Skip to main content

The physical niche of the bathyal Lophelia pertusa in a non-bathyal setting: environmental controls and palaeoecological implications

  • Chapter
Cold-Water Corals and Ecosystems

Part of the book series: Erlangen Earth Conference Series ((ERLANGEN))

Abstract

The habitat-forming scleractinian coral Lophelia pertusa supports an ecosystem that is widely known to occur in the bathyal marine ecologic realm along deep shelves, oceanic banks, seamounts and continental margins. Therefore, L. pertusa is generally considered a ‘deep-water’ or ‘deep-sea’ coral. In contrast, this study analyses the environmental controls of this bathyal ecosystem where it is thriving well in the non-bathyal shallow-water setting of the Swedish Kosterfjord area (NE Skagerrak). This is one of several shallow-water L. pertusa occurrences in Scandinavian waters where saline and temperature stable oceanic waters intrude as topographically-guided underflows onto the inner shelf and adjacent fjords, driven by an estuarine circulation.

The L. pertusa occurrence of the Säcken site in the northern Kosterfjord exists at 80–90 m water depth and only a few tens of metres beneath a permanently brackish surface water layer. At the depth of the coral patches, however, the hydrographic data reveal fully marine conditions, which are ensured by a deeper inflow of Atlantic water through the Norwegian Trench into the Skagerrak. SEM analyses of resin casts taken from dead L. pertusa skeletons yield an endolith assemblage dominated by boring sponges such as Cliona spp. (trace: Entobia ispp.), the boring bryozoan Spathipora, the fungus Dodgella priscus (trace Saccomorpha clava) and an unknown fungus (trace: Orthogonum lineare). Such a composition exclusively of heterotroph organisms resembles the Saccomorpha clava / Orthogonum lineare ichnocoenosis which is regarded as indicative for fossil and Recent, open marine, aphotic environments. This interpretation is supported by direct light measurements at the Säcken site, which indicate aphotic conditions for at least most of the year.

The finding of bathyal communities in comparatively shallow waters is linked to factors that force deeper oceanic water masses to surface. Such situations are likely to be expected where an estuarine circulation prevails, or in deep-sea basins bordered by narrow shelves and with local upwelling cells driven by the wind regime, facilitating the intrusion of eutrophic deeper waters to shallow depths — including the benthic communities.

This circumstance reveals a major potential pitfall in the palaeobathymetric interpretation of fossil L. pertusa occurrences, which tend to be interpreted as bathyal palaeoenvironments. Strikingly, almost all known exposed ancient L. pertusa locations (e.g. Rhodes and Messina Strait in the Mediterranean Sea or the Cook Strait, New Zealand) derive from tectonically active regions with steep bathymetric gradients and a specific confined topography which could have forced deep water to the near surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barrier P, Di Geronimo I, Montenat C, Roux M, Zibrowius H (1989) Présence de faunes bathyales atlantiques dans le Pliocène et le Pleistocène de Méditerranée (Détroit de Messine, Italie). Bull Soc Géol France 8: 787–796

    Google Scholar 

  • Bernecker M, Weidlich O (1990) The Danian (Paleocene) coral limestone of Fakse, Denmark: a model for ancient aphotic, azooxanthellate coral mounds. Facies 22: 103–13

    Google Scholar 

  • Bernecker M, Weidlich O (2005) Azooxanthellate corals in the Late Maastrichtian-Early Paleocene of the Danish basin: bryozoan and coral mounds in a boreal shelf setting. In: Freiwald A, Roberts JM (eds) Cold-water Corals and Ecosystems. Springer, Berlin Heidelberg, pp 3–25

    Google Scholar 

  • Beuck L, Freiwald A (2005) Bioerosion patterns in a deep-water Lophelia pertusa (Scleractinia) thicket (Propeller Mound, northern Porcupine Seabight) In: Freiwald A, Roberts JM (eds) Cold-water Corals and Ecosystems. Springer, Berlin Heidelberg, pp 915–936

    Google Scholar 

  • Boerboom CM, Smith JE, Risk MJ (1998) Bioerosion and micritization in the deep sea coral Desmophyllum cristagalli. Hist Biol 13: 53–60

    Article  Google Scholar 

  • Bromley RG (2005) Preliminary study of bioerosion in the deep-water coral Lophelia, Pleistocene, Rhodes, Greece. In: Freiwald A, Roberts JM (eds) Cold-water Corals and Ecosystems. Springer, Berlin Heidelberg, pp 895–914

    Google Scholar 

  • Bromley RG, Surlyk F (1973) Borings produced by brachiopod pedicles fossil and recent. Lethaia 6: 349–365

    Google Scholar 

  • Bromley RG, D’Alessandro A (1984) The ichnogenus Entobia from the Miocene, Pliocene and Pleistocene of southern Italy. Riv Ital Paleont Stratigr 90: 227–296

    Google Scholar 

  • Budd DA, Perkins RD (1980) Bathymetric zonation and paleoecological significance of microborings in Puerto Rican shelf and slope sediments. J Sediment Petrol 50: 881–904

    Google Scholar 

  • Dahl GE (1978) On the existence of a deep countercurrent to the Norwegian Coastal Current in the Skagerrak. Tellus 30: 552–556

    Article  Google Scholar 

  • Dons C (1944) Norges korallrev. Det Kongl Norsk Vidensk Selsk Forh 16: 37–82

    Google Scholar 

  • Försterra G, Beuck L, Häussermann V, Freiwald A (2005) Shallow-water Desmophyllum dianthus (Scleractinia) from Chile: characteristics of the biocoenoses and the bioeroding community, heterotrophic interactions and (paleo)-bathymetric implications. In: Freiwald A, Roberts JM (eds) Cold-water Corals and Ecosystems. Springer, Berlin Heidelberg, pp 937–977

    Google Scholar 

  • Fosså JH, Mortensen PB, Furevik DM (2000) Lophelia-korallrev langs norskekysten forekomst og tilstand. Fisken og Havet 2: 1–94

    Google Scholar 

  • Fosså JH, Mortensen, PB Furevik DM (2002) The deep-water coral Lophelia pertusa in Norwegian waters: distribution and fishery impacts. Hydrobiologia 471: 1–12

    Google Scholar 

  • Freiwald A (2002) Reef-forming cold-water corals. In: Wefer G, Billett D, Hebbeln D, Jørgensen BB, Schlüter M, van Weering T (eds) Ocean Margin Systems. Springer, Berlin Heidelberg, pp 365-385

    Google Scholar 

  • Freiwald A, Henrich R, Pätzold J (1997) Anatomy of a deep-water coral reef mound from Stjernsund, West-Finnmark, northern Norway. SEPM Spec Publ 56: 141–161

    Google Scholar 

  • Freiwald A, Wilson JB (1998) Taphonomy of modern deep, cold-temperate water coral reefs. Hist Biol 13: 37–52

    Google Scholar 

  • Glaub I (1994) Mikrobohrspuren in ausgewählten Ablagerungsräumen des europäischen Jura und der Unterkreide (Klassifikation und Palökologie). Cour Forschinst Senckenberg 174: 1–324

    Google Scholar 

  • Glaub I (1999) Paleobathymetric reconstructions and fossil microborings. Bull Geol Soc Den 45: 143–146

    Google Scholar 

  • Glaub I, Bundschuh M (1997) Comparative study on Silurian and Jurassic/Lower Cretaceous microborings. Cour Forschinst Senckenberg 201: 123–135

    Google Scholar 

  • Glaub I, Gektidis M, Vogel K (2002) Microborings from different North Atlantic shelf areas-Variability of the euphotic zone extension and implications for paleodepth reconstructions. Cour Forschinst Senckenberg 237: 25–37

    Google Scholar 

  • Golubic S, Brent G, LeCampion T (1970) Scanning electron microscopy of endolithic algae and fungi using a multipurpose casting-embedding technique. Lethaia 3: 203–209

    Google Scholar 

  • Golubic S, Campell S, Spaeth C (1983) Kunstharzausgüsse fossiler Mikroben-Bohrgänge. Präparator 29: 197–200

    Google Scholar 

  • Günther A (1990) Distribution and bathymetric zonation of shell-boring endoliths in recent reef and shelf environments: Cozumel, Yucatan (Mexico). Facies 22: 233–262

    Google Scholar 

  • Hanken N-M, Bromley RG, Miller J (1996) Plio-Pleistocene sedimentation in coastal grabens, north-east Rhodes, Greece. Geol J 31: 393–418

    Google Scholar 

  • Hovland MT, Vasshus S, Indreeide A, Austdal L, Nilsen Ø (2002) Mapping and imaging deep-sea coral reefs off Norway, 1982–2000. Hydrobiologia 471: 13–17

    Article  Google Scholar 

  • International Commission on Zoological Nomenclature (1999) International Code of Zoological Nomenclature. Int Trust Zool Nomencl, London

    Google Scholar 

  • Liebau A (1984) Grundlagen der Ökobathymetrie. In: Luterbacher H (ed) Paläobathymetrie. Paläont Kursb 2: 149–184

    Google Scholar 

  • Lundälv T, Jonsson L (2003) Mapping of deep-water corals and fishery impacts in the northeast Skagerrak, using acoustical and ROV survey techniques. Proc 6th Underwater Sci Symp, Aberdeen, 2003

    Google Scholar 

  • Lüning K (1985) Meeresbotanik-Verbreitung, Ökophysiologie und Nutzung der marinen Makroalgen. Thieme, Stuttgart

    Google Scholar 

  • Mayoral E (1988) Microperforaciones (Tallophyta) sobre bivalvia del Plioceno del Bajo Guadalquivir. Estud Geol 44: 301–316

    Article  Google Scholar 

  • Mikkelsen N, Erlenkeuser H, Killingley JS, Berger WH (1982) Norwegian corals: radiocarbon and stable isotopes in Lophelia pertusa. Boreas 11: 163–171

    Google Scholar 

  • Mortensen PB (2001) Aquarium observations on the deep-water coral Lophelia pertusa (L., 1758) (Scleractinia) and selected associated invertebrates. Ophelia 54: 83–104

    Google Scholar 

  • Perry CT, MacDonald IA (2002) Impacts of light penetration on the bathymetry of reef microboring communities: implications for the development of microendolithic trace assemblages. Palaeogeogr Palaeoclimatol Palaeoecol 189: 101–113

    Google Scholar 

  • Plewes CR, Palmer TJ, Haynes, JR (1993) A boring foraminiferan from the Upper Jurassic of England and Northern France. J Micropaleont 12: 83–89

    Google Scholar 

  • Radtke G (1993) The distribution of microborings in molluscan shells from Recent reef environments at Lee Stocking Island, Bahamas. Facies 29: 81–92

    Google Scholar 

  • Rokoengen K, Østmo SR (1985) Shallow geology off Fedje, western Norway. IKU-Rep 24.1459/01/25, 20 pp

    Google Scholar 

  • Schmidt H, Freiwald A (1993) Rezente gesteinsbohrende Kleinorganismen des norwegischen Schelfs. Natur Museum 123: 149–155

    Google Scholar 

  • Squires DF (1964) Fossil coral thickets in Wairarapa, New Zealand. J Paleont 38: 904–915

    Google Scholar 

  • Strømgren T (1971) Vertical and horizontal distribution of Lophelia pertusa (Linné) in Trondheimsfjorden on the west coast of Norway. K norske Vidensk Selsk Skr 6: 1–9

    Google Scholar 

  • Svansson A (1975) Physical and chemical oceanography of the Skagerrak and the Kattegat, I. Open sea conditions. Rep Fish Board Swed Inst Mar Res 1: 1–88

    Google Scholar 

  • Tavanier A, Campbell SE, Golubic S (1992) A complex marine shallow-water boring trace: Dendrorete balani n. ichnogen. et ichnospec. Lethaia 25: 303–310

    Google Scholar 

  • Vogel K, Bundschuh M, Glaub I, Hofmann K, Radtke G, Schmidt H (1995) Hard substrate ichnocoenoses and their relations to light intensity and marine bathymetry. N Jb Geol Paläont, Abh 195: 49–61

    Google Scholar 

  • Vogel K, Balog S-J, Bundschuh M, Gektidis M, Glaub I, Krutschinna J, Radtke G (1999) Bathymetrical studies in fossil reefs, with microendoliths as paleoecological indicators. Profil 16: 181–191

    Google Scholar 

  • Vogel K, Gektidis M, Golubic S, Kiene WE, Radtke G (2000) Experimental studies on microbial bioerosion at Lee Stocking Island, Bahamas and One Tree Island, Great Barrier Reef, Australia: implications for paleoecological reconstructions. Lethaia 33: 190–204

    Google Scholar 

  • Wahrberg R, Eliason A (1926) Ny local för levande Lophelia prolifera (PALLAS) vid svensk kust. Fauna och Flora 1926: 256–260

    Google Scholar 

  • Zeff ML, Perkins RD (1979) Microbial alteration of Bahamian deep-sea carbonates. Sedimentology 26: 175–201

    Google Scholar 

  • Zibrowius H (1980) Les Scléractiniaires de la Méditerranée et de l’Atlantique nord-oriental. Mem Inst Oceanogr Monaco 11: 1–227

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wisshak, M., Freiwald, A., Lundälv, T., Gektidis, M. (2005). The physical niche of the bathyal Lophelia pertusa in a non-bathyal setting: environmental controls and palaeoecological implications. In: Freiwald, A., Roberts, J.M. (eds) Cold-Water Corals and Ecosystems. Erlangen Earth Conference Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27673-4_49

Download citation

Publish with us

Policies and ethics