Skip to main content

The Efficiency of Nutrient Acquisition over the Life of a Root

  • Chapter
Nutrient Acquisition by Plants

Part of the book series: Ecological Studies ((ECOLSTUD,volume 181))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aerts R (1990) Nutrient use efficiency in evergreen and deciduous species from heathlands. Oecologia 84:391–397

    Google Scholar 

  • Aerts R (1999) Interspecific competition in natural plant communities: mechanisms, trade-offs and plant-soil feedbacks. J Exp Bot 50:29–37

    Article  CAS  Google Scholar 

  • Anderson LJ, Comas LH, Lakso AN, Eissenstat DM (2003) Multiple risk factors in root survivorship: a 4-year study in Concord grape. New Phytol 158:489–501

    Article  Google Scholar 

  • Andrews RE, Newman EI (1970) Root density and competition for nutrients. Oecol Plant 5:319–334

    Google Scholar 

  • Arnone JA III, Körner Ch (1995) Soil and biomass carbon pools in model communities of tropical plants under elevated CO2. Oecologia 104:61–71

    Article  Google Scholar 

  • Arnone JA III, Zaller JG, Spehn EM, Niklaus PA, Wells CE, Körner C (2000) Dynamics of root systems in native grasslands: effects of elevated atmospheric CO2. New Phytol 147:73–85

    Article  CAS  Google Scholar 

  • Ashford AE, Allaway WG, Peterson CA, Cairney JWG (1989) Nutrient transfer at the fungus-root interface. Aust J Plant Physiol 16:85–97

    CAS  Google Scholar 

  • Atkinson D, Wilson SA (1980) The growth and distribution of fruit tree roots: some consequences for nutrient uptake. In: Atkinson D, Jackson JE, Sharples RO, Waller WM (eds) Mineral nutrition of fruit tree roots: some consequences for nutrient uptake. Butterworths, London, pp 137–150

    Google Scholar 

  • Barber SA (1984) Soil nutrient bioavailability: a mechanistic approach. Wiley, New York

    Google Scholar 

  • Bar-Tal A, Feigin A, Rylski I, Pressman E (1994) Root pruning and N-NO3 solution concentration effects on nutrient uptake and transpiration by tomato. Sci Hortic 58:77–90

    Article  CAS  Google Scholar 

  • Bassiri Rad H, Tremmel DC, Virginia RA, Reynolds JF, de Soyza AG, Brunell MH (1999) Short-term patterns in water and nitrogen acquisition by two desert shrubs following a simulated summer rain. Plant Ecol 145:27–36

    Article  Google Scholar 

  • Bates TR, Lynch JP (1996) Stimulation of root hair elongation in Arapidopsis thaliana by low phosphorus availability. Plant Cell Environ 19:529–538

    Article  CAS  Google Scholar 

  • Bates TR, Lynch JP (2000a) Plant growth and phosphorus accumulation of wild type and two root hair mutants of Arabidopsis thaliana (Brassicaceae). Am J Bot 87:958–963

    Article  PubMed  CAS  Google Scholar 

  • Bates TR, Lynch JP (2000b) The efficiency of Arabidopsis thaliana (Brassicaceae) root hairs in phosphorus acquisition. Am J Bot 87:964–970

    Article  PubMed  CAS  Google Scholar 

  • Bauhus J, Messier C (1999) Soil exploitation strategies of fine roots in different tree species of the southern boreal forest of eastern Canada. Can J For Res 29:260–273

    Article  Google Scholar 

  • Berendse F, Aerts R (1987) Nitrogen-use-efficiency: a biologically meaningful definition? Funct Ecol 1:293–296

    Google Scholar 

  • Berntson GM (1997) Topological scaling and root system architecture: developmental and functional hierarchies. New Phytol 135:621–634

    Article  Google Scholar 

  • Bhat KKS, Nye PH, Brereton AJ (1979) The possibility of predicting solute uptake and plant growth response from independently measured soil and plant characteristics. VI. The growth and uptake of rape in solutions of constant nitrate concentration. Plant Soil 53:137–167

    Article  CAS  Google Scholar 

  • Bilbrough CJ, Caldwell MM (1995) The effects of shading and N status on root proliferation in nutrient patches by the perennial grass Agropyron desertorum in the field. Oecologia 103:10–16

    Article  Google Scholar 

  • Bloom AJ, Chapin FS III, Mooney HA (1985) Resource limitation in plants: an economic analogy. Annu Rev Ecol Syst 16:363–392

    Google Scholar 

  • Bloom AJ, Sukrapanna SS, Warner RL (1992) Root respiration associated with ammonium and nitrate absorption and assimilation in barley. Plant Physiol 99:1294–1301

    PubMed  CAS  Google Scholar 

  • Bloomfield J, Vogt K, Wargo PM (1996) Tree root turnover and senescence. Root structure and sites of ion uptake. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, 2nd edn. Marcel Dekker, New York, pp 363–381

    Google Scholar 

  • Bouma TJ, Broekhuysen AGM, Veen BW (1996) Analysis of root respiration of Solanum tuberosum as related to growth, ion uptake and maintenance of biomass. Plant Physiol Biochem 34:795–806

    CAS  Google Scholar 

  • Bouma TJ, Yanai RD, Elkin A, Hartmond U, Flores-Alva DE, Eissenstat DM (2001) Estimating age-dependent costs and benefits of roots with contrasting lifespan: comparing apples and oranges. New Phytol 150:685–695

    Article  Google Scholar 

  • Bouma TJ, Hengst K, Koutstaal BP, van Soelen J (2003) Estimating root lifespan of two grasses at contrasting elevation in a salt marsh by applying vitality staining on roots from in-growth cores. Plant Ecol 165:235–245

    Article  Google Scholar 

  • Brady DJ, Wenzel CL, Fillery IRP, Gregory PJ (1995) Root growth and nitrate uptake by wheat (Triticum aestvum L.) following wetting of dry surface soil. J Exp Bot 46:557–564

    CAS  Google Scholar 

  • Brouwer R (1967) Beziehungen zwischen Spross-und Wurzelwachstum. Angew Bot 41:244–250

    Google Scholar 

  • Brouwer R (1981) Co-ordination of growth phenomena with a root system of intact maize plants. Plant Soil 63:65–72

    Article  Google Scholar 

  • Brundrett MC, Kendrick B (1988) The mycorrhizal status, root anatomy, and phenology of plants in a sugar maple forest. Can J Bot 66:1153–1173

    Google Scholar 

  • Brundrett MC, Murase G, Kendrick B (1990) Comparative anatomy of roots and mycorrhizae of common Ontario trees. Can J Bot 68:551–578

    Google Scholar 

  • Bryla DR, Bouma TJ, Eissenstat DM (1997) Root respiration in citrus acclimates to temperature and slows during drought. Plant Cell Environ 20:1411–1420

    Article  Google Scholar 

  • Bryla DR, Bouma TJ, Hartmond U, Eissenstat DM (2001) Influence of temperature and soil drying on respiration of individual roots in citrus: integrating greenhouse observations into a predictive model for the field. Plant Cell Environ 24:781–790

    Article  Google Scholar 

  • Burton AJ, Pregitzer KS, Hendrick RL (2000) Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests. Oecologia 125:389–399

    Article  Google Scholar 

  • Caldwell MM (1979) Root structure: the considerable cost of belowground function. In: Solbrig OT, Jain S, Johnson GB, Raven PH (eds) Topics in plant population biology. Columbia University Press, New York, pp 408–427

    Google Scholar 

  • Caldwell MM, Manwaring JH, Jackson RB (1991a) Exploitation of phosphate from fertile soil microsites by three Great Basin perennials when in competition. Funct Ecol 5:757–764

    Google Scholar 

  • Caldwell MM, Manwaring JH, Durham SL (1991b) The microscale distribution of neighbouring plant roots in fertile soil microsites. Funct Ecol 5:765–772

    Google Scholar 

  • Carmi A, Plaut A, Sinai M (1993) Cotton root growth as affected by changes in soil water distribution and their impact on plant tolerance to drought. Irrig Sci 13:177–182

    Article  Google Scholar 

  • Clarkson DT (1985) Factors affecting mineral nutrient acquisition by plants. Annu Rev Plant Physiol 36:77–115

    Article  CAS  Google Scholar 

  • Clarkson DT (1991) Root structure and sites of ion uptake. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker, New York, pp 417–453

    Google Scholar 

  • Clarkson DT (1996) Root structure and sites of ion uptake. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, 2nd edn. Marcel Dekker, New York, pp 483–510

    Google Scholar 

  • Clarkson DT, Sanderson J, Russel RS (1968) Ion uptake and root age. Nature 220:805–806

    CAS  Google Scholar 

  • Comas LH, Eissenstat DM, Lakso AN (2000) Assessing root death and root system dynamics in a study of grape canopy pruning. New Phytol 147:171–178

    Article  CAS  Google Scholar 

  • Comas LH, Bouma TJ, Eissenstat DM (2002) Linking root traits to potential growth rate in six temperate tree species. Oecologia 132:34–43

    Article  Google Scholar 

  • Cui M, Caldwell MM (1997) Shading reduces exploitation of soil nitrate and phosphate by Agropyron desertorum and Artemisia tridentata from soils with patchy and uniform nutrient distributions. Oecologia 109:177–183

    Article  Google Scholar 

  • Dittmer HJ (1949) Root hair variation in plant species. Am J Bot 36:152–155

    Article  Google Scholar 

  • Downes GM, Alexander IJ, Cairney JWG (1992) A study of ageing of spruce [Picea sitchensis (Bong.) Carr.] ectomycorrhizas. I. Morphological and cellular changes in mycorrhizas formed by Tylospora fibrillosa (Burt.) Donk and Paxillus involutus (Batsch. ex Fr.) Fr. New Phytol 122:141–152

    Article  Google Scholar 

  • Dunbabin V, Rengel Z, Diggle A (2001) Lupinus angustifolius has a plastic uptake response to heterogeneously supplied nitrate while Lupinus pilosus does not. Aust J Agric Res 52:505–512

    Article  CAS  Google Scholar 

  • Eissenstat DM (1991) On the relationship of specific root length and the rate of root proliferation: a field study using citrus rootstocks. New Phytol 69:870–873

    Google Scholar 

  • Eissenstat DM (1992) The costs and benefits of constructing roots of small diameter. J Plant Nutr 15:163–782

    Article  Google Scholar 

  • Eissenstat DM, Achor DS (1999) Anatomical characteristics of roots of citrus rootstocks that vary in specific root length. New Phytol 141:309–321

    Article  Google Scholar 

  • Eissenstat DM, Caldwell MM (1988) Competitive ability is linked to rates of water extraction: a field study of two aridland tussock grasses. Oecologia 75:1–7

    Article  Google Scholar 

  • Eissenstat DM, Yanai RD (1997) The ecology of root lifespan. Adv Ecol Res 27:1–62

    Google Scholar 

  • Eissenstat DM, Yanai RD (2002) Root lifespan, turnover and efficiency. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, 3rd edn. Marcel Dekker, New York, pp 221–238

    Google Scholar 

  • Eissenstat DM, Graham JH, Syvertsen JP, Drouillard DL (1993) Carbon economy of sour orange in relation to mycorrhizal colonization and phosphorus stress. Ann Bot 71:1–10

    Article  CAS  Google Scholar 

  • Eissenstat DM, Whaley EL, Volder A, Wells CE (1999) Recovery of citrus surface roots following prolonged exposure to dry soil. J Exp Bot 50:1845–1854

    Article  CAS  Google Scholar 

  • Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL (2000) Building roots in a changing environment: implications for root longevity. New Phytol 147:33–42

    Article  CAS  Google Scholar 

  • Eissenstat DM, Wells CE, Wang L (2001) Root efficiency and mineral nutrition in apple. Acta Hortic 564:165–184

    Google Scholar 

  • Enstone DE, Peterson CA, Hallgren SW (2001) Anatomy of seedling tap roots of loblolly pine (Pinus taeda L.) Trees Struct Funct 15:98–111

    Google Scholar 

  • Espeleta JF, Eissenstat DM (1998) Response of citrus fine roots to localized soil drying: a comparison of seedlings with adult fruiting trees. Tree Physiol 18:113–119

    PubMed  Google Scholar 

  • Espeleta JF, Eissenstat DM, Graham JH (1999) Citrus root responses to localized drying soil: a new approach to studying mycorrhizal effects on the roots of mature trees. Plant Soil 206:1–10

    Article  Google Scholar 

  • Fahey TJ, Hughes JW (1994) Fine root dynamics in a northern hardwood forest ecosystem: Hubbard Brook Experimental Forest, NH. J Ecol 82:533–548

    Google Scholar 

  • Fisher MCT, Eissenstat DM, Lynch JP (2002) Lack of evidence for programmed root senescence in common bean (Phaseolus vulgaris L.) at different levels of phosphorus supply. New Phytol 153:63–71

    Article  Google Scholar 

  • Fitter AH (1985) Functional significance of root morphology and root system architecture. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological interaction in soil: plant, microbes and animals. Blackwell, London, pp 87–106

    Google Scholar 

  • Fitter AH (1986a) The topology and geometry of plant root systems: influence of watering rate on the root system topology in Trifolium pratense. Ann Bot 57:81–101

    Google Scholar 

  • Fitter AH (1986b) Effect of benomyl on leaf phosphorus concentration in alpine grasslands: a test of mycorrhizal benefit. New Phytol 103:767–776

    Article  CAS  Google Scholar 

  • Fitter AH (1994) Architecture and biomass allocation as components of the plastic response of root systems to soil heterogeneity. In: Caldwell MC, Pearcy RC (eds) Exploitation of environmental heterogeneity by plants. Academic Press, San Diego, pp 305–323

    Google Scholar 

  • Fitter AH (1996) Characteristics and functions of root systems. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, 2nd edn. Marcel Dekker, New York, pp 1–20

    Google Scholar 

  • Fitter AH, Graves JD, Wolfenden J, Self GK, Brown TK, Bogie D, Mansfield TA (1997) Root production and turnover and carbon budgets of two contrasting grasslands under ambient and elevated atmospheric carbon dioxide concentrations. New Phytol 137:247–255

    Article  Google Scholar 

  • Fusseder A (1987) The longevity and activity of the primary root of maize. Plant Soil 101:257–265

    Article  Google Scholar 

  • Gahoonia TS, Nielsen NE (1998) Direct evidence on participation of root hairs in phosphorus (32P) uptake from soil. Plant Soil 198:147–152

    Article  CAS  Google Scholar 

  • Gao S, Pan WL, Koenig RT (1998) Integrated root system age in relation to plant nutrient uptake activity. Agron J 90:505–510

    Article  CAS  Google Scholar 

  • Gavito ME, Curtis PS, Jakobsen I (2001) Neither mycorrhizal inoculation nor atmospheric CO2 concentration has strong effects on pea root production and root loss. New Phytol 149:283–290

    Article  Google Scholar 

  • Gill RA, Jackson RB (2000) Global patterns of rot turnover for terrestrial ecosystems. New Phytol 147:13–31

    Article  Google Scholar 

  • Gilroy S, Jones DL (2000) Through form and function: root hair development and nutrient uptake. Trees 5:56–60

    CAS  Google Scholar 

  • Graham JH, Eissenstat DM (1998) Field evidence for the carbon cost of citrus mycorrhizas. New Phytol 140:103–110

    Article  Google Scholar 

  • Grayston SJ, Vaughan D, Jones D (1997) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29–56

    Article  Google Scholar 

  • Hayes DC, Seastedt TR (1987) Root dynamics of tallgrass prairie in wet and dry years. Can J Bot 65:787–791

    Article  Google Scholar 

  • Head GC (1967) Effects of seasonal changes in shoot growth on the amount of unsuberized root on apple and plum trees. J Hortic Sci 42:169–180

    Google Scholar 

  • Hendrick RL, Pregitzer KS (1992) The demography of fine roots in a northern hardwood forest. Ecology 73:1094–1104

    Article  Google Scholar 

  • Henry CM, Deacon JW (1981) Natural (non-pathogenic) death of the cortex of wheat and barley seminal roots, as evidenced by nuclear staining with acridine orange. Plant Soil 60:255–274

    Article  Google Scholar 

  • Henry A, Kosola K (1999) Root age and phosphorus effects on colonization of Andropogon gerardii by mycorrhizal fungi. Soil Biol Biochem 31:1657–1660

    Article  CAS  Google Scholar 

  • Hodge A, Grayston SJ, Ord BG (1996) A novel method for characterisation and quantification of plant root exudates. Plant Soil 184:97–104

    Article  CAS  Google Scholar 

  • Hodge A, Stewart J, Robinson D, Griffiths BS, Fitter AH (1998) Root proliferation, soil fauna and plant nitrogen capture from nutrient-rich patches of soil. New Phytol 139:479–494

    Article  Google Scholar 

  • Hodge A, Robinson D, Griffiths BS, Fitter AH (1999) Why plants bother: root proliferation results in increased nitrogen capture from an organic patch when two grasses compete. Plant Cell Environ 22:811–820

    Article  Google Scholar 

  • Hoffland E, Findenegg GR, Nelemans JA (1989) Solubilization of rock phosphate by rape. 2. Local root exudation of organic acids as a response to P starvation. Plant Soil 113:161–165

    Article  CAS  Google Scholar 

  • Holden J (1975) Use of nuclear staining to assess rates of cell death in cortices of cereal roots. Soil Biol Biochem 7:333–334

    Article  Google Scholar 

  • Huang B, Eissenstat DM (2000) Root plasticity in exploiting water and nutrient heterogeneity. In: Wilkinson RE (ed) Plant-environment interactions. Marcel Dekker, New York, pp 111–132

    Google Scholar 

  • Huang B, Fry JD (1998) Root anatomical, physiological and morphological responses to drought stress for tall fescue cultivars. Crop Sci 38:1017–1022

    Google Scholar 

  • Huang B, Nobel PS (1993) Hydraulic conductivity and anatomy along lateral roots of cacti: changes with soil water status. New Phytol 123:499–507

    Article  Google Scholar 

  • Itoh S, Barber SA (1993a) Phosphorus uptake by six plant species as related to root hairs. Agron J 75:457–461

    Google Scholar 

  • Itoh S, Barber SA (1993b) A numerical solution of whole plant nutrient uptake for soilroot systems with root hairs. Plant Soil 70:403–413

    Article  Google Scholar 

  • Jackson RB, Caldwell MM (1992) Shading and the capture of localized soil nutrients: nutrient contents, carbohydrates, and root uptake kinetics of a perennial tussock grass. Oecologia 91:457–462

    Article  Google Scholar 

  • Johansson G (1992) Release of organic-C from growing roots of meadow fescue (Festuca pratensis L.). Soil Biol Biochem 24:427–433

    Article  Google Scholar 

  • Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575–585

    Article  Google Scholar 

  • Johnson MG, Phillips DL, Tingey DT, Storm MJ (2000) Effects of elevated CO2, N-fertilization, and season on survival of ponderosa pine fine roots. Can J For Res 30:220–228

    Article  Google Scholar 

  • Jones MD, Durall DM, Tinker PB (1990) Phosphorus relationships and production of extramatrical hyphae by two types of willow ecto-mycorrhizas at different soil phosphorus levels. New Phytol 115:259–267

    Article  CAS  Google Scholar 

  • Jupp AP, Newman EI (1987) Morphological and anatomical effects of severe drought on the roots of Lolium perenne L. New Phytol 105:393–402

    Article  Google Scholar 

  • Kelly JM, Barber SA, Edwards GS (1992) Modeling magnesium, phosphorus, and potassium uptake by loblolly-pine seedlings using a Barber-Cushman approach. Plant Soil 139:209–218

    Article  CAS  Google Scholar 

  • Koide RT, Elliot G (1989) Cost, benefit and efficiency of the vesicular-arbuscular mycorrhizal symbiosis. Funct Ecol 3:252–255

    Google Scholar 

  • Koide RT, Dickie IA, Goff MD (1999) Phosphorus deficiency, plant growth and the phosphorus efficiency index. Funct Ecol 13:733–736

    Article  Google Scholar 

  • Kosola KR, Eissenstat DM (1994) The fate of surface roots of citrus seedlings in dry soil. J Exp Bot 45:1639–1645

    CAS  Google Scholar 

  • Kramer PJ, Bullock HC (1966) Seasonal variations in the proportions of suberised and unsuberized roots of trees in relation to the absorption of water. Am J Bot 53:200–204

    Article  Google Scholar 

  • Lambers H (1987) Growth, respiration, exudation and symbiotic associations: the fate of carbon translocated to the roots. In: Gregory PJ, Lake JV, Rose DA (eds) Root development and function. Cambridge University Press, Cambridge, pp 125–146

    Google Scholar 

  • Lambrecht M, Okon Y, Van de Broek A, Vanderleyden J (2000) Indole-3-acetic acid: a reciprocal signalling molecule in bacteria-plant interactions. Trends Microbiol 8:298–300

    Article  PubMed  CAS  Google Scholar 

  • Lauenroth WK, Sala OE, Milchunas DG, Lathrop RW (1987) Root dynamics of Bouteloua gracilis during short-term recovery from drought. Funct Ecol 1:117–124

    Google Scholar 

  • Lemon CW, Considine JA (1993) Anatomy and histochemistry of the root system of the kiwifruit vine, Actinidia deliciosa var. deliciosa. Ann Bot 71:117–129

    Article  Google Scholar 

  • Mackay AD, Barber SA (1985) Effect of soil moisture and phosphate level on root hair growth of corn roots. Plant Soil 86:321–331

    Article  Google Scholar 

  • Mapfumo E, Aspinall D, Hancock TW (1994) Growth and development of roots of grapevine (Vitis vinifera L.) in relation to water uptake from the soil. Ann Bot 74:75–85

    Article  PubMed  CAS  Google Scholar 

  • Maron JL (1998) Insect herbivory above-and belowground: individual and joint effects on plant fitness. Ecology 79:1281–1293

    Article  Google Scholar 

  • Marschner H (1998) Role of root growth, arbuscular mycorrhizae, and root exudates for the efficiency in nutrient acquisition. Field Crops Res 56:203–207

    Article  Google Scholar 

  • Matzner SL, Richards JH (1996) Sagebrush (Artemisia tridentate Nutt) roots maintain nutrient uptake capacity under water stress. J Exp Bot 47:1045–1056

    CAS  Google Scholar 

  • McCrady RL, Comerford NB (1998) Morphological and anatomical relationships of loblolly pine fine roots. Trees 12:431–437

    Article  Google Scholar 

  • McCully ME (1999) Roots in soil: unearthing the complexities of roots and their rhizospheres. Annu Rev Plant Physiol Plant Mol Biol 50:695–718

    Article  PubMed  CAS  Google Scholar 

  • McGonigle TP, Fitter AH (1988) Ecological consequences of arthropod grazing on VA mycorrhizal fungi. Proc R Soc Edinb B94:25–32

    Google Scholar 

  • McKenzie BE, Peterson CA (1995) Root browning in Pinus banksiana Lamb. and Eucalyptus pilularis Sm. 1. Anatomy and permeability of the white and tannin zones. Bot Acta 108:127–137

    CAS  Google Scholar 

  • Merryweather J, Fitter A (1996) Phosphorus nutrition of an obligately mycorrhizal plant treated with the fungicide benomyl in the field. New Phytol 132:307–311

    Article  CAS  Google Scholar 

  • Miller RM, Reinhardt DR, Jastrow JD (1995) External hyphal production of vesiculararbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia 103:17–23

    Article  Google Scholar 

  • Okano K, Omae H (1996) Quantitative estimation of physiological functions of various roots with different diameters in the root system of the tea tree. Jpn J Crop Sci 65:605–611

    CAS  Google Scholar 

  • Paterson E, Sim A (2000) Effect of nitrogen supply and defoliation on loss of organic compounds from roots of Festuca rubra. J Exp Bot 349:1449–1457

    Article  Google Scholar 

  • Peng S, Eissenstat DM, Graham JH, Williams K, Hodge NC (1993) Growth depression of mycorrhizal citrus at high phosphorus supply: analysis of carbon costs. Plant Physiol 101:1063–1071

    PubMed  CAS  Google Scholar 

  • Penning de Vries FWT, Brunsting AHM, van Laar HH (1974) Products, requirements and efficiency of biosynthesis: a quantitative approach. J Theor Biol 45:339–377

    Article  Google Scholar 

  • Peterson CA, Enstone DE, Taylor JH (1999) Pine root structure and its potential significance for root function. Plant Soil 217:205–213

    Article  Google Scholar 

  • Poorter H, Bergkotte M (1992) Chemical composition of 24 wild species differing in relative growth rate. Plant Cell Environ 15:221–229

    Article  CAS  Google Scholar 

  • Poorter H, Van Der Werf A, Atkin OK, Lambers H (1991) Respiratory energy requirements of roots vary with the potential growth rate of a species. Physiol Plant 83:469–475

    Article  Google Scholar 

  • Pregitzer KS, Hendrick RL, Fogel R (1993) The demography of fine roots in response to patches of water and nitrogen. New Phytol 125:575–580

    Article  Google Scholar 

  • Pregitzer KS, DeForest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL (2002) Fine root architecture of nine North American trees. Ecol Monogr 72:293–309

    Google Scholar 

  • Pritchard SG, Rogers HH, Davis MA, van Santen E, Prior SA, Schlesinger WH (2001) The influence of elevated atmospheric CO2 on fine root dynamics in an intact temperate forest. Global Change Biol 7:829–837

    Article  Google Scholar 

  • Reid JB, Sorensen I, Petrie RA (1993) Root demography of kiwifruit (Actinidia deliciosa). Plant Cell Environ 16:949–957

    Article  Google Scholar 

  • Richards D, Considine JA (1981) Suberization and browning of grapevine roots. In: Brouwer (ed) Structure and function of plant roots. Dr. W. Junk, London, pp 111–115

    Google Scholar 

  • Robinson D (1994) The responses of plants to non-uniform supplies of nutrients. Tansley Rev no 73. New Phytol 127:635–674

    Article  CAS  Google Scholar 

  • Robinson D, Hodge A, Griffiths BS, Fitter AH (1999) Plant root proliferation in nitrogenrich patches confers competitive advantage. Proc R Soc Lond B 266:431–435

    Article  Google Scholar 

  • Rousseau JVD, Sylvia DM, Fox AJ (1994) Contribution of ectomycorrhiza to the potential nutrient-absorbing surface of pine. New Phytol 128:639–644

    Article  Google Scholar 

  • Russel RS, Sanderson J (1967) Nutrient uptake rates by different parts of the intact roots of plants. J Exp Bot 18:491–508

    Google Scholar 

  • Rygiewicz PT, Anderson CP (1994) Mycorrhizae alter quality and quantity of carbon allocated below ground. Nature 369:58–60

    Article  Google Scholar 

  • Ryser P (1996) The importance of tissue density for growth and life span of leaves and roots: a comparison of five ecologically contrasting grasses. Funct Ecol 10:717–723

    Google Scholar 

  • Sanders FE, Tinker PB (1971) Mechanism of absorption of phosphate from soil by Endogone mycorrhizas. Nature 232:278–279

    Article  Google Scholar 

  • Sands R, Fiscus EL, Reid CPP (1982) Hydraulic properties of pine and bean roots with varying degrees of suberisation, vascular differentiation and mycorrhizal infection. Aust J Plant Physiol 9:559–569

    Article  Google Scholar 

  • Scheurwater I (1999) Variation in specific respiratory costs in the roots of fast-and slow-growing grass species. PhD Thesis, Utrecht University, The Netherlands

    Google Scholar 

  • Scheurwater I, Cornelissen C, Dictus F, Welschen R, Lambers H (1998) Why do fast-and slow-growing grass species differ so little in their rate of root respiration, considering the large differences in rate of growth and ion uptake. Plant Cell Environ 21:995–1005

    Article  Google Scholar 

  • Scheurwater I, Clarkson DT, Purves JV, Van Rijt G, Saker LR, Welschen R, Lambers H (1999) Relatively large nitrate efflux can account for the high specific respiratory costs for nitrate transport in slow-growing grass species. Plant Soil 215:123–134

    Article  CAS  Google Scholar 

  • Shone MGT, Flood AV (1983) Effects of periods of localized water stress on subsequent nutrient uptake by barley roots and their adaptation by osmotic adjustment. New Phytol 94:561–572

    Article  Google Scholar 

  • Silberbush M, Barber SA (1983) Sensitivity of simulated phosphorus uptake to parameters used by a mechanistic-mathematical model. Plant Soil 74:93–100

    Article  CAS  Google Scholar 

  • Spaeth SC, Cortes PM (1995) Root cortex death and subsequent initiation and growth of lateral roots from bare steles of chickpeas. Can J Bot 73:253–261

    Google Scholar 

  • Stasovski E, Peterson CA (1991) The effects of drought and subsequent rehydration on the structure and vitality of Zea mays seedling roots. Can J Bot 69:1170–1178

    Google Scholar 

  • Stasovski E, Peterson CA (1993) Effects of drought and subsequent rehydration on the structure, vitality, and permeability of Allium cepa adventitious roots. Can J Bot 71:700–707

    Article  Google Scholar 

  • Swinnen J, Van Veen JA, Merckx R (1995) Carbon fluxes in the rhizosphere of winterwheat and spring barley with conventional vs integrated farming. Soil Biol Biochem 27:811–820

    Article  CAS  Google Scholar 

  • Tarawaya K, Hashimoto K, Wagatsuma T (1998) Effect of root exudate fractions from P-deficient and P-sufficient onion plants on root colonisation by the arbuscular mycorrhizal fungus Gigaspora margarita. Mycorrhiza 8:67–70

    Article  Google Scholar 

  • Thomas H, Sadras VO (2001) The capture and gratuitous disposal of resources by plants. Funct Ecol 15:3–12

    Article  Google Scholar 

  • Thomas SM, Whithead D, Reid JB, Cook FJ, Adams JA, Leckie AC (1999) Growth, loss, and vertical distribution of Pinus radiata fine roots growing at ambient and elevated CO2. Global Change Biol 5:107–121

    Article  Google Scholar 

  • Thornley JHM (1972) A balanced quantitative model for root:shoot ratios in vegetative plants. Ann Bot 36:431–441

    Google Scholar 

  • Tierney GL, Fahey TJ (2001) Evaluating minirhizotron estimates of fine root longevity and production in the forest floor of a temperate broadleaf forest. Plant Soil 229:167–176

    Article  CAS  Google Scholar 

  • Tinker PB, Nye PH (2000) Solute movement in the rhizosphere. Oxford University Press, New York

    Google Scholar 

  • van Rees KCJ, Comerford NB (1990) The role of woody roots of slash pine seedlings in water and potassium absorption. Can J For Res 20:1183–1191

    Article  Google Scholar 

  • Veen BW (1981) Relation between root respiration and root activity. Plant Soil 63:73–76

    Article  CAS  Google Scholar 

  • Vermeer J, McCully ME (1982) The rhizosphere in Zea: new insight into its structure and development. Planta 156:45–61

    Article  Google Scholar 

  • Visser EJW, Blom CWPM, Voesenek LACJ (1996) Flooding-induced adventitious rooting in Rumex: morphology and development in an ecological perspective. Acta Bot Neerl 45:17–28

    Google Scholar 

  • Volder A, Smart DR, Bloom AJ, Eissenstat DM (2005) Rapid decline in nitrate uptake and respiration with age in fine lateral roots of grape: implications for root efficiency and competitive effectiveness. New Phytol 165:493–502

    Article  PubMed  Google Scholar 

  • Wallace LL (1987) Mycorrhizas in grasslands: interactions of ungulates, fungi and drought. New Phytol 105:619–632

    Article  Google Scholar 

  • Watson CA, Ross JM, Bagnaresi U, Minotta GF, Roffi F, Atkinson D, Black KE, Hooker JE (2000) Environment-induced modifications to root longevity in Lolium perenne and Trifolium repens. Ann Bot 85:397–401

    Article  Google Scholar 

  • Wells CE, Eissenstat DM (2001) Marked differences in survivorship among apple roots of different diameters. Ecology 82:882–892

    Article  Google Scholar 

  • Wells CE, Glenn DM, Eissenstat DM (2002) Soil insects alter fine root demography in peach (Prunus persica). Plant Cell Environ 25:431–439

    Article  Google Scholar 

  • Williams M, Yanai RD (1996) Multi-dimensional sensitivity analysis and ecological implications of a nutrient uptake model. Plant Soil 180:311–324

    Article  CAS  Google Scholar 

  • Wright IJ, Westoby M (1999) Differences in seedling growth behaviour among species: trait correlations across species, and trait shifts along nutrient compared to rainfall gradients. J Ecol 87:85–97

    Article  Google Scholar 

  • Wullschleger SD, Norby RJ, Love JC, Runck C (1997) Energetic costs of tissue construction in yellow-poplar and white oak trees exposed to long-term CO2 enrichment. Ann Bot 80:289–297

    Article  Google Scholar 

  • Yanai RD (1994) A steady-state model of nutrient uptake accounting for newly grown roots. Soil Sci Soc Am J 58:1562–1571

    Article  Google Scholar 

  • Yanai RD, Fahey TJ, Miller SL (1995) Efficiency of nutrient acquisition by fine roots and mycorrhizae. In: Smith WK, Hinckley TM (eds) Resource physiology of conifers. Academic Press, New York, pp 75–103

    Google Scholar 

  • Yoder JI (2001) Host-plant recognition by parasitic Scrophulariaceae. Curr Opin Plant Biol 4:359–365

    Article  PubMed  CAS  Google Scholar 

  • Zak DR, Pregitzer KS, King JS, Holmes WE (2000) Elevated atmospheric CO2, fine roots and the response of soil microorganisms: a review and hypothesis. New Phytol 147:201–222

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eissenstat, D., Volder, A. (2005). The Efficiency of Nutrient Acquisition over the Life of a Root. In: BassiriRad, H. (eds) Nutrient Acquisition by Plants. Ecological Studies, vol 181. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27675-0_8

Download citation

Publish with us

Policies and ethics