Skip to main content

The ABC of Hepatic and Intestinal Cholesterol Transport

  • Chapter
Atherosclerosis: Diet and Drugs

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 170))

Abstract

The liver and (small) intestine are key organs in maintenance of cholesterol homeostasis: both organs show active de novo cholesterogenesis and are able to transport impressive amounts of newly synthesized and diet-derived cholesterol via a number of distinct pathways. Cholesterol trafficking involves the concerted action of a number of transporter proteins, some of which have been identified only recently. In particular, several ATP-binding cassette (ABC) transporters fulfil critical roles. For instance, the ABCG5/ABCG8 couple is crucial for hepatobiliary and intestinal cholesterol excretion, while ABCA1 is essential for high-density lipoprotein formation and, hence, for inter-organ trafficking of the highly water-insoluble cholesterol molecules. Very recently, the Niemann-Pick C1-like 1 protein has been identified as a key player in cholesterol absorption by the small intestine and may represent a target of the cholesterol absorption inhibitor ezetimibe. Alterations in hepatic and intestinal cholesterol transport affect circulating levels of atherogenic lipoproteins and thus the risk for cardiovascular disease. This review specifically deals with the processes of hepatobiliary cholesterol excretion and intestinal cholesterol absorption as well as the interactions between these important transport routes. During the last few years, insight into the mechanisms of hepatic and intestinal cholesterol transport has greatly increased not in the least by the identification of involved transporter proteins and the (partial) elucidation of their mode of action. In addition, information has become available on (transcription) factors regulating expression of the encoding genes. This knowledge is of great importance for the development of a tailored design of novel plasma cholesterol-lowering strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altmann SW, Davis HR, Yao X et al. (2002) The identification of intestinal scavenger receptor class B, type I (SR-BI) by expression cloning and its role in cholesterol absorption. Biochim Biophys Acta 1580:77–93

    PubMed  Google Scholar 

  • Altmann SW, Davis HR, Zhu LJ et al. (2004) Niemann-Pick C1 Like 1 Protein is critical for intestinal cholesterol absorption. Science 303:1201–1204

    Article  PubMed  Google Scholar 

  • Berge KE, Tian H, Graf GA et al. (2000)Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 290:1771–1775

    Article  PubMed  Google Scholar 

  • Berger GM, Pegoraro RJ, Patel SB et al. (1998) HMG-CoA reductase is not the site of the primary defect in phytosterolemia. J Lipid Res 39:1046–1054

    PubMed  Google Scholar 

  • Billington D, Coleman R (1978) Effects of bile salts of human erythrocytes. Plasma membrane vesiculation, phospholipid solubilization and their possible relationships to bile secretion. Biochim Biophys Acta 509:33–47

    PubMed  Google Scholar 

  • Billington D, Coleman R (1978) The removal of membrane components from human erythrocytes by glycocholate. Biochem Soc Trans 6:286–288

    PubMed  Google Scholar 

  • Buhman KK, Accad M, Novak S et al. (2000)Resistance to diet-induced hypercholesterolemia and gallstone formation in ACAT2-deficient mice. Nat Med 6:1341–1347

    Article  PubMed  Google Scholar 

  • Crawford J, Crawford A R, Hatch V C et al. (1995) Hepatocellular secretion of biliary lipid: bile salt-induced vesiculation of the canalicular membrane outer leaflet. In:Hofmann AF, Paumgartner G, Stiehl A(eds) Bile acids in gastroenterology. Basic and clinical advances, Kluwer Academic Publishers, Dordrecht. pp 254–257

    Google Scholar 

  • Crawford J, Hatch VC, Groen AK et al. (1995) Bile canalicular vesicles are markedly decreased in mdr2 knockout mice: electron microscopy of cryofixed liver. Hepatology 22:316A

    Google Scholar 

  • Crawford J, Möckel GM, Crawford AR et al. (1995). Imaging biliary lipid secretion in the rat: ultrastructural evidence for vesiculation of the hepatocyte canalicular membrane. J Lipid Res 36:2147–2163

    PubMed  Google Scholar 

  • Davies JP, Levy B, Ioannou YA (2000) Evidence for a Niemann-Pick C (NPC) gene family: identification and characterization of NPC1L1. Genomics 65:137–145

    PubMed  Google Scholar 

  • Delsing DJ, Offerman EH, van Duyvenvoorde W et al. (2001) Acyl-CoA: cholesterol acyltransferase inhibitor avasimibe reduces atherosclerosis in addition to its cholesterol-lowering effect in ApoE*3-Leiden mice. Circulation 103:1778–1786

    PubMed  Google Scholar 

  • Dietschy JM, Turley SD, Spady DK (1993) Role of liver in maintenance of cholesterol and low density lipoprotein homeostasis in different animal species, including humans. J Lipid Res 34:1637–1659

    PubMed  Google Scholar 

  • Drobnik W, Lindenthal B, Lieser B et al. (2001) ATP-binding casette transporter A1 (ABCA1) affects total body sterol metabolism. Gastroenterology 120:1203–1211

    PubMed  Google Scholar 

  • Eckardt ERM, Wang DQ, Donovan JM et al. (2002) Dietary sphingomyelin suppresses intestinal cholesterol absorption by decreasing thermodynamic avtivity of cholesterol monomers. Gastroenterology 122:948–956

    Article  PubMed  Google Scholar 

  • Groen AK, Bloks VW, Bandsma RHJ et al. (2001) Hepatobiliary cholesterol transport is not impaired in ABCA1 null mice lacking high density lipoproteins. J Clin Invest 108:843–850

    Article  PubMed  Google Scholar 

  • Insull W, Koren M, Davignon J et al. (2001) Efficacy and short-term safety of a new ACAT inhibitor, avasimibe, on lipids, lipoproteins, and apolipoproteins, in patients with combined hyperlipidemia. Atherosclerosis 157:137–144

    PubMed  Google Scholar 

  • Klett EL, Lu K, Kosters A et al. (2004) A mouse model of sitosterolemia: absence of Abcg8/sterolin-2 results in failure to secrete biliary cholesterol. BMC Med 2:5

    Article  PubMed  Google Scholar 

  • Kosters A, Frijters RJMM, Vink E et al. (2003) Relation between hepatic expression of ATP-binding casette transporters G5 and G8 and biliary cholesterol secretion in mice. J Hepatol 38:710–716

    Article  PubMed  Google Scholar 

  • Kuipers F, Oude Elferink RPJ, Verkade HJ, Groen AK (1997) Mechanisms and (patho)physiological significance of biliary cholesterol secretion. Sub-Cell Biochem 28:295–318

    Google Scholar 

  • Lee MH, Lu K, Hazard S et al. (2001) Identification of a gene, ABCG5, important in the regulation of dietary cholesterol absorption. Nat Genet 27:79–83

    Article  PubMed  Google Scholar 

  • Lu K, Lee MH, Zhou Y et al. (2002) Molecular cloning, genomic organization, genetic variations, and characterization of murine sterolin genes Abcg5 and Abcg8. J Lipid Res 43:565–578

    PubMed  Google Scholar 

  • McNeish J, Aiello RJ, Gyot D et al. (2000) High density lipoprotein deficiency and foam cell accumulation in mice with targeted disruption of ATP-binding casette transporter-1. Proc Natl Acad Sci USA 97:4245–4250

    Article  PubMed  Google Scholar 

  • Mulligan JD, Flowers MT, Tebon A et al. (2003) ABCA1 is essential for efficient basolateral cholesterol efflux during the absorption of dietary cholesterol in chickens. J Biol Chem 278:13356–13366

    PubMed  Google Scholar 

  • Neese RA, Faix D, Kletke C et al. (1993) Measurement of endogenous synthesis of plasma cholesterol in rats and humans using MIDA. Am J Physiol 264: E136–E147

    PubMed  Google Scholar 

  • Ostlund RE (2002) Phytosterols in human nutrition. Annu Rev Nutr 22:533–549

    PubMed  Google Scholar 

  • Ostlund RE, Bosner MS, Stenson WF (1999) Cholesterol absorption efficiency declines at moderate dietary intake in normal human subjects. J Lipid Res 40:1453–1458

    PubMed  Google Scholar 

  • Oude Elferink RPJ, Bakker CTM, Roelofsen H et al. (1993). Accumulation of organic anion in intracellular vesicles of cultured rat hepatocytes is mediated by the canalicular multispecific organic anion transporter. Hepatology 17:434–444

    Article  PubMed  Google Scholar 

  • Oude Elferink RPJ, Ottenhoff R, van Wijland M et al. (1996) Uncoupling of biliary phospholipid and cholesterol secretion in mice with reduced expression of mdr2 P-glycoprotein. J Lipid Res 37:1065–1075

    PubMed  Google Scholar 

  • Oude Elferink RPJ, Ottenhoff R, van Wijland MJA et al. (1995) Regulation of biliary lipid secretion by mdr2-P-glycoprotein in the mouse. J Clin Invest 95:31–38

    PubMed  Google Scholar 

  • Patel SB, Honda A, Salen G (1998) Sitosterolemia: exclusion of genes involved in reduced cholesterol biosynthesis. J Lipid Res 39:1055–1061

    PubMed  Google Scholar 

  • Plösch T, Bloks VW, Terasawa Y et al. (2004) Sitosterolemia in ABC-transporter G5-deficient mice is aggravated on activation of the liver X receptor. Gastroenterology 126:290–300

    PubMed  Google Scholar 

  • Plösch T, Kok T, Bloks VW et al. (2002) Increased hepatobiliary and fecal cholesterol excretion upon activation of the liver X receptor (LXR) is independent of ABCA1. J Biol Chem 277:33870–33877

    Article  PubMed  Google Scholar 

  • Raal FJ, Marais DA, Klepack E et al. (2003) Avasimibe, an ACAT inhibitor, enhances the lipid lowering effect of atorvastatin in subjects with homozygous familial hypercholesterolemia. Atherosclerosis 171:273–279

    Article  PubMed  Google Scholar 

  • Remaley AT, Bark S, Walts AD et al. (2002) Comparative genome analysis of potential regulatory elements in the ABCG5-ABCG8 gene cluster. Biochem Biophys Res Commun 295:276–282

    PubMed  Google Scholar 

  • Repa JJ, Berge KE, Pomajzl C et al. (2002) Regulation of ATP-Casette sterol transporters ABCG5 and ABCG8 by the liver X receptors α and β. J Biol Chem 277:18793–18800

    PubMed  Google Scholar 

  • Repa JJ, Mangelsdorf DJ (2002) The liver X receptor gene team: potential new players in atherosclerosis. Nat Med 8:1243–1248

    Article  PubMed  Google Scholar 

  • Salen G, Patel SB, Batta AK (2002) Sitosterolemia. Cardiovasc Drug Rev 20:255–270

    PubMed  Google Scholar 

  • Graf GA, Li WP, Gerard RD et al. (2002) Coexpression of ATP-binding cassette proteins ABCG5 and ABCG8 permits their transport to the apical surface. J Clin Invest 110:659–669

    Article  PubMed  Google Scholar 

  • Schaeffer EJ, Bruosseau ME, Diffenderfer MR et al. (2001) Cholesterol and apolipoprotein B metabolism in Tangier disease. Atherosclerosis 159:231–236

    Article  PubMed  Google Scholar 

  • Schulthess G, Compassi S, Werder M et al. (2000) Intestinal sterol absorption mediated by scavenger receptors is competitively inhibited by amphipathic peptides and proteins. Biochemistry 39:12623–12631

    PubMed  Google Scholar 

  • Schwarz M, Davis DL, Vick BR et al. (2001) Genetic analysis of intestinal cholesterol absorption in inbred mice. J Lipid Res 42:1801–1811

    PubMed  Google Scholar 

  • Schwarz M, Russell DW, Dietschy JM et al. (2001) Alternate pathways of bile acid synthesis in the cholesterol 7α-hydroxylaseknockoutmouse are not upregulated by either cholesterol or cholestyramine feeding. J Lipid Res 42:1594–1603

    PubMed  Google Scholar 

  • Sehayek E, Duncan EM, LĂĽtjohann D, et al. (2002) Loci on chromosomes 14 and 2, distinct from ABCG5/ABCG8, regulate plasma plant sterol levels in a C57BL/6 J x CASA/Rk intercross. Proc Natl Acad Sci USA 99:16215–16219

    PubMed  Google Scholar 

  • Small DM (2003) Role of ABC transporters in secretion of cholesterol from liver into bile. Proc Natl Acad Sci USA 100:4–6

    Article  PubMed  Google Scholar 

  • Smart EJ, De Rose RA, Farber SA (2004) Annexin2-caveolin1 complex is a target of ezetimibe and regulates intestinal cholesterol transport. Proc Natl Acad Sci USA 101:3450–3455

    PubMed  Google Scholar 

  • Smit JJ, Schinkel AH, Oude Elferink RPJ et al. (1993). Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell 75:451–462

    Article  PubMed  Google Scholar 

  • Stellaard F, Sackmann M, Sauerbruch T et al. (1984) Simultaneous determination of cholic acid and chenodeoxycholic acid pool sizes and fractional turnover rates in human serum using labeled bile acids. J Lipid Res 25:1313–1319

    PubMed  Google Scholar 

  • Sudhop T, von Bergmann K (2002) Cholesterol absorption inhibitors for the treatment of hypercholesterolemia. Drugs 62:2333–2347

    PubMed  Google Scholar 

  • Sudhop T, LĂĽtjohahn D, Kodal A et al. (2002) Inhibition of cholesterol absorption by ezetimibe in humans. Circulation 106:1943–1948

    Article  PubMed  Google Scholar 

  • Temel RE, Gebre AK, Parks JS et al. (2003)Compared with acyl-CoA: cholesterol O-acyltransferase (ACAT) 1 and lecithin: cholesterol acyltransferase, ACAT2 displays the greatest capacity to differentiate cholesterol from sitosterol. J Biol Chem 278:47594–47601

    PubMed  Google Scholar 

  • Turley SD, Dietschy J (2003) Sterol absorption by the small intestine. Curr Opin Lipidol 14:233–240

    Article  PubMed  Google Scholar 

  • Van Heek M, France CF, Compton DS et al. (1997) In vivo metabolism-based discovery of a potent cholesterol absorption inhibitor, SCH58235, in the rat and rhesus monkey through the identification of the active metabolites of SCH48461. J Pharmacol Exp Ther 283:157–163

    PubMed  Google Scholar 

  • Verkade HJ, Havinga R, Gerding A et al. (1993) Mechanism of Bile Acid-Induced Biliary Lipid Secretion in the Rat: Effect of Conjugated Bilirubin. Am J Physiol 264: G462–G469

    PubMed  Google Scholar 

  • Verkade HJ, Vonk RJ, Kuipers F (1995). New insights into the mechanism of bile acid induced biliary lipid secretion. Hepatology 21:1174–1189

    Article  PubMed  Google Scholar 

  • Voshol PJ, Minich DM, Havinga R et al. (2000) Postprandial chylomicron formation and fat absorption inmultidrug resistance gene 2 P-glycoprotein-deficient mice. Gastroenterology 118:173–182

    Article  PubMed  Google Scholar 

  • Voshol PJ, Schwarz M, Rigotti A et al. (2001) Down-regulation of intestinal scavenger receptor class B, type I (SR-BI) expression in rodents under conditions of deficient bile delivery to the intestine. Biochem J 356:317–325

    Article  PubMed  Google Scholar 

  • Wang DQ, Carey MC (2003) Measurement of intestinal cholesterol absorption by plasma dual-isotope ratio, mass balance, and lymph fistula methods in the mouse: an analysis of direct versus indirect methodologies. J Lipid Res 44:1042–1059

    Article  PubMed  Google Scholar 

  • Wang DQ, Tazuma S, Cohen DE (1999) Natural hydrophilic bile acids profoundly inhibit intestinal cholesterol absorption in mice. Hepatology 30:395A

    Article  Google Scholar 

  • Wellington CL, Walker EK, Suarez A et al. (2002) ABCA1 mRNA and protein distribution patterns predict multiple different roles and levels of regulation. Lab Invest 82:273–283

    PubMed  Google Scholar 

  • Werder M, Han CH, Wehrli E et al. (2001) Role of scavenger receptors SR-BI and CD36 in selective sterol uptake in the small intestine. Biochemistry 40:11643–11650

    Article  PubMed  Google Scholar 

  • Wilson MD, Rudel LL (1994) Review of cholesterol absorption with emphasis on dietary and biliary cholesterol. J Lipid Res 35:943–955

    PubMed  Google Scholar 

  • Wittenburg H, Lyons MA, Li R (2003)FXR and ABCG5/ABCG8 as determinants of cholesterol gallstone formation from quantitative trait locus mapping in mice. Gastroenterology 125:868–881

    Article  PubMed  Google Scholar 

  • Young SG, Cham CM, Pitas RE et al. (1995) A genetic model for absent chylomicron formation: mice producing apolipoprotein B48 in the liver, but not in the intestine. J Clin Invest 96:2932–2946

    PubMed  Google Scholar 

  • Yu L, Hammer RE, Li-Hawkins J et al. (2002A) Disruption of Abcg5 and Abcg8 in mice reveals their crucial role in biliary cholesterol secretion. Proc Natl Acad Sci USA 99:16237–16242

    PubMed  Google Scholar 

  • Yu L, Li-Hawkins J, Hammer RE et al. (2002B) Overexpression of ABCG5 and ABCG8 promotes biliary cholesterol secretion and reduces fractional absorption of dietary cholesterol. J Clin Invest 110:671–680

    Article  PubMed  Google Scholar 

  • Yu L, York J, von Bergmann K et al. (2003) Stimulation of cholesterol excretion by the liver X receptor agonist requires ATP-binding cassette transporters G5 and G8. J Biol Chem 278:15565–15570

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Plösch, T., Kosters, A., Groen, A., Kuipers, F. (2005). The ABC of Hepatic and Intestinal Cholesterol Transport. In: von Eckardstein, A. (eds) Atherosclerosis: Diet and Drugs. Handbook of Experimental Pharmacology, vol 170. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27661-0_17

Download citation

Publish with us

Policies and ethics