Skip to main content

Part of the book series: Springer Praxis Books ((ENVIRONSCI))

Abstract

The Madden-Julian Oscillation (MJO) has long been an aspect of the global climate that has provided a challenging test for the climate modeling community. Since the 1980s there have been numerous studies of the simulation of the MJO in atmospheric general circulation models (GCMs), ranging from Hayashi and Golder (1986, 1988) and Lau and Lau (1986), through to more recent studies such as Wang and Schlesinger (1999) and Wu et al. (2002). Of course, attempts to reproduce the MJO in climate models have proceeded in parallel with developments in our under- standing of what the MJO is and what drives it. In fact, many advances in under- standing the MJO have come through modeling studies. In particular, failure of climate models to simulate various aspects of the MJO has prompted investigations into the mechanisms that are important to its initiation and maintenance, leading to improvements both in our understanding of, and ability to simulate, the MJO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

11.6 References

  • Anderson, S. P., R. A. Weller, and R. B. Lukas (1996) Surface buoyancy forcing and the mixed layer of the Western Pacific warm pool: Observations and ID model results. J. Clim., 9, 3056–3085.

    Article  Google Scholar 

  • Annamalai, H., J. M. Slingo, K. R. Sperber, and K. Hodges (1999) The mean evolution and variability of the Asian summer monsoon: Comparison between ECMWF and NCEP-NCAR Reanalyses. Mon. Wea. Rev., 127, 1157–1186.

    Article  Google Scholar 

  • Annamalai, H. and J. M. Slingo (2001) Active/break cycles: Diagnosis of the intraseasonal variability of the Asian summer monsoon. Clim. Dynam., 18, 85–102.

    Article  Google Scholar 

  • Annamalai, H. and K. R. Sperber (2004) Regional heat sources and the active and break phases of boreal summer intraseasonal variability. J. Atmos. Sci., submitted.

    Google Scholar 

  • Arakawa, A. and W. H. Schubert (1974) Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674–701.

    Article  Google Scholar 

  • Bernie, D. J., S. J. Woolnough, J. M. Slingo, and E. Guilyardi (2004) Modelling diurnal and intraseasonal variability of the ocean mixed layer. J. Clim., in press.

    Google Scholar 

  • Betts, A. K. (1986) A new convective adjustment scheme. Part I: Observational and theoretical basis. Q. J. R. Meteorol. Soc., 112, 677–691.

    Google Scholar 

  • Bladé, I. and D. L. Hartmann (1993) Tropical intraseasonal oscillations in a simple nonlinear model. J. Atmos. Sci., 50, 2922–2939.

    Article  Google Scholar 

  • Emanuel, K. A. (1987) An air-sea interaction model of intraseasonal oscillations in the tropics. J. Atmos. Sci., 44, 2324–2340.

    Article  Google Scholar 

  • Fennessy, M. J. and J. Shukla (1994) GCM simulations of active and break periods. Proceedings of the International Conference on Monsoon Variability and Prediction, Trieste, Italy (WCRP-84, WMO/TD-No. 619, Vol. 2, 576–585.

    Google Scholar 

  • Ferranti, L., J. M. Slingo, T. N. Palmer, and B. J. Hoskins (1997) Relations between inter-annual and intraseasonal variability as diagnosed from AMIP integration. Q. J. R. Meteorol. Soc., 123, 1323–1357.

    Article  Google Scholar 

  • Flatau, M., P. J. Flatau, P. Phoebus, and P. P. Niiler (1997) The feedback between equatorial convection and local radiative and evaporative processes: The implications for intraseasonal oscillations. J. Atmos. Sci., 54, 2373–2386.

    Article  Google Scholar 

  • Fu, X., B. Wang, T. Li, and J. P. McCreary (2003) Coupling between northward propagation, intraseasonal oscillations and sea surface temperature in the Indian Ocean. J. Atmos. Sci., 60, 1733–1753.

    Article  Google Scholar 

  • Gadgil, S. and J. Srinivasan (1990) Low frequency variation of tropical convergence zones. Meteorol. Atmos. Phys., 44, 119–132.

    Article  Google Scholar 

  • Gadgil, S. and G. Asha (1992) Intraseasonal variation of the summer monsoon. Part I: Observational aspects. J. Meteorol. Soc. Jap., 70, 517–527.

    Google Scholar 

  • Gates, W. L. (1992) AMIP: The atmospheric model intercomparison project. Bull. Amer. Met. Soc., 73, 1962–1970.

    Article  Google Scholar 

  • Gates, W. L., J. S. Boyle, C. Covey, C. G. Dease, C. M. Doutriaux, R. S. Drach, M. Fiorino, P. Gleckler, J. J. Huilo, S. M. Marlais, et al. (1999) An overview of the results of the Atmospheric Model Intercomparison Project (AMIP 1). Bull. Amer. Meteorol. Soc., 80, 29–56.

    Article  Google Scholar 

  • Gibson, J. K., P. Kallberg, and S. Uppala (1996) The ECMWF ReAnalysis (ERA) project. ECMWF Newsletter, 73, 7–17.

    Google Scholar 

  • Gibson, J. K., P. Kallberg, S. Uppala, A. Hernandez, A. Nomura, and E. Serrano (1997) ECMWF ReAnalysis Project Report, Series 1. ECMWF, Reading, U.K., 77 pp.

    Google Scholar 

  • Gilchrist, A. (1977) The simulation of the Asian summer monsoon by general circulation models. Pageopf, 115, 1431–1448.

    Article  Google Scholar 

  • Gordon, C., C. Cooper, C. A. Senior, H. Banks, J. M. Gregory, T. C. Johns, J. F. B. Mitchell, and R. A. Wood (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim. Dyn., 16, 147–168.

    Article  Google Scholar 

  • Goswami, B. N. and R. S. Ajaya Mohan (2001) Intraseasonal oscillations in interannual variability of the Indian summer monsoon. J. Clim., 14, 1180–1198.

    Article  Google Scholar 

  • Grabowski, W. W. (2003) MJO-like coherent structures: Sensitivity simulations using the Cloud-Resolving Convection Parameterization (CRCP). J. Atmos. Sci., 60, 847–864.

    Article  Google Scholar 

  • Grabowski, W. W. and M. W. Moncrieff (2002) Large-scale organization of tropical convection in two-dimensional explicit numerical simulations: Effects of interactive radiation. Q. J. R. Meteorol. Soc., 128, 2349–2375.

    Article  Google Scholar 

  • Gualdi, S., A. Navarra, and M. Fischer (1999) The tropical intraseasonal oscillation in a coupled ocean-atmosphere general circulation model. Geophys. Res. Lett., 26, 2973–2976.

    Article  Google Scholar 

  • Gualdi, S., A. Navarra, and G. Tinarelli (1999) The interannula variability of the Madden-Julian Oscillation in an ensemble of GCM simulations. Clim. Dyn., 15, 643–658.

    Article  Google Scholar 

  • Hahn, D. G. and S. Manabe (1975) The role of mountains in the south Asian monsoon circulation. J. Atmos. Sci., 32, 1515–1541.

    Article  Google Scholar 

  • Hayashi, Y.-Y. and D. G. Golder (1986) Tropical intraseasonal oscillations appearing in a GFDL general circulation model and FGGE data. Part I: Phase propagation. J. Atmos. Sci., 43, 3058–3067.

    Article  Google Scholar 

  • Hayashi, Y.-Y. and D. G. Golder (1988) Tropical intraseasonal oscillations appearing in a GFDL general circulation model and FGGE data. Part II: Structure. J. Atmos. Sci., 45, 3017–3033.

    Article  Google Scholar 

  • Hayashi, Y. and D. G. Golder (1993) Tropical 40–50 and 25–30 day oscillations appearing in realistic and idealized GFDL climate models and ECMWF dataset. J. Atmos. Sci., 50, 464–494.

    Article  Google Scholar 

  • Hendon, H. H. (2000) Impact of air-sea coupling on the Madden-Julian Oscillation in a general circulation model. J. Atmos. Sci., 57, 3939–3952.

    Article  Google Scholar 

  • Hendon, H. H. and B. Liebmann (1994) Organization of convection within the Madden-Julian Oscillation. J. Geophys. Res., 99, 8073–8083.

    Article  Google Scholar 

  • Hendon, H. H., C. D. Zhang, and J. D. Glick (1999) Interannual variation of the Madden-Julian Oscillation during austral summer. J. Clim., 12, 2538–2550.

    Article  Google Scholar 

  • Hsu, H.-H. and C.-H. Weng (2001) Northwestward propagation of the intraseasonal oscillation in the western north Pacific during the boreal summer: structure and mechanism. J. Clim., 14, 3834–3850.

    Article  Google Scholar 

  • Inness, P. M. and D. Gregory (1997) Aspects of the intraseasonal oscillation simulated by the Hadley Centre Atmosphere Model. Clim. Dyn., 13, 441–458.

    Article  Google Scholar 

  • Inness, P. M., J. M. Slingo, S. J. Woolnough, R. B. Neale, and V. D. Pope (2001) Organization of tropical convection in a GCM with varying vertical resolution: Implications for the simulation of the Madden-Julian Oscillation. Climate Dynamics, 17, 777–793.

    Article  Google Scholar 

  • Inness, P. M. and J. M. Slingo (2003) Simulation of the MJO in a coupled GCM. Part I: Comparison with observations and an atmosphere-only GCM. J. Clim., 16, 345–364.

    Article  Google Scholar 

  • Inness, P. M., J. M. Slingo, E. Guilyardi, and J. Cole (2003) Simulation of the MJO in a coupled GCM. Part II: The role of the basic state. J. Clim., 16, 365–382.

    Article  Google Scholar 

  • Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert (1999) Trimodal characteristics of tropical convection. J. Clim., 12, 2397–2418.

    Article  Google Scholar 

  • Jung, T. and A. Tompkins (2003) Systematic Errors in the ECMWF Forecasting System (ECMWF Technical Memorandum No. 422). ECMWF, Reading, U.K.

    Google Scholar 

  • Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, et al. (1996) The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteorol. Soc., 77, 437–471.

    Article  Google Scholar 

  • Kemball-Cook, S. and B. Wang (2001) Equatorial waves and air-sea interactions in the boreal summer intraseasonal oscillation. J. Clim., 14, 2923–2942.

    Article  Google Scholar 

  • Kemball-Cook, S., B. Wang, and X. Fu (2002) Simulation of the intraseasonal oscillation in the ECHAM-4 Model: The impact of coupling with an ocean model. J. Atmos. Sci., 59, 1433–1453.

    Article  Google Scholar 

  • Krishnamurti, T. N. and H. N. Bhalme (1976) Oscillations of the monsoon system. Part 1. Observational aspects. J Atmos. Sci., 33, 1937–1954.

    Article  Google Scholar 

  • Knutson, T. R. and K. M. Weickmann (1987) 30–60 day atmospheric oscillations: Composite life-cycles of convection and circulation anomalies. Mon. Wea. Rev., 115, 1407–1436.

    Article  Google Scholar 

  • Kuo, H. L. (1974) Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J. Atmos. Sci., 31, 1232–1240.

    Article  Google Scholar 

  • Lau, K. M. and P. H. Chan (1986) Aspects of the 40–50 day oscillation during the northern summer as inferred from outgoing longwave radiation. Mon. Wea. Rev., 114, 1354–1367.

    Article  Google Scholar 

  • Lau, N. C. and K. M. Lau (1986) Structure and propagation of intraseasonal oscillations appearing in a GFDL GCM. J. Atmos. Sci., 43, 2023–2047.

    Article  Google Scholar 

  • Lau, K. M. and S. Yang (1996) Seasonal variation, abrupt transition, and intraseasonal variability associated with the Asian summer monsoon in the GLA GCM. J. Clim., 9, 965–985.

    Article  Google Scholar 

  • Lau, K. M. and L. Peng (1990) Origin of low frequency (intraseasonal) oscillations in the tropical Atmosphere. Part III: Monsoon dynamics. J. Atmos. Sci., 47, 1443–1462.

    Article  Google Scholar 

  • Lau, K.-M., T. Nakazawa, and C. H. Sui (1991) Observations of cloud cluster hierarchies over the tropical western Pacific. J. Geophys. Res., 96, 3197–3208.

    Google Scholar 

  • Lawrence, D. M. and P. J. Webster (2002) The boreal summer intraseasonal oscillation: Relationship between northward and eastward movement of convection. J. Atmos. Sci., 59, 1593–1606.

    Article  Google Scholar 

  • Lee, M. I., I. S. Kang, and B. E. Mapes (2003) Impacts of convection parametrization on aqua-planet AGCM simulations of tropical intraseasonal variability. J. Meteorol. Soc. Jap., 81. 963–992.

    Article  Google Scholar 

  • Lengaigne, M., E. Guilyardi, J.-P. Boulanger, C. Menkes, P. Delecluse, P. Inness, J. Cole, and J. M. Slingo (2004) Triggering of El Niño by westerly wind events in a coupled general circulation model. Climate Dynamics, 23 [doi:10.1007/500382-004-0457-2].

    Google Scholar 

  • Lin, X. and R. H. Johnson (1996) Heating, moistening and rainfall over the western Pacific warm pool during TOGA COARE. J. Atmos. Sci., 53, 3367–3383.

    Article  Google Scholar 

  • Maloney, E. D. and D. L. Hartmann (2001) The sensitivity of intraseasonal variability in the NCAR CCM3 to changes in convective parametrization. J. Clim., 14, 2015–2034.

    Article  Google Scholar 

  • Martin, G. (1999) The simulation of the Asian summer monsoon, and its sensitivity to horizontal resolution, in the UK Meteorological Office Unified Model. Q. J. R. Meteorol. Soc., 125, 1499–1525.

    Article  Google Scholar 

  • Matthews, A. J., J. M. Slingo, B. J. Hoskins, and P. M. Inness (1999) Fast and slow Kelvin waves in the Madden-Julian Oscillation of a GCM. Q. J. R. Meteorol. Soc., 125, 1473–1498.

    Article  Google Scholar 

  • McPhaden, M. J. (1999) Genesis and evolution of the 1997–1998 El Niño. Science, 283, 950–954.

    Article  Google Scholar 

  • Molteni, F., S. Corti, L. Ferranti, and J. M. Slingo (2003) Predictability experiments for the Asian summer monsoon: Impact of SST anomalies on interannual and intraseasonal variability. J. Clim., 16, 4001–4021.

    Article  Google Scholar 

  • Murakami, T., T. Nakazawa, and J. He (1984) On the 40–50 day oscillations during the 1979 northern hemisphere summer. Part I: Phase propagation. J. Meteorol. Soc. Jap., 62, 440–468.

    Google Scholar 

  • Nordeng, T. E. (1994) Extended Versions of the Convective Parametrization Scheme at ECMWF and their Impact on the Mean and Transient Activity of the Model in the Tropics (ECMWF Technical Memorandum No. 206). ECMWF, Reading, U.K.

    Google Scholar 

  • Nakazawa, T. (1988) Tropical superclusters within intraseasonal variations over the western Pacific. J. Meteorol. Soc. Jap., 66, 823–839.

    Google Scholar 

  • Park, C. K., D. M. Straus, and K. M. Lau (1990) An evaluation of the structure of tropical intraseasonal oscillations in 3 general circulation models. J. Meteorol. Soc. Jap., 68, 403–417.

    Google Scholar 

  • Rajendran, K., A. Kitoh, and O. Arakawa (2004) Monsoon low-frequency intraseasonal oscillation and ocean-atmosphere coupling over the Indian Ocean. Geophys. Res. Lett., 31, doi:10.1029/2003GL019031.

    Google Scholar 

  • Randall, D., M. Khairoutdinov, A. Arakawa Akio, and W. Grabowski (2003) Breaking the cloud parameterization deadlock. Bull. Amer. Met. Soc., 84, 1547–1564.

    Article  Google Scholar 

  • Raymond, D. J. (2001) A new model of the Madden-Julian Oscillation. J. Atmos. Sci., 58, 2807–2819.

    Article  Google Scholar 

  • Salby, M. M., H. H. Hendon, and R. R. Garcia (1994) Planetary-scale circulations in the presence of climatological and wave-induced heating. J. Atmos. Sci., 51, 2344–2367.

    Article  Google Scholar 

  • Seo, K. H. and K. Y. Kim (2003) Propagation and initiation mechanisms of the Madden-Julian Oscillation. J. Geophys. Res., 108, doi:10.1029/2002JD002876.

    Google Scholar 

  • Shinoda, T. and H. H. Hendon (1998) Mixed layer modeling of intraseasonal variability in the tropical Western Pacific and Indian Oceans. J. Clim., 11, 2668–2685.

    Article  Google Scholar 

  • Sikka, D. R. (1980) Some aspects of the large-scale fluctuations of summer monsoon rainfall over India in relation to fluctuations in planetary and regional scale circulation parameters. Proc. Indian Acad. Sci. (Earth Planet. Sci.), 89, 179–195.

    Google Scholar 

  • Sikka, D. R. and S. Gadgil (1980) On the maximum cloud zone and the ITCZ over Indian longitudes during the southwest monsoon. Mon. Wea. Rev., 108, 1840–1853.

    Article  Google Scholar 

  • Slingo, J. M. and R. A. Madden (1991) Characteristics of the tropical intraseasonal oscillation in the NCAR community climate model. Q. J. R. Meteorol. Soc., 117, 1129–1169.

    Article  Google Scholar 

  • Slingo, J. M., K. R. Sperber, J.-J. Morcrette, and G. L. Potter (1992) Analysis of the temporal behavior of convection in the tropics of the ECMWF model. J. Geophys. Res., 97, 18119–18135.

    Google Scholar 

  • Slingo, J. M., K. R. Sperber, J. S. Boyle, J.-P. Ceron, M. Dix, B. Dugas, W. Ebisuzaki, J. Fyfe, D. Gregory, J.-F. Gueremy, et al. (1996) Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Climate Dynamics, 12, 325–357.

    Article  Google Scholar 

  • Slingo, J. M., D. P. Rowell, K. R. Sperber, and F. Nortley (1999) On the predictability of the interannual behaviour of the Madden-Julian Oscillation and its relationship with El Niño. Q. J. R. Meteorol. Soc., 125, 583–609.

    Google Scholar 

  • Slingo, J. M., M. Blackburn, A. Betts, R. Brugge, K. Hodges, B. Hoskins, M. Miller, L. Steenman-Clark, and J. Thuburn (1994) Mean climate and transience in the tropics of the UGAMP GCM: Sensitivity to convective parameterization. Q. J. R. Meteorol. Soc., 120, 881–922.

    Article  Google Scholar 

  • Slingo, J. M., P. M. Inness, R. B. Neale, S. J. Woolnough, and G.-Y. Yang (2003) Scale interactions on diurnal to seasonal timescales and their relevance to model systematic errors. Ann. Geophys., 46, 139–155.

    Google Scholar 

  • Sperber, K. R., S. Hameed, G. L. Potter, and J. S. Boyle (1994) Simulation of the northern summer monsoon in the ECMWF model: Sensitivity to horizontal resolution. Mon. Wea. Rev., 122, 2461–2481.

    Article  Google Scholar 

  • Sperber, K. R. and T. N. Palmer (1996) Interannual tropical rainfall variability in general circulation model simulations associated with the atmospheric model intercomparison project. J. Clim., 9, 2727–2750.

    Article  Google Scholar 

  • Sperber, K. R., J. M. Slingo, P. M. Inness, and W. K.-M. Lau (1997) On the maintenance and initiation of the intraseasonal oscillation in the NCEP/NCAR Reanalysis and the GLA and UKMO AMIP simulations. Climate Dynamics, 13, 769–795.

    Article  Google Scholar 

  • Sperber, K. R., J. M. Slingo, and H. Annamalai (2000) Predictability and the relationship between subseasonal and interannual variability during the Asian Summer Monsoon. Q. J. R. Meteorol. Soc., 126, 2545–2574.

    Article  Google Scholar 

  • Sperber, K. R., C. Brankovic, M. Deque, C. S. Frederiksen, R. Graham, A. Kitoh, C. Kobayashi, T. Palmer, K. Puri, W. Tennant, and E. Volodin (2001) Dynamical seasonal prediction of the Asian summer monsoon. Mon. Wea. Rev., 129, 2226–2248.

    Article  Google Scholar 

  • Sperber, K. R. (2003) Propagation and the vertical structure of the Madden-Julian Oscillation. Mon. Wea. Rev., 131, 3018–3037.

    Article  Google Scholar 

  • Swinbank, R., T. N. Palmer, and M. K. Davey (1988) Numerical simulations of the Madden-Julian Oscillation. J. Atmos. Sci., 45, 774–788.

    Article  Google Scholar 

  • Tibaldi, S., T. N. Palmer, C. Brankovic, and U. Cubasch (1990) Extended-range predictions with ECMWF models: Influence of horizontal resolution on systematic model error and forecast skill. Q. J. R. Meteorol. Soc., 116, 835–866.

    Article  Google Scholar 

  • Tokioka, T., K. Yamazaki, A. Kitoh, and T. Ose (1988) The equatorial 30–60 day oscillation and the Arakawa-Schubert penetrative cumulus parametrization. J. Meteorol. Soc. Jap., 66, 883–901.

    Google Scholar 

  • Tompkins, A. M. and K. A. Emanuel (2000) The vertical resolution sensitivity of simulated equilibrium tropical temperature and water vapour profiles. Q. J. R. Meteorol. Soc., 126, 1219–1238.

    Article  Google Scholar 

  • Waliser, D. E., K. M. Lau, and J.-H. Kim (1999) The influence of coupled sea surface temperatures on the Madden-Julian Oscillation: A model perturbation experiment. J. Atmos. Sci., 56, 333–358.

    Article  Google Scholar 

  • Waliser, D. E., K. Jin, I.-S. Kang, W. F. Stern, S. D. Schubert, M. L. C. Wu, K.-M. Lau, M.-I. Lee, V. Krishnamurthy, A. Kitoh, et al. (2003a) AGCM simulations of intraseasonal variability associated with the Asian summer monsoon. Clim. Dynam., 21, 423–446.

    Article  Google Scholar 

  • Waliser, D. E., W. Stern, S. Schubert, and K. M. Lau (2003b) Dynamic predictability of intraseasonal variability associated with the Asian summer monsoon. Q. J. R. Meteorol. Soc., 129, 2897–2925.

    Article  Google Scholar 

  • Waliser, D. E., K. M. Lau, W. Stern, and C. Jones (2003c) Potential predictability of the Madden-Julian Oscillation. Bull. Amer. Meteorol. Soc., 84, 33–50.

    Article  Google Scholar 

  • Waliser, D. E., S. Schubert, A. Kumar, K. Weickmann, and R. Dole (2003d) Modeling, simulation, and forecasting of subseasonal variability. Technical Report Series on Global Modeling and Data Assimilation, NASA/CP-2003-104606, Vol. 25, 66 pp.

    Google Scholar 

  • Wang, B. and H. Rui (1990) Synoptic climatology of transient tropical intraseasonal convection anomalies: 1975–1985. Meteorol. Atmos. Phys., 44, 43–61.

    Article  Google Scholar 

  • Wang, B. and X. Xie (1997) A model for the boreal summer intraseasonal oscillation. J. Atmos. Sci., 54, 72–86.

    Article  Google Scholar 

  • Wang, W. Q. and M. E. Schlesinger (1999) The dependence on convective parameterization of the tropical intraseasonal oscillation simulated by the UIUC 11-layer atmospheric GCM. J. Clim., 12, 1423–1457.

    Article  Google Scholar 

  • Webster, P. J., V. O. Magana, T. N. Palmer, J. Shukla, R. A. Tomas, M. Yanai, and T. Yasunari (1998) Monsoons: Processes, predictability, and the prospects for prediction. Journal of Geophysical Research, 103(C7), 14451–14510.

    Article  Google Scholar 

  • Weller, R. A. and S. P. Anderson (1996) Surface meteorology and air-sea fluxes in the western equatorial Pacific warm pool during the TOGA coupled ocean-atmosphere experiment. J. Clim., 9, 1959–1992.

    Article  Google Scholar 

  • Wheeler, M. and G. N. Kiladis (1999) Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci., 56, 374–399.

    Article  Google Scholar 

  • Woolnough, S. J., J. M. Slingo, and B. J. Hoskins (2000) The relationship between convection and sea surface temperature on intraseasonal timescales. J. Clim., 13, 2086–2104.

    Article  Google Scholar 

  • Woolnough, S. J., J. M. Slingo, and B. J. Hoskins (2001) The organization of tropical convection by intraseasonal sea surface temperature anomalies. Q. J. R. Meteorol. Soc., 127, 887–907.

    Article  Google Scholar 

  • Wu, M. L. C., S. Schubert, I. S. Kang, and D. E. Waliser (2002) Forced and free intraseasonal variability over the South Asian Monsoon region simulated by 10 AGCMs. J. Clim., 15, 2862–2880.

    Article  Google Scholar 

  • Wu, Z. (2003) A shallow CISK, deep equilibrium mechanism for the interaction between large-scale convection and large-scale circulations in the tropics. J. Atmos. Sci., 60, 377–392.

    Article  Google Scholar 

  • Yang, G.-Y., B. J. Hoskins, and J. M. Slingo (2003) Convectively coupled equatorial waves: A new methodology for identifying wave structures in observational data. J. Atmos. Sci., 60, 1637–1654.

    Article  Google Scholar 

  • Yasunari, T. (1979) Cloudiness fluctuations associated with the northern hemisphere summer monsoon. J. Met. Soc. Jap., 57, 227–242.

    Google Scholar 

  • Yasunari, T. (1980) A quasi-stationary appearance of 30–40 day period in cloudiness fluctuations during the summer monsoon over India. J. Met. Soc. Jap., 58, 225–229.

    Google Scholar 

  • Zveryaev, I. (2002) Interdecadal changes in the zonal wind and the intensity of intraseasonal oscillations during boreal summer Asian monsoon. Tellus, 54, 288–298.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Praxis. Springer Berlin Heidelberg

About this chapter

Cite this chapter

Slingo, J.M., Inness, P.M., Sperber, K.R. (2005). Modeling. In: Intraseasonal Variability in the Atmosphere-Ocean Climate System. Springer Praxis Books. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27250-X_11

Download citation

Publish with us

Policies and ethics