Skip to main content

Vague Topological Predicates for Crisp Regions through Metric Refinements

  • Conference paper
Developments in Spatial Data Handling
  • 1641 Accesses

Abstract

Topological relationships between spatial objects have been a focus of research on spatial data handling and reasoning for a long time. Especially as predicates they support the design of suitable query languages for data retrieval and analysis in spatial databases and geographical information systems. Whereas research on this topic has always been dominated by qualitative methods and by an emphasis of a strict separation of topological and metric, that is, quantitative, properties, this paper investigates their possible coexistence and cooperation. Metric details can be exploited to refine topological relationships and to make important semantic distinctions that enhance the expressiveness of spatial query languages. The metric refinements introduced in this paper have the feature of being topologically invariant under a ne transformations. Since the combination of a topological predicate with a metric refinement leads to a single unified quantitative measure, this measure has to be interpreted and mapped to a lexical item. This leads to vague topological predicates, and we demonstrate how these predicates can be integrated into a spatial query language.

This work was partially supported by the National Science Foundation under grant number NSF-CAREER-IIS-0347574.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Behr, T. & Schneider, M. (2001), Topological Relationships of Complex Points and Complex Regions, in ‘Int. Conf. on Conceptual Modeling’, pp. 56–69.

    Google Scholar 

  • Clementini, E., Di Felice, P. & Oosterom, P. (1993), A Small Set of Formal Topological Relationships Suitable for End-User Interaction, in ‘3rd Int. Symp. on Advances in Spatial Databases’, LNCS 692, pp. 277–295.

    Google Scholar 

  • Cui, Z., Cohn, A. G. & Randell, D. A. (1993), Qualitative and Topological Relationships, in ‘3rd Int. Symp. on Advances in Spatial Databases’, LNCS 692, pp. 296–315.

    Google Scholar 

  • Egenhofer, M. J., Frank, A. & Jackson, J. P. (1989), A Topological Data Model for Spatial Databases, in ‘1st Int. Symp. on the Design and Implementation of Large Spatial Databases’, LNCS 409, Springer-Verlag, pp. 271–286.

    Google Scholar 

  • Egenhofer, M. J. & Shari, A. R. (1998), ‘Metric Details for Natural-Language Spatial Relations’, ACM Transactions on Information Systems 16(4), 295–321.

    Article  Google Scholar 

  • Goyal, R. & Egenhofer, M. (2004), ‘Cardinal Directions between Extended Spatial Objects’, IEEE Trans. on Knowledge and Data Engineering. In press.

    Google Scholar 

  • Hernandez, D., Clementini, E. C. & Di Felice, P. (1995), Qualitative Distances, in ‘2nd Int. Conf. on Spatial Information Theory’, LNCS 988, Springer-Verlag, pp. 45–57.

    Google Scholar 

  • Peuquet, D. J. & Xiang, Z. C. (1987), ‘An Algorithm to Determine the Directional Relationship between Arbitrarily-Shaped Polygons in the Plane’, Pattern Recognition 20(1), 65–74.

    Article  Google Scholar 

  • Schneider, M. (1997), Spatial Data Types for Database Systems — Finite Resolution Geometry for Geographic Information Systems, Vol. LNCS 1288, Springer-Verlag, Berlin Heidelberg.

    Google Scholar 

  • Schneider, M. (1999), Uncertainty Management for Spatial Data in Databases: Fuzzy Spatial Data Types, in ‘6th Int. Symp. on Advances in Spatial Databases’, LNCS 1651, Springer-Verlag, pp. 330–351.

    Google Scholar 

  • Schneider, M. (2001a), A Design of Topological Predicates for Complex Crisp and Fuzzy Regions, in ‘Int. Conf. on Conceptual Modeling’, pp. 103–116.

    Google Scholar 

  • Schneider, M. (2001b), Fuzzy Topological Predicates, Their Properties, and Their Integration into Query Languages, in ‘ACM Symp. on Geographic Information Systems’, pp. 9–14.

    Google Scholar 

  • Vazirgiannis, M. (2000), Uncertainty Handling in Spatial Relationships, in ‘ACM Symp. for Applied Computing’.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schneider, M. (2005). Vague Topological Predicates for Crisp Regions through Metric Refinements. In: Developments in Spatial Data Handling. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26772-7_12

Download citation

Publish with us

Policies and ethics