

    Article  CAS  Google Scholar 

  • Breznak JA, Brune A (1994) Role of microorganisms in the digestion of lignocellulose by termites. Annu Rev Entomol 39:453–487

    Article  CAS  Google Scholar 

  • Breznak JA, Switzer J M, Seitz HJ (1988) Sporomusa termitida sp. nov., an H2/CO2-utilizing acetogen isolated from termites. Arch Microbiol 150:282–288

    Article  CAS  Google Scholar 

  • Brugerolle G (2000) A microscopic investigation of the genus Foaina, a parabasalid protist symbiotic in termites and phylogenetic considerations. Eur J Protistol 36:20–28

    Google Scholar 

  • Brugerolle G, König H (1997) Ultrastructure and organisation of the cytoskeleton in Oxymonas, an intestinal flagellate of termites. J Eukar Microbiol 44:305–313

    Google Scholar 

  • Brugerolle G, Lee J J, (2000a) Phylum Parabasalia. In The Illustrated Guide to The Protozoa, second edition, Volume I and II, Edited by J. J. Lee, G. F. Leedale, P. Bradbury, Society of Protozoologists, Lawrence, Kansas, pp 1196–1250

    Google Scholar 

  • Brugerolle G, Lee JJ (2000b) Order Oxymonadida. In: Lee JJ, Leedale GF, Bradbury P (eds) The Illustrated Guide to The Protozoa2. ed., vol 2, Society of Protozoologists, Lawrence, Kansas, pp 1186–1195

    Google Scholar 

  • Brugerolle G, Breunig A, König H (1994) Ultrastructural study of Pentatrichomonoides sp., a trichomonad flagellate from Mastotermes darwiniensis. Eur J Protistol 30:372–378

    Google Scholar 

  • Brune A (1998) Termite guts: the world’s smallest bioreactors. TIBTECH 16:16–21

    CAS  Google Scholar 

  • Brune A, Kühl M (1996) pH profiles of extremely alkaline hindguts of soil-feeding termites (Isoptera: Termitidae) determined with microelectrodes. J Insect Physiol 42:1121–1127

    Article  CAS  Google Scholar 

  • Brune A, Miambi E, Breznak JA, (1995a) Roles of oxygen and the intestinal microflora in the metabolisms of lignin-derived phenylpropanoids and other monoaromatic compounds. Appl Environ Microbiol 61:2688–2695

    CAS  PubMed  Google Scholar 

  • Brune A, Emerson D, Kühl MJ, Breznak A (1995b) The termite gut microflora as an oxygen sink: microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Appl Environ Microbiol 61:2681–2687

    CAS  PubMed  Google Scholar 

  • Butler JH, Buckerfield J C (1979) Digestion of lignin by termites. Soil Biol Biochem 11:507–511

    Article  CAS  Google Scholar 

  • Cleveland LR, (1924) The physiological and symbiotic relationships between the intestinal protozoa of termites and their hosts, with special reference to Reticulitermes flavipes Kollar Biol Bull 46:117–127

    Google Scholar 

  • Cleveland LR, Grimstone AV (1964) The fine structure of the flagellate Mixotricha paradoxa and its associated microorganisms. Proc R Soc Lond Ser B 159:668–686

    Article  Google Scholar 

  • Cookson LJ (1988) The site and mechanisms of 14C-lignin degradation by Nasutitermes exitiosus. J Insect Physiol 34:409–414

    Article  CAS  Google Scholar 

  • Curtis AD, Waller DA (1998) Seasonal patterns of nitrogen fixation in termites. Functional Ecol 12: 803–807

    Google Scholar 

  • Cypionka H (2000) Oxygen respiration by Desulfovibrio species. Ann Rev Microb 54:827–848

    Article  PubMed  CAS  Google Scholar 

  • Czolij R, Slaytor M, Veivers PC, O’Brien RW (1984) Gut morphology of Mastotermes darwiniensis Froggatt (Isoptera: Mastotermitidae). Int J Insect Morphol Embryol 13:337–355

    Google Scholar 

  • Czolij R, Slaytor M, O’Brien RW (1985) Bacterial flora of the mixed segment and the hindgut of the higher termite Nasutitermes exitiosus Hill. (Termitidae: Nasutitermitinae). Appl Environ Microbiol 49:1226–1236

    Google Scholar 

  • Czolij R, Slaytor M, O’Brien RW (1986) Bacterial flora of the mixed segment and the hindgut of the higher termite Nasutitermes exitiosus Hill (Termitidae, Nasutermitinae). Appl Environ Microbiol 49:1226–1236

    Google Scholar 

  • Dacks JB, Redfield RJ, 1998 Phylogenetic placement of Trichonympha. J Eukaryot Microbiol 45:445–447

    PubMed  CAS  Google Scholar 

  • Delgado-Viscogliosi P, Viscogliosi E, Gerbod D, Kulda J, Sogin ML, Edgcomb VP (2000) Molecular phylogeny of parabasalids based on small subunit rRNA sequences, with emphasis on the Trichomonadinae subfamily. J Eukaryot Microbiol 47:70–75

    Article  PubMed  CAS  Google Scholar 

  • Dickman A (1931) Studies on the intestinal flora of termites with reference to the ability to digest cellulose. Biol Bull 61:85–92

    Google Scholar 

  • Dröge S, Limper U, Emtiazi F, Schönig I, Pavlus N, Drzyzga O, Fischer U, König H (2004) In vitro and in vivio sulfate-reduction in the gut contents of the termite Mastotermes darwiniensis and the rose-chafer Pachnoda marginata. J Gen Appl Microbiol: Submitted.

    Google Scholar 

  • Dyer BD, Khalsa O (1993) Surface bacteria of Streblomastix strix are sensory symbionts. Biosystems 31:169–180

    Article  PubMed  CAS  Google Scholar 

  • Ebert A, Brune A (1997) Hydrogen concentration pro. les at the oxic-anoxic interface: a microsensor study of the hindgut of the wood-feeding lower termite Reticulitermes flavipes (Kollar). Appl Environ Microbiol 63:4039–4046

    CAS  PubMed  Google Scholar 

  • Esenther G R, Kirk T K (1974) Catabolism of aspen sapwood by Reticulitermes flavipes (Isoptera: Rhinotermitidae) Ann Entomol Soc Am 67:989–999

    CAS  Google Scholar 

  • Eutick ML, O’Brien RW, Slaytor M (1978) Bacteria from the gut of Australian termites. Appl Environ Microbiol 35:823–828

    PubMed  CAS  Google Scholar 

  • Fengel D, Wegener G (1984) Wood. Chemistry, Ultrastructure, Reactions. Walter deGruyter, Berlin

    Google Scholar 

  • Fittkau J, Klinge H (1973) On biomass and trophic structure of the Central Amazonian rain forest ecosystem. Biotropica 5:2–14

    Google Scholar 

  • Fröhlich J, König H (1999a) Ethidium bromide: a fast fluorescent staining procedure for the detection of symbiotic partnership of flagellates and prokaryotes. J Microbiol Meth 35:121–127

    Google Scholar 

  • Fröhlich J, König H (1999b) Rapid isolation of single microbial cells from mixed natural and laboratory populations with the aid of a micromanipulator. System Appl Microbiol 22:249–257

    Google Scholar 

  • Fröhlich J, König H (2000) New techniques for the isolation of single prokaryotic cells. FEMS Microbiol Rev 24:567–572

    Article  PubMed  Google Scholar 

  • Fröhlich J, Sass H, Babenzien HD, Kuhnigk T, Varma A, Saxena S, Nalepa C, Pfeiffer P, König H (1999) Isolation of Desulfovibrio intestinalis sp. nov., from the hindgut of the lower termite Mastotermes darwiensis. Can J Microbiol 45:145–152

    PubMed  Google Scholar 

  • Golichenkov MV, Kostina NV, Ul’ianova TA, Dobrovol’skaia TG, Umarov MM (2002) Characteristics of nitrogen fixation and denitrification in Termites Neotermes castaneus, Zootermopsis angusticollis, and Reticulitermes lucifugus. Biol Bull Russ Acad Sci 29: 172–175

    Article  CAS  Google Scholar 

  • Graber JR, Leadbetter JR, Breznak JA (2004) Description of Treponema azotonutricium sp. nov. and Treponema primitia sp. nov., the first spirochetes isolated from termite guts. Appl Environ Microbiol 70:1315–20

    PubMed  CAS  Google Scholar 

  • Hackstein JHP, Stumm CK (1994) Methane production in terrestrial arthropods. Proc Natl Acad Sci USA 91:5441–5445

    PubMed  CAS  Google Scholar 

  • Hackstein JHP, Langer P, Rosenberg J (1996) Genetic and evolutionary constraints for symbiosis between animals and methanogenic bacteria. Environ. Monitoring and Assessment 42:39–56

    CAS  Google Scholar 

  • Harazono K, Yamashita N, Shinzato N, Watanabe Y, Fukatsu T, Kurane R (2003) Isolation and characterization of aromatics-degrading microorganisms from the gut of the lower termite Coptotermes formosanus. Biosci Biotechnol Biochem 67:889–92

    Article  PubMed  CAS  Google Scholar 

  • Hethener P, Brauman A, Garcia JL (1992) Clostridium termitidis sp. nov., a cellulolytic bacterium from the gut of the wood-feeding termite, Nasutitermes lujae. SystemAppl Microbiol 15:52–58

    CAS  Google Scholar 

  • Honigberg BM (1970) Protozoa associated with termites and their role in digestion. In: K. Krishna and F. M. Weesner (Eds.). Biology of Termites. Vol. II. Academic Press. NewYork, pp 1–36

    Google Scholar 

  • Hungate RE (1946) Studies on cellulose fermentation. II. An anaerobic cellulose decomposing actinomycetes, Micromonospora propionici sp. nov. J Bacteriol 51:51–56

    CAS  PubMed  Google Scholar 

  • Hyodo FT, Inoue J, Azuma I, Tayasu I, Abe T (2000) Role of the mutualistic fungus in lignin degradation in the fungus-growing termite Macrotermes gilvus (Isoptera; Macrotermitinae). Soil Biol Biochem 32:653–658

    Article  CAS  Google Scholar 

  • Iida T, Ohkuma M, Ohtoko K, Kudo T (2000) Symbiotic spirochetes in the termite hindgut: phylogenetic identification of ectosymbiotic spirochetes of oxymonad protists. FEMS Microbiol Ecol 34:17–26

    PubMed  CAS  Google Scholar 

  • Inoue T, Murashima K, Azuma JI, Sugimoto A, Slaytor M (1997) Cellulose and xylan utilization in the lower termite Reticulitermes speratus. J Insect Physiol 43:235–242

    Article  PubMed  CAS  Google Scholar 

  • Ji R, Kappler A, Brune A (2000) Transformation and mineralization of synthetic 14C-labeled humic model compounds by soil-feeding termites. Soil Biol Biochem 32:1281–1291

    Article  CAS  Google Scholar 

  • Kane MD, Breznak JA (1991) Acetonema longum gen. sp. nov., an H2/CO2 acetogenic bacterium from the termite, Pterotermes occidentis. Arch Microbiol 156:91–98

    PubMed  CAS  Google Scholar 

  • Kane MD, Baumann A, Breznak JA (1991) Clostridium mayombei sp. nov., an H2/CO2 acetogenic bacterium from the gut of the African soil-feeding termite, Cubitermes speciosus. Arch Microbiol 156:99–104

    CAS  Google Scholar 

  • Kato K, Kozaki S, Sakuranaga M (1998) Degradation of lignin compounds by bacteria from termite guts. Biotechnol Lett 20:459–462

    Article  CAS  Google Scholar 

  • Keeling P, Poulsen N, McFadden GI (1998) Phylogenetic diversity of parabasalian symbionts from termites, including the phylogenetic position of Pseudotrypanosoma and Trichonympha. J Eukaryot Microbiol 45:643–650

    PubMed  CAS  Google Scholar 

  • Kitade O, Matsumoto T(1998) Characteristics of the symbiotic flagellate composition within the termite family Rhinotermitidae. Symbiosis 25:271–278

    Google Scholar 

  • König H, Fröhlich J, Berchtold M, Wenzel M (2002) Diversity and microhabitats of the hindgut flora of termites. Recent Res Devel Microbiology 6:125–156

    Google Scholar 

  • Krasil’nikov NA, Satdykov SI (1969) Estimation of the total bacteria in the intestines of termites. Microbiology 38:289–292

    Google Scholar 

  • Krishna K (1970) Taxonomy, physiology, and distribution of termites. In: K. Krishna and F. M. Weesner (Ed.) Vol. II. Academic Press, New York. pp 127–152

    Google Scholar 

  • Kudo T, Ohkuma M, Moriya S, Noda S, Ohtoko K (1998) Molecular phylogenetic identification of the intestinal anaerobic microbial community in the hindgut of the termite, Reticulitermes speratus, without cultivation. Extremophiles 2:151–161

    Article  Google Scholar 

  • Kuhnigk T (1996) Charakterisierung Lignocellulose abbauender und Sulfat reduzierender Bakterien aus dem Termitendarm. Thesis University, Ulm

    Google Scholar 

  • Kuhnigk T, König H (1997) Degradation of dimeric lignin model compounds by aerobic bacteria isolated fromthe hindgut of xylophagous termites. JBasicMicrobiol 37:205–211

    CAS  Google Scholar 

  • Kuhnigk T, Borst E, Ritter A, Kämpfer P, Graf A, Hertel H, König H (1994) Degradation of lignin monomers by the hindgut flora of termites. System Appl Microbiol 17:76–85

    CAS  Google Scholar 

  • Kuhnigk T, Borst EM, Breunig A, König H, Collins MP, Hutson RA, Kämpfer P (1995) Bacillus oleronius sp. nov., a member of the hindgut flora of the termite Reticulitermes santonensis. Can J Microbiol 41:699–706

    Article  PubMed  CAS  Google Scholar 

  • Kuhnigk, T, Branke J, Krekeler D, Cypionka H, König H (1996) A feasible role of sulfate-reducing bacteria in the termite gut. System Appl Microbiol 19:139–149

    CAS  Google Scholar 

  • Leadbetter JR, Breznak JA (1996) Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes. Appl Environ Microbiol 62:3620–3631

    PubMed  CAS  Google Scholar 

  • Leadbetter JR, Crosby LD, Breznak JA (1998) Methanobrevibacter filiformis sp. nov., a filamentous methanogen from termite hindguts. Arch Microbiol 169:287–292

    Article  PubMed  CAS  Google Scholar 

  • Leadbetter JR, Schmidt TM, Graber JR, Breznak JA (1999) Acetogenesis from H2 plus CO2 by spirochetes from termite guts. Science 283:686–689

    Article  PubMed  CAS  Google Scholar 

  • Li L, Fröhlich J, Pfeiffer P, König H (2003) Termite’s symbiotic gut Archaezoa are becoming living metabolic fossils. Eukaryotic Cell. 2:1091–1098

    PubMed  CAS  Google Scholar 

  • Lilburn TG, Byzek KR, Kim KS, Breznak JA (2000) Nitrogen fixation in spirochetes. Abstr. Gen Meeting ASM 100:475

    Google Scholar 

  • Madigan MT, Martinko JM, Parker J (2001) Brock Mikrobiologie. Goebel W. (Ed. ) Spektrum, Heidelberg

    Google Scholar 

  • Mannesmann R, Piechowski B (1989) Verteilungsmuster von Gärkammerbakterien einiger Termitenarten Mat Org 24:161–177

    Google Scholar 

  • Martin MM (1991) The evolution of cellulose digestion in insects. Phil Trans R Soc London B 333:281–288

    Google Scholar 

  • Martius CR, Wassmann U, Thein A, Bandeira H, Rennenberg, Jung W, Seiler W (1993) Methane emission from wood-feeding termites in Amazonia. Chemosphere 26:623–632

    Article  CAS  Google Scholar 

  • Mishra SC (1979) Studies on deterioration of wood by insects. IV. Digestibility and digestion of major wood components by the termite Neotermes bosei Snyder (Isoptera: Kalotermitidae). Mat Organismen 14:269–277

    Google Scholar 

  • Mora P, Lattaud C (1999) Screening termite species for laccase: role of symbiotic fungi. Insect Sci Appl 19:51–55

    CAS  Google Scholar 

  • Moriya S, Ohkuma M, Kudo T (1998) Phylogenetic position of symbiotic protist Dinenympha exilis in the hindgut of the termite Reticulitermes speratus inferred from the protein phylogeny of elongation factor 1 alpha. Gene 210:221–227

    Article  PubMed  CAS  Google Scholar 

  • Myles TG (1999) Phylogeny and Taxonomy of the Isoptera. XIII Intl. Congress Intl. Union for the Study of Social Insects 29: Adelaide, Australia.

    Google Scholar 

  • Noda S, Ohkuma M, Usami R, Horikoshi K, Kudo T (1999) Culture-independent characterization of a gene responsible for nitrogen fixation in the symbiotic microbialcommunity in the gut of the termite Neotermes koshunensis. Appl Environ Microbiol 65:4935–4942

    PubMed  CAS  Google Scholar 

  • Noda S, Ohkuma M, Yamada A, Hongoh Y, Kudo T (2003) Phylogenetic position and in situ identification of ectosymbiotic spirochetes on protists in the termite gut. Appl Environ Microbiol 69:625–33

    Article  PubMed  CAS  Google Scholar 

  • Noirot C (1995) The gut of termites (Isoptera). Comparative anatomy, systematics, phylogeny. I. Lower termites. Ann Soc Entomol Fr 31:197–226

    Google Scholar 

  • Noirot C, Noirot-Timotheé C (1969) The digestive system. In: K. Krishna and F. M. Weesner (Eds.). Biology of Termites. Vol. I. Academic Press, New York, pp 49–88

    Google Scholar 

  • O’Brien RW, Slaytor M (1982) Role of microorganisms of termites. Aust J Biol Sci 35:239–262

    CAS  Google Scholar 

  • Odelson DA, Breznak JA (1983) Volatile fatty acid production by the hindgut microbiota of xylophagous termites. Appl Environ Microbiol 45:1602–1613

    PubMed  CAS  Google Scholar 

  • Odelson DA, Breznak JA (1985) Nutrition and growth characteristics of Trichomitopsis termopsidis, a cellulolytic protozoan fromtermites. Appl EnvironMicrobiol 49:614–621

    CAS  Google Scholar 

  • Ohkuma M, Ohtoko K, Grunau C, Moriya S, Kudo T (1998) Phylogenetic identification of the symbiotic hypermastigote Trichonympha agilis in the hindgut of the termite Reticulitermes speratus based on small-subunit rRNA sequence. J Eukaryot Microbiol 45:439–444

    PubMed  CAS  Google Scholar 

  • Ohkuma M, Noda S, Kudo T (1999a) Phylogenetic diversity of nitrogen fixation genes in the symbiotic microbial community. Appl Environ Microbiol 65:4926–4934

    PubMed  CAS  Google Scholar 

  • Ohkuma M, Iida T, Kudo T (1999b) Phylogenetic relationships of symbiotic spirochetes in the gut of diverse termites. FEMS Microbiol Lett 181:123–129

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma M, Noda S, Kudo T (1999c) Phylogeny of symbiotic methanogenes in diverse termites. FEMS Microbiol Lett 171:147–153

    Article  PubMed  CAS  Google Scholar 

  • Ohtoko K, Ohkuma M, Moriya S, Inoue T, Usami R, Kudo T (2001) Diverse genes of cellulase homologues of glycosyl hydrolase family 45 from the symbiotic protists in the hindgut of the termite Reticulitermes speratus. Extremophiles 4:343–349

    Google Scholar 

  • Paster BJ, Dewhirst FE, Cooke SM, Fussing V, Poulsen LK, Breznak JA (1996) Phylogeny of not-yet-cultured spirochetes from termite guts. Appl Environ Microbiol 62:347–352

    PubMed  CAS  Google Scholar 

  • Pasti MB, Belli ML (1985) Cellulolytic activity of actinomycetes isolated from termites (Termitidae) gut. FEMS Microbiol Lett 26:107–112

    Article  CAS  Google Scholar 

  • Pasti MB, Pometto AL III, Nuti MP, Crawford DL (1990) Lignin-solubilizing ability of actinomycetes isolated from the termite (Termitidae) gut. Appl Environ Microbiol 56:2213–2218

    PubMed  CAS  Google Scholar 

  • Paul J, Sarkar A, Varma AK (1986) In vitro studies of cellulose digesting properties of Staphylococcus saprophyticus isolated from termite gut. Curr Sci 55:710–714

    CAS  Google Scholar 

  • Potrikus C J, Breznak JA (1977) Nitrogen-fixing Enterobacter agglomerans isolated from guts of wood-eating termites. Appl Environ Microb 33:392–399

    CAS  Google Scholar 

  • Potrikus CJ, Breznak JA (1980) Uric acid-degrading bacteria in guts of termites Reticulitermes flavipes. Appl Environ Microbiol 40:117–124

    PubMed  CAS  Google Scholar 

  • Prillinger H, Messner R, König H, Bauer R, Lopandic K, Molnar O, Dangel P, Weigang F, Kirisitis T, Nakase T, Sigler L (1996) Yeast associated with termites: a phenotypic and genotypic characterization and use of coevolution for dating evolutionary radiations in asco-and basidiomycetes. System Appl Microbiol 19:265–283

    CAS  Google Scholar 

  • Radek R, Hausmann K (1993) Symbiontische Flagellaten im Termitendarm. In: Extremophile Mikroorganismen in ausgefallenen Lebensräumen. Hausmann K, Kremer BP (Eds.) VCH, Weinheim, pp 325–339

    Google Scholar 

  • Radek R, Tischendorf G(1999) Bacterial adhesion to different termite flagellates: ultrastructural and functional evidence for distinct molecular attachment modes. Protoplasma 207:43–53

    Article  CAS  Google Scholar 

  • Radek R, Hausmann K, Breunig A (1992) Ectobiotic and endocytobiotic bacteria associated with the termite flagellate Joenia annectens. Acta Protozool 31:93–107

    Google Scholar 

  • Radek R, Roesel J, Hausmann K (1996) Light and electron microscopic study of the bacterial adhesion to termite flagellates applying lectin cytochemistry. Protoplasma 193:105–122

    Article  Google Scholar 

  • Rajagopal S, Rao DR, Varma AK (1979) Association of fungi in the termite gut. Curr Sci 48:998–999

    Google Scholar 

  • Rajagopal S, Rao DR., Varma AK (1981) Fungi from worker termite gut, Odontotermes obesus (Rambur) from northern India. Nova Hedwigia 34:97–100

    Google Scholar 

  • Rouland C, Lenoir F, Lepage M (1991) The role of the symbiotic fungus in the digestive metabolism of several species of fungus-growing termites. Comp Biochem Physiol 99A:657–663

    CAS  Google Scholar 

  • Rouland C, Braumann A, Labat M, Lapage M (1993) Nutritional factors affecting methane emission from termites. Chemosphere 26:617–622

    Article  CAS  Google Scholar 

  • Saxena S, Bahadur J, Varma A (1993) Cellulose and hemicellulose degrading bacteria from the termite gut and mound soils of India. Ind J Microbiol 33:55–60

    Google Scholar 

  • Schäfer A, Konrad R, Kuhnigk T, Kämpfer P, Hertel H, König H (1996) Hemicellulose-degrading bacteria and yeasts from the termite gut. J Appl Bacteriol 80:471–478

    PubMed  Google Scholar 

  • Schmitt-Wagner D, Brune A (1999) Hydrogen profiles and localization of methanogenic activities in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.). Appl Environ Microbiol 65:4490–4496

    PubMed  CAS  Google Scholar 

  • Schultz JE, Breznak JA (1978) Heterotrophic bacteria present in hindgut of wood-eating termites [Reticulitermes flavipes (Kollar)]. Appl Environ Microbiol 35: 930–936

    PubMed  CAS  Google Scholar 

  • Sebald M, Prévot AR (1962) Étude d’une nouvelle espèce anaérobic stricte Micromonospora acetoformici n. sp. isolée de l’intestin postérieur de Reticulitermes lucifugus var. santonensis. Ann. Inst. Pasteur Paris 102:199–214

    Google Scholar 

  • Seifert K, Becker G (1965) Der chemische Abbau von Laub-und Nadelholzarten durch verschiedene Termiten. Holzforschung 19:105–111

    CAS  Google Scholar 

  • Slaytor M (1992) Cellulose digestion in termites and cockroaches: what role do symbionts play? Comp. Biochem Physiol 103B:775–784

    CAS  Google Scholar 

  • Taguchi, F, Chang-Jun D, Mizukami N, Saito TT, Hasegawa K and Morimoto M (1993) Isolation of a hydrogen-producing bacterium, Clostridium beijerinckii strain AM21B, from termites. Can J Microbiol 39:726–730

    Article  CAS  Google Scholar 

  • Tayasu, I., Sugimoto A, Wada E, Abe T (1994) Xylophagous termites depending on atmospheric nitrogen. Naturwissenschaften 81:229–231

    Article  Google Scholar 

  • Thayer DW (1976) Facultative wood-digesting bacteria from the hindgut of the termite Reticulitermes hesperus. J Gen Microbiol 95:287–296

    Google Scholar 

  • Thayer DW(1978) Carboxymethylcellulase produced by facultative bacteria fromthe hindgut of the termite Reticulitermes hesperus. J Gen Microbiol 106:13–18

    Google Scholar 

  • Tholen A, Brune A (1999) Localization and in situ activities of homoacetogenic bacteria in the highly compartmentalized hindgut of soil-feeding higher termites. (Cubitermes spp.). Appl Environ Microb 65:4497–4505

    CAS  Google Scholar 

  • Tholen A, Schink B, Brune A (1997) The gut microflora of Reticulitermes flavipes, its relation to oxygen, and evidence for oxygen-dependent acetogenesis by the most abundant Enterococcus sp. FEMS Microbio Ecol 24:137–149

    CAS  Google Scholar 

  • To LP, Margulis L, Chase D, Nutting WL (1980) The symbiotic microbial community of the sonoran desert termite: Pterotermes occidentis. Biosystems 13:109–137

    Article  PubMed  CAS  Google Scholar 

  • Tokuda, G, Watanabe H, Matsumoto T, Noda H (1997) Cellulose digestion in the woodeating higher termite, Nasutitermes takasagoensis (Shiraki): distribution of cellulases and properties of endo-beta-1.4-glucanase. Zool Science 14:83–93

    CAS  Google Scholar 

  • Tokuda, G, Lo N, Watanabe H, Slaytor M, Matsumoto T, Noda H (1999) Metazoan cellulase genes from termites: intron/exon structures and sites of expression. Biochim Biophys Acta 1447:146–159

    PubMed  CAS  Google Scholar 

  • Tokuda G, Yamaoka I, Noda H (2000) Localization of symbiotic clostridia in the mixed segment of the termite Nasutitermes takasagoensis (Shiraki). Appl Environ Microb 66:2199–2207.

    Article  CAS  Google Scholar 

  • Tokura M, Ohkuma M, Kudo T (2000) Molecular phylogeny of methanogens associated with flagellated protists in the gut and with the gut epithelium of termites. FEMS Microbiol Ecol 33:233–240

    PubMed  CAS  Google Scholar 

  • Trinkerl M, Breunig A, Schauder R, König H (1990) Desulfovibrio termitidis sp. nov., a carbohydrate-degrading sulfate-reducing bacterium from the hindgut of a termite. System Appl Microbiol 13:373–377

    Google Scholar 

  • Varma A, Kolli BK, Paul J, Saxena S, König H (1994) Lignocellulose degradation by microorganisms from termite hills and termite guts: a survey on the present state of art. FEMS Microbiol Rev 15:9–28

    CAS  Google Scholar 

  • Veivers PC, O’Brien RW and Slaytor W (1980) The redox state of the gut of termites. J Insect Physiol 26:75–77

    Article  Google Scholar 

  • Veivers, PC, O’Brien RW, Slaytor M (1982) Role of bacteria in maintaining the redox potential in the hindgut of termites and preventing entry of foreign bacteria. J Insect Physiol 28:947–951

    Article  Google Scholar 

  • Viscogliosi E, Philippe H, Baroin A, Perasso R, Brugerolle G (1993) Phylogeny of trichomonads based on partial sequences of large subunit rRNA and on cladistic analysis of morphological data. J Euk Microbiol 40:411–421

    PubMed  CAS  Google Scholar 

  • Watanabe H, Noda H, Tokuda G, Lo N (1998) A cellulase gene of termite origin. Nature 394:330–331

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y, Shinzato N, Fukatsu T. (2003) Isolation of actinomycetes from termites’ guts. Biosci Biotechnol Biochem 67:1797–801

    PubMed  CAS  Google Scholar 

  • Wenzel M, Schönig I, Berchtold M, Kämpfer P, König H (2002) Aerobic and facultatively anaerobic cellulolytic bacteria from the gut of the termite Zootermopsis angusticollis. J Appl Microbiol 92:32–40

    Article  PubMed  CAS  Google Scholar 

  • Wenzel M, Radek R, Brugerolle G, König H (2003) Identification of the ectosymbiotic bacteria of Mixotricha paradoxa involved in movement symbiosis. Eur J Protistol 39:11–23

    Google Scholar 

  • Wier A, Dolan M, Grimaldi D, Guerrero R, Wagensberg J, Margulis (2002). Spirochete and protist symbionts of a termite (Mastotermes electrodominicus) inMiocene amber. Proc Natl Acad Sci U S A 99:1410–3

    Article  PubMed  CAS  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria and Eucarya Proc Natl Acad Sci 87: 4576–4579

    PubMed  CAS  Google Scholar 

  • Wood, TG, Sands WA (1978) The role of termites in ecosystems. In: J. V. Brian (Ed. ) Production Ecology of Ants and Termites. Cambridge University Press, Cambridge, pp 245–292

    Google Scholar 

  • Yamin MA (1978) Axenic cultivation of the cellulolytic flagellate Trichomitopsis termopsidis (Cleveland) from the termite, Zootermopsis. J Protozool 25:535–538

    Google Scholar 

  • Yamin MA (1979) Flagellates of the orders Trichomondida Kirby, Oxymonadida Grassé, and Hypermastigida Grassi & Foà reported from lower termites (Isoptera families Mastotermitidae, Kalotermitidae, Hodotermitidae, Termopsidae, Rhinotermitidae, and Serritermitidae) and from the wood-feeding roach Cryptocercus (Dictyoptera: Cryptocercidae). Sociobiology 4:4–119

    Google Scholar 

  • Yamin MA (1980) Cellulose metabolism by the termite flagellate Trichomitopsis termopsidis. Appl Environ Microbiol 39:859–863

    PubMed  CAS  Google Scholar 

  • Yamin MA (1981) Cellulose metabolism by the flagellate Trichonympha from the termite is independent of endosymbiotic bacteria. Science 211:58–59

    CAS  PubMed  Google Scholar 

  • Yokoe Y (1964) Cellulase activity in the termites, Leucotermes speratus, with new evidence in support of a cellulase produced by the termite itself. Scientific Papers of the College of General Education, Univ Tokyo 14:115–120

    Google Scholar 

  • Yoshimura T, Tsunoda K, Takahashi M (1992) Distribution of the symbiotic protozoa in the hindgut of Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). Jpn. J Environ Entomol Zool 4:115–120

    Google Scholar 

  • Zimmerman PR, Greenberg JP, Wandiga SO, Crutzen PJ (1982) Termites: a potentially large source of atmospheric methane, carbon dioxide, and molecular hydrogen. Science 218: 563–565

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

König, H., Fröhlich, J., Hertel, H. (2006). Diversity and Lignocellulolytic Activities of Cultured Microorganisms. In: König, H., Varma, A. (eds) Intestinal Microorganisms of Termites and Other Invertebrates. Soil Biology, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28185-1_11

Download citation

Publish with us

Policies and ethics