Skip to main content

Preliminary study of bioerosion in the deep-water coral Lophelia, Pleistocene, Rhodes, Greece

  • Chapter
Cold-Water Corals and Ecosystems

Part of the book series: Erlangen Earth Conference Series ((ERLANGEN))

Abstract

Samples of Lophelia were taken at two localities in the Lindos Bay Clay (Lower Pleistocene) of the Rhodes Formation on the Dodecanese Island of Rhodes. At a coastal exposure at Vasphi, northeast Rhodes, about 200 fragments of Lophelia were collected in situ from the clay and surface preservation of these is consequently particularly fine. The second collection of material was made at an exposure south of Lardos, about 35 km further south. This material comprised some 800 fragments of Lophelia collected both in situ and loose; preservation quality of the surfaces of these is variable. Both collections derive from single fl at beds of coral fragments.

Bioerosion of the corals shows a good diversity, comprising about 18 ichnotaxa, five in open nomenclature, including: Orthogonum lineare, Saccomorpha clava and other microborings (probably exclusively of endolithic fungi), Oichnus isp. (pits and holes of various forms, probably all deriving from foraminifers), dish-shaped etchings possibly produced by the foraminifer Hyrrokkin sarcophaga, Palaeosabella prisca (polychaete worm borings), Caulostrepsis isp. (polychaete borings), probable Maeandropolydora isp. (polychaete borings), Talpina isp. (phoronid borings), Podichnus centrifugalis (attachment scars of brachiopods), Centrichnus eccentricus (attachment scars of anomiid bivalves), Gnathichnus pentax (tooth scratches by regular echinoids), and Entobia ispp. (borings of endolithic sponges).

Three small, radiating forms around a millimetre in size are difficult to attribute to particular tracemaking organisms. They are retained in open nomenclature as Semidendrina-form (possibly foraminifera borings), a non-camerate radiating form and a hirsute camerate form. No ctenostome bryozoan borings were observed. Talpina isp. is abundant at Vasphi but scarce at Lardos. Otherwise the relative abundance of the trace fossils is comparable at the two localities.

The total amount of bioerosion varies considerably in different parts of the coral skeleton. On the basis of SEM imagery, three categories of bioerosional intensity are introduced: 1, slight bioerosion; 2, medium bioerosion, and 3, heavy bioerosion. The distribution of Gnathichnus pentax and the absence of Radulichnus inopinatus indicates an aphotic environment. The microbioerosional assemblage correlates with the Saccomorpha clava / Orthogonum lineare Ichnocoenosis, which also indicates an aphotic seafl oor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Banner FT (1971) A new genus of the Planorbulinidae an endoparasite of another foraminifer. Rev Espan Micropaleont 3: 113–128

    Google Scholar 

  • Beuck L, Freiwald A (2005) Bioerosion patterns in a deep-water Lophelia pertusa (Scleractinia) thicket on the Propeller Mound (northern Porcupine Seabight). In: Freiwald A, Roberts JM (eds) Cold-water Corals and Ecosystems. Springer, Berlin Heidelberg, pp 915–936

    Google Scholar 

  • Bromley RG (1978) Bioerosion of Bermuda reefs. Palaeogeogr Palaeoclimatol Palaeoecol 23: 169–197

    Article  Google Scholar 

  • Bromley RG (1994) The palaeoecology of bioerosion. In: Donovan SK (ed) The Palaeobiology of Trace Fossils. Belhaven Press, London, pp 134–154

    Google Scholar 

  • Bromley RG (1999) Anomiid (bivalve) bioerosion on Pleistocene pectinid (bivalve) shells, Rhodes, Greece. Geol Mijnb 78: 175–177

    Google Scholar 

  • Bromley RG (2004) A stratigraphy of marine bioerosion. In: McIlroy D (ed) The Application of Ichnology to Palaeoenvironmental and Stratigraphic Analysis. Geol Soc London, Spec Publ 228: 455–479

    Google Scholar 

  • Bromley RG, D‘Alessandro A (1984) The ichnogenus Entobia from the Miocene, Pliocene and Pleistocene of southern Italy. Riv Ital Paleont Stratigr 90: 227–296

    Google Scholar 

  • Bromley RG, Hanken N-M (1981) Shallow marine bioerosion at Vardø, arctic Norway. Bull Geol Soc Denm 29: 103–109

    Google Scholar 

  • Bromley RG, Pemberton SG, Rahmani RA (1984) A Cretaceous woodground: the Teredolites ichnofacies. J Paleont 58: 488–498

    Google Scholar 

  • Bundschuh M, Glaub I, Hofmann K, Radtke G, Vogel K (1989) Bohrorganismen helfen, fossile Meeresbecken zu rekonstruieren. Forschung Frankfurt 1989: 56–64

    Google Scholar 

  • Calcinai B, Arillo A, Cerrano C, Bavestrello G (2003) Taxonomy-related differences in the excavating micro-patterns of boring sponges. J Mar Biol Ass UK 83: 37–39

    Google Scholar 

  • Cedhagen T (1994) Taxonomy and biology of Hyrrokkin sarcophaga gen. et sp. n., a parasitic foraminiferan (Rosalinidae). Sarsia 79: 65–82

    Google Scholar 

  • Cherchi A, Schroeder R (1991) Perforations branchues dues à des Foraminifères cryptobiotiques dans des coquilles actuelles et fossiles. CR Acad Sci Paris (2) 312: 111–115

    Google Scholar 

  • Delaca TE, Lipps JH (1972) The mechanism and adaptation significance of attachment and substrate pitting in the Foraminifera Rosalina globularis d’Orbigny. J Foram Res 2: 68–72

    Article  Google Scholar 

  • Ekdale AA, Bromley RG, Pemberton SG (1984) Ichnology-trace fossils in sedimentology and stratigraphy. SEPM Short Courses 15, 317 pp

    Google Scholar 

  • Freiwald A (1998a) Microbial maceration and carbonate dissolution on cold-temperate shelves. Hist Biol 13: 27–35

    Google Scholar 

  • Freiwald A (1998b) Geobiology of Lophelia pertusa (Scleractinia) reefs in the North Atlantic. Habilitation thesis, Univ Bremen

    Google Scholar 

  • Freiwald A, Henrich R (1994) Reefal algal coralline build-ups within the Arctic Circle: morphology and sedimentary dynamics under extreme environmental seasonality. Sedimentology 41: 963–984

    Google Scholar 

  • Freiwald A, Schönfeld J (1996) Substrate pitting and boring pattern of Hyrrokkin sarcophaga Cedhagen, 1994 (Foraminifera) in a modern deep-water coral reef mound. Mar Micropaleont 28: 199–207

    Google Scholar 

  • Freiwald A, Wilson JB (1998) Taphonomy of modern deep, cold-temperate water coral reefs. Hist Biol 13: 37–52

    Google Scholar 

  • Freiwald A, Reitner J, Krutschinna J (1997) Microbial alteration of the deep-water coral Lophelia pertusa: early postmortem processes. Facies 36: 223–226

    Google Scholar 

  • Glaub I (1994) Mikrobohrspuren in ausgewählten Ablagerungsräumen des europäischen Jura und der Unterkreide (Klassifikation und Palökologie). Cour Forschinst Senckenb 174: 1–324

    Google Scholar 

  • Glaub I, Gektidis M, Vogel K (2002) Microborings from different North Atlantic shelf areas-variability of the euphotic zone extension and implications for paleodepth reconstructions. Cour Forschinst Senckenb 237: 25–37

    Google Scholar 

  • Günther A (1990) Distribution and bathymetric zonation of shell-boring endoliths in Recent reef and shelf environments: Cozumel, Yucatan (Mexico). Facies 22: 233–262

    Google Scholar 

  • Hansen KS (2001) Sedimentology of Pliocene-Pleistocene temperate water carbonates from northeast Rhodes, Greece. Unpublished PhD thesis, Univ Copenhagen, Denmark

    Google Scholar 

  • Hanken N-M, Bromley RG, Miller J (1996) Plio-Pleistocene sedimentation in coastal grabens, north-east Rhodes, Greece. Geol J 31: 271–296

    Google Scholar 

  • Hofmann K (1996) Die mikro-endolithischen Spurenfossilien der borealen Oberkreide Nordwest-Europas und ihre Faziesbeziehungen. Geol Jb A 136: 1–151

    Google Scholar 

  • Macdonald IA, Perry CT (2003) Biological degradation of coral framework in a turbid lagoon environment, Discovery Bay, north Jamaica. Coral Reefs 22: 523–535

    Article  Google Scholar 

  • Nielsen KSS, Nielsen JK (2001) Bioerosion in Pliocene to Late Holocene tests of benthic and planktonic foraminiferans, with a revision of the ichnogenera Oichnus and Tremichnus. Ichnos 8: 99–116

    Article  Google Scholar 

  • Palmer TJ, Plewes CR, Cole A (1997) The simple and long-ranging worm-boring Trypanites: not so simple and long-ranging after all. Geol Soc Amer, Abstr Progr 29: A 107

    Google Scholar 

  • Perry CT, Bertling M (2000) Spatial and temporal patterns of macroboring within Mesozoic and Cenozoic coral reef systems. In: Insalaco E, Skelton PW, Palmer TJ (eds) Carbonate Platform Systems; Components and Interactions. Geol Soc London Spec Publ 178: 33–50

    Google Scholar 

  • Pickerill RK, Donovan SK 1998. Ichnology of the Pliocene Bowden shell bed, southeast Jamaica. In: Donovan SK (ed) The Pliocene Bowden Shell Bed, Southeast Jamaica. Contr Tertiary Quatern Geol 35: 161–175

    Google Scholar 

  • Plewes CR, Palmer TJ, Haynes JR (1993) A boring foraminiferan from the Upper Jurassic of England and northern France. J Micropalaeont 12: 83–89

    Google Scholar 

  • Radtke G (1991) Die mikroendolithischen Spurenfossilien im Alt-Tertiär West-Europas und ihre palökologische Bedeutung. Cour Forschinst Senckenb 138: 1–185

    Google Scholar 

  • Schmidt H, Freiwald A (1993) Rezente gesteinsbohrende Kleinorganismen des norwegischen Schelfs. Natur Museum 123: 149–155

    Google Scholar 

  • Schnick H (1992) Zum Vorkommen der Bohrspur Hyellomorpha microdendritica Vogel, Golubic & Brett im oberen Obermaastricht Mittelpolens. Z Geol Wiss 20: 109–124

    Google Scholar 

  • Taylor PD, Wilson MA (2003) Palaeoecology and evolution of marine hard substrate communities. Earth Sci Rev 62: 1–103

    Article  Google Scholar 

  • Titschack J, Freiwald A (2005) Growth, deposition, and facies of Pleistocene bathyal coral communities from Rhodes, Greece. In: Freiwald A, Roberts JM (eds) Cold-water Corals and Ecosystems. Springer, Berlin Heidelberg, pp 41–59

    Google Scholar 

  • Vénec-Peyré M-T (1987) Boring Foraminifera in French Polynesian coral reefs. Coral Reefs 5: 205–212

    Google Scholar 

  • Vénec-Peyré M-T (1996) Bioeroding foraminifera: a review. Mar Micropaleont 28: 19–30

    Google Scholar 

  • Vogel K (1993) Bioerosion in fossil reefs. Facies 28: 109–114

    Google Scholar 

  • Vogel K, Golubic S, Brett CE (1987) Endolith associations and their relation to facies distribution in the Middle Devonian of New York State, U.S.A. Lethaia 20: 263–290

    Google Scholar 

  • Voigt E (1971) Fremdskulpturen an Steinkernen von Polychaeten-Bohrgängen aus der Maastrichter Tuffkreide. Paläont Z 45: 144–153

    Google Scholar 

  • Voigt E (1972) Ãœber Talpina ramosa v. Hagenow 1840, ein wahrscheinlich zu den Phoroniden gehöriger Bohrorganismus aus der Oberen Kreide, nebst Bemerkungen zu den übrigen bisher beschriebenen kretazischen „Talpina“-Arten. Nachr Akad Wissensch Göttingen 2. Mathemat-physik Kl 1972: 93–126

    Google Scholar 

  • Voigt E (1975) Tunnelbaue rezenter und fossiler Phoronidea. Paläont Z 49: 135–167

    Google Scholar 

  • Voigt E (1978) Phoronidenbaue (Talpina ramosa v. Hagenow) aus der Maastrichter Tuffkreide. Nathist Genoot Limburg 28: 3–6

    Google Scholar 

  • Wisshak M, Freiwald A, Gektidis M, Lundälv T (2005) The physical niche of the bathyal Lophelia pertusa in a non-bathyal setting: environmental controls and palaeoecological implications. In: Freiwald A, Roberts JM (eds) Cold-water Corals and Ecosystems. Springer, Berlin Heidelberg, pp 979–1001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bromley, R.G. (2005). Preliminary study of bioerosion in the deep-water coral Lophelia, Pleistocene, Rhodes, Greece. In: Freiwald, A., Roberts, J.M. (eds) Cold-Water Corals and Ecosystems. Erlangen Earth Conference Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27673-4_46

Download citation

Publish with us

Policies and ethics